Boulbaba Ben Ammar
email: boulbaba.ben-ammar@loria.fr

Mohamed Tahar Bhiri

Jeanine Souquières
email: jeanine.souquières@loria.fr

Towards an incremental development of UML specifications

Keywords: Step-by-step development process, UML, OCL, refinement, verification

Specifying complex systems is a difficult task which cannot be done in one step. Step-by-step development processes have been studied using formal methods, based on refinement mechanisms. The refinement is a key feature for incrementally developing more and more detailed models, preserving correctness in each step. Our purpose is to instantiate this process when using UML/OCL notations. We illustrate it by some development steps of an access control system. At each step, decisions are formalized in terms of different UML notations, making evolve an initial model which expresses the fundamental properties of the system. We show that these properties are preserved by each development step.

Introduction

Specifying a complex system is a difficult task which cannot be done in one step.

Step-by-step development processes have been largely studied in formal approaches, based on refinement mechanisms. Usually, two kinds of refinement are highlighted, horizontal refinements and vertical refinements. The horizontal refinement consists in introducing new viewpoints and new details in an existing model. Each introduction of details to a model leads to a new model which must be coherent with the previous one. If it is the case, we said that the second model refines the first one. The vertical refinement consists in going from an abstract model to a more concrete one, for example by reducing the indeterminism or by strengthening the guard or the postcondition of operations. The concrete model is a realization of the abstract model.

The concept of refinement is an important aspect in formal methods, such as the B method [START_REF] Souquières | The B Book -Assigning Programs to Meanings[END_REF] or Object Perfect Developer [START_REF] Crocker | Perfect Developer: A tool for Object-Oriented Formal Specification and Refinement[END_REF], with the verification of the correctness: a refinement is correct if the properties of the abstract model are verified by the concrete model. This notion of refinement between two models, an abstract and a more concrete one, is formally defined and can be mathematically proven by support tools. Meanwhile, there is a lack of a methodological studies related to the incremental development of complex system using the refinement mechanisms [START_REF] Guyomard | Spécification et raffinement en B : deux exemples pédagogiques[END_REF].

An incremental development is natural and relevant. Nevertheless it is currently difficult to use it with UML notations [START_REF]OMG. UML 2.0 Superstructure Specification, Final Adopted Specification ptc/03-08-02[END_REF][START_REF] Rumbaugh | The Unified Modeling Language Reference Guide[END_REF]. Indeed, a rigorous definition of the refinement concept doesn't exist in such notations.

The concept of refinement has been highlighted in several studies. In [START_REF] Schrefl | Behavior-consistent specialization of object life cycles[END_REF], rules are proposed to check the behavioral consistency between the behavior of objects life cycles. The specialization is defined as a refinement incremented by an extension. Claudia Pons and all. [START_REF] Pons | On the Definition of UML Refinement Patterns[END_REF][START_REF] Pons | Understanding Refinement and Specialization in the UML[END_REF][START_REF] Pons | Heuristics on the Definition of UML Refinement Patterns[END_REF][START_REF] Pons | An OCL-Based Technique for Specifying and Verifying Refinement-Oriented Transformations in MDE[END_REF] have developed a tool called E-Platero [START_REF] Pons | Pampero: Precise assistant for the modeling process in an environment with refinement orientation[END_REF] which supports some refinement development of class diagrams. The E-Platero tool proposes a relation of refinement equivalent to the one proposed in Object-Z [START_REF] Graeme | The Object-Z specification language[END_REF]. Shen and Low [START_REF] Low | Using the Metamodel Mechanism to Support Class Refinement[END_REF] propose refinement rules for the generalization and association relationships. These rules are described on the meta-model as stereotypes. In [START_REF] Boiten | Exploring UML refinement through unification[END_REF], the authors define a formal notion of refinement through unification, explaining the concept of correspondence between specifications, known as conformance relationships.

The goal of this paper is to present an incremental development of an UML specification. We start with an abstract initial model. For each refinement step, we present the taken decisions and how we express them in terms of OCL notation [START_REF] Omg | OCL 2.0 Specification, Final Adopted Specification ptc/03-10-14[END_REF], UML class diagram and invariant on the global system. This development case study is widely inspired by Abrial [START_REF]Event Driven System Construction[END_REF].

In section 2, we present some development steps of the access control case study using the UML/OCL notations. In section 3, we present lessons learn from this development case study and how the refinement steps can be supported by refinement patterns. Section 4 concludes this paper and proposes different perspectives.

Access control case study: some development steps

The access control case study is in charge to control the access of authorized persons to different buildings [START_REF] Afadl | Etude de cas : système de contrôle d'accès[END_REF]. The authorization should allow a person, controlled by the system, to enter into certain buildings, and not into others. The exit of a person of a building is also controlled by the system, in order to know at any moment who is inside a given building.

Initial specification

The main goal of the system is to control authorized persons to enter and leave the buildings and to manage the dynamic situation of the presence of persons in the buildings.

UML class diagram.

A first class diagram corresponding to this description is presented in Fig. 1 in which: 1. the two classes, Person and Building represent the set of persons and the set of buildings, 2. the two associations represent the authorization and the situation relationship between Person and Building. The multiplicity of the association situation expresses the fact that, at any moment, a person must be in at least one building. The parameter unique for the authorization association expresses the fact that this association cannot be modified. (2) Some important properties of the model are to be added:

the set of persons is not empty, -each person is authorized to enter into given buildings and not others, -the authorization is a permanent assignment, -at any time, each person can only be in one building, -any person in a given building is authorized to be there. These properties can be formalized as shown in [START_REF] Afadl | Etude de cas : système de contrôle d'accès[END_REF].

Context

The property, the set of buildings is not empty, is expressed in (4).

Context Building inv: Building ::allInstances→notEmpty()

Method definition. At this level of abstraction, we can observe the method pass of the class Person which allows the entry of a person into a building. This event should be able to occur only if the person is authorized to be in the given building and if it is not already there [START_REF] Boiten | Exploring UML refinement through unification[END_REF].

Context Person :: pass(b : Building) pre: aut→includes(tuple{self,b}) and sit→excludes(tuple{self, b}) post: sit→including(tuple{self, b})

(5)

Conclusion. The invariant of the system is obtained by the conjunction of the invariant of each class of the class diagram, i.e. the invariant of Person (3) and Building (4). So, it is easy to prove that the unique observable method, pass, maintains these properties.

First refinement

A person can go from a building in which he is to another where he is authorized to enter if these two buildings are connected, i.e. the first one communicates with the second. System properties. The concept of communication between buildings is defined as a binary relation between buildings, com, as presented in [START_REF] Crocker | Perfect Developer: A tool for Object-Oriented Formal Specification and Refinement[END_REF].

UML class diagram. This communication between buildings is expressed by a navigable association named communication which links the buildings (see

A constraint stipulating that two buildings which communicate between each other must be necessarily distinct, has to be introduced [START_REF] Graeme | The Object-Z specification language[END_REF].

Context Building inv: --in addition to the invariant (4) and self.communication→excludes(self)

Method definition. To satisfy this first refinement, we have to strengthen the guard of the method pass as presented in [START_REF] Guyomard | Spécification et raffinement en B : deux exemples pédagogiques[END_REF].

Context Person :: pass(b : Building) pre: aut→includes(tuple{self, b}) and self.situation.communication→includes(b) post: sit→including(tuple{self, b}) [START_REF] Guyomard | Spécification et raffinement en B : deux exemples pédagogiques[END_REF] Safety properties. In the current state of the model, if a person is in the building b and has no authorization to be in any of the buildings which communicates with b, this person is blocked in b. Therefore, it is necessary to add a supplementary requirement saying that no person must remain blocked in a building.

This implies that each person p authorized to enter into the building b is also authorized to go at least into another building c which communicates with b. Thus, we define a new set of couples (p, b), autSeqcomInv [START_REF] Low | Using the Metamodel Mechanism to Support Class Refinement[END_REF], where p is authorized to enter into c (aut→includes(tuple{p, c})), such that b communicates with c (com→includes(tuple{b, c})). This relation is defined as a sequential composition of the relation aut and the inverse of the relation com, denoted comInv [START_REF] Omg | OCL 2.0 Specification, Final Adopted Specification ptc/03-10-14[END_REF]. This relation is defined by the cartesian product of Person and Building, denoted personCartbuilding [START_REF] Meyer | Object-oriented software construction[END_REF].

Context

A new invariant has to be introduced in the class Person:

Context Person inv: --in addition to the invariant (3) and autSeqcomInv→includesAll(aut)

Conclusion. The second definition of the method pass given in (8) refines the definition [START_REF] Boiten | Exploring UML refinement through unification[END_REF], because the action is identical in both cases and the guard of the second: aut→includes(tuple{self, b}) and self.situation.communication→ includes(b), is clearly stronger than the first one: aut→includes(tuple{self,b}) and sit→excludes(tuple{self, b}).

In other words, if a person is in a building which communicates with b, then the building where this person finds himself is certainly different from b since b cannot communicate with itself; therefore the first condition holds.

Second refinement

A person can go from one building to another one via one-way doors. This leads us to introduce the origin and destination buildings for each door. Each door is equipped with two lights, a green one indicating that the person can enter the building and a red light indicating that he cannot enter.

Fig. 3. Second refinement

System properties. We define two sets, org (door, origin-building) and dst (door, destination-building), formalized in (13) and (14).

Context

Doors can be physically blocked. A person can only get through a door if it is accepted and a door can only be accepted for one person at a time. We introduce a new set, dap, of (person, door) corresponding to the set of pairs linking a person to the door which is accepted for him, as shown in [START_REF] Pons | An OCL-Based Technique for Specifying and Verifying Refinement-Oriented Transformations in MDE[END_REF].

The removal of the association communication requires a revision of the definition of the set com, by adding a new invariant to the class Building (16): for all the doors, the buildings of origin and destination represent exactly the pairs of buildings implied in the relation com. This definition is called a gluing invariant in formal methods.

Context Building inv: --in addition to the invariant [START_REF] Graeme | The Object-Z specification language[END_REF] and com = orgInvSeqdst

(16)
orgInvSeqdst(17) is defined as a sequential composition of two functions: orgInv "the inverse function of org" [START_REF] Schrefl | Behavior-consistent specialization of object life cycles[END_REF] and dst. This relation is defined by the cartesian product of Building and Building and is denoted by buildingCartbuilding [START_REF] Rumbaugh | The Unified Modeling Language Reference Guide[END_REF].

Context Building --sequential composition of orgInv and dst def :orgInvSeqdst :Set(TupleType(b1 :Building, b2 :Building))= buildingCartbuilding→iterate(tuple(x :Building, z :Building) ; resultset :Set(TupleType(b1 :Building, b2 :Building))=Set{}| if Door ::allInstances→exists(y :Building|orgInv→includes(tuple{x,y})

and Building ::dst→includes(tuple{y,z})) then resultset.including(tuple{x,z}) endif)

The property, an origin-building and a destination-building is associated to each door, has to be added to the class Door, formalized as presented in (20).

Context Door inv: Door.allInstances→notEmpty() and self.origin→size()= 1 and self.destination→size()= 1 and self.greenLight→size()= 1 and self.redLight→size()= 1

A new invariant is added in the class Person (21), making clear the condition for acceptance to a door for a given person. It is defined in terms of two sets, dapSeqorg, for a door to accept a person, this person should be inside the building of origin of that door, and dapSeqdst, a person should be authorized to enter the destination building of that door. These two sets are defined as a sequential composition of dap and org for the first one and dap and dst for the second one, and not presented here.

Context Person inv:

--in addition to the invariant [START_REF]OMG. UML 2.0 Superstructure Specification, Final Adopted Specification ptc/03-08-02[END_REF] and aut → includesAll(dapSeqdst) and sit → includesAll(dapSeqorg)

Next properties are related to the lights:

the green light of a door is lit when the person is accepted, -the red and green lights of a same door cannot be lit simultaneously

In the same way, the methods accept and refuse, which correspond to the discovery of a person wishing to go from one building to another, accept and reject accordingly. The methods off green and off red, which are presented in the class GreenLight and RedLight, change the value of the attribute etat to False.

The method pass has to be refined: it can be triggered for a door which green light is on. The person is allowed to pass and the method results in turning off the green light.

Conclusion. The method pass is refined by strengthening its precondition and postconditions. Each new method is considered as a refinement of an operation which does nothing.

Lessons learned

A step by step development, based on refinement mechanisms, presents the following advantages:

it introduces progressively details and choices, -it strongly motivates the introduction of the different ingredients in the model.

The formalization of important properties of the system and their refinement gives a better comprehension of the system. It allows verifications to be done through out the life cycle of development such as:

1. preservation of the invariant of the system, i.e., each operation must preserve the invariant. 2. proof of the refinement at each refinement step, i.e., we can verify that the concrete model satisfies the properties of the previous model.

The verifications carried out by our incremental development are similar to the proof obligations generated by the tools of formal methods. Therefore, the refinement concept defined in the formal methods could be used to develop a UML specification, using OCL constraints to ensure the trustworthy refinement. This needs to use mathematical notations such as function and relations. It is to be noted that the use of these concepts in OCL is very tedious and demands some assistance for the developers. This approach can be supported by refinement patterns to provide assistance for the developers. In [START_REF] Ben-Ammar | Quelques patrons de raffinement pour le développement de diagrammes de classes UML[END_REF], we have defined several refinement patterns for the development of a UML specification. These patterns have been proven by using the B method and could be used as a guide in the development of UML specifications.

Conclusion and perspectives

One of the difficult tasks for developers of object oriented software is to find the pertinent classes. Some methodological studies bring several propositions based on different approaches [START_REF] Meyer | Object-oriented software construction[END_REF]: linguistics, use case, abstract data type and patterns (design and analysis patterns). In these approaches the relevance of the founded classes is related to the competence of the developer. However, this task can be realized easier if the developers employs "divide and rule" strategy. The developers start with an initial abstract model then they proceed by refinement.

In each refinement step, the developers should take care of new considerations and try to extract pertinent classes and relationships. The output of this step must be coherent with the previous one. The OCL constraints can be used to ensure the trustworthy application of the refinement. Indeed, the UML language does not allow the expression of all properties and constraints. However the handling of the functions and mathematical relations remains obscure. Therefore it is necessary to extend OCL in order to facilitate its use.

In this paper, we present a case study showing some guidelines to refine a UML specification. We start from first general model which expresses in an abstract way the property of the system. Each refinement step subsequently is guided by the evaluation of the model, by adding new details. A verification of the preservation of the invariant also ensures the verification of the refinement steps. This work is widely inspired by the refinement as defined in formal methods such as B.

To verify the preservation of the invariant and operations' refinement, we propose to create an environment which supports both UML and OCL notations. This prototype can verify the reinforcement of the invariant of each class and the pre/post-conditions of each operation by the user. This prototype must be able to support refinement patterns to assist users.

We reflect now on the definitions of the refinement patterns:

refinement pattern of association relationships: it can be used in the first development step when the com association is refined by two new associations org and dst, -refinement pattern of inheritance relationships: it can be used after the second refinement for the classes RedLight and GreenLight which have the same characteristics so it is possible to factorize them in one super class Light, -algorithmic refinement pattern: it can be used before the second refinement when the operation pass changes its signature.

A reflection is to preserve the history of the pattern applications in order to have a traceability of the development process. In the requirement case, the developers have the possibility of the back-tracking and reviewing their decisions.

 Person inv: Person ::allInstances→notEmpty() and self.authorization→size()>= 1 and self.authorization→forAll(b|self.authorization→isUnique(b)) and self.situation→size()= 1 and aut→includingAll(sit)

Fig. 2 Fig. 2 .

 22 Fig. 2. First refinement

 Person --sequential composition of aut and comInv def :autSeqcomInv :Set(TupleType(p :Person, b :Building))= personCartbuilding→iterate(tuple(x :Person, z :Building) ; resultset :Set(TupleType(p :Person, b :Building))=Set{}| if Building ::allInstances→exists(y :Building|aut→includes(tuple{x,y}) and Building ::comInv→includes(tuple{y,z})) then resultset.including(tuple{x,z}) endif) (9) Context Person --cartesian product of Person and Building def :personCartbuilding :Set(TupleType(p :Person, b :Building))= Person ::allInstances→iterate(pr :Person ; resultset :Set(TupleType(p :Person, b :Building))=Set{}| Building ::allInstances→iterate(bt :Building ;| resultset.including(tuple{pr,bt}))) (10) Context Building --relation inverse of com def :comInv :Set(TupleType(b1 :Building,b2 :Building))= Building ::allInstances→iterate(bt1 :Building ; resultset :TupleType(b1 :Building, b2 :Building)=Set{}| bt1.communication→iterate(bt2 :Building ;| resultset.including(tuple{bt2,bt1})))

 UML class diagram. It is modified as follows:1. introduction of the class Door which represents the set of doors, with a set of methods, 2. introduction of two classes GreenLight and RedLight which represent the set of the green and red lights. As both are a component of the class Door, we introduce a composition relationship between them and the class Door, 3. introduction of two associations, origin and destination, 4. introduction of the association accepted which represents the person accepted at a door, 5. removal of communication, the recursive association among buildings. This association has been refined by the introduction of the one-way doors modeled by the class Door and the two associations origin and destination.

 Door --org describes a total function def : org: Set(TupleType(d : Door, b : Building))= Door ::allInstances→iterate(dr :Door ; resultset :Set(TupleType(d : Door, b : Building))=Set{}| resultset.including(tuple{dr,dr.origin})) (13) Context Door --dst describes a total function def : dst: Set(TupleType(d : Door, b : Building))= Door ::allInstances→iterate(dr :Door ; resultset :Set(TupleType(d : Door, b : Building))=Set{}| resultset.including(tuple{dr,dr.destination}))

 Context Building --cartesien product of buildings def :buildingCartbuilding :Set(TupleType(b1 :Building, b2 :Building))= Building ::allInstances→iterate(b1 :Building ; resultset :Set(TupleType(b1 :Building, b2 :Building))=Set{}| Building ::allInstances→iterate(b2 :Building ;| resultset.including(tuple{b1,b2}))) (18) Context Building --inverse function of org def :orgInv :Set(TupleType(b :Building,d :Door))= Door ::allInstances→iterate(dr :Door ; resultset :TupleType(b :Building,d :Door)=Set{}| resultset.including(tuple{dr.origin,dr})))

 and are formalized by the introduction of a new invariant in the class Person (22) and in the class Door (23).Context Person inv: --in addition to the invariant (21) and accepted.notEmpty() implies accepted.greenLight.etat (22) Context Door inv: --in addition to the invariant (20) and ((greenLight.etat implies not(redLight.etat)) or (redLight.etat implies not(greenLight.etat))) (23) Method definitions. The predicate admitted, which has a boolean result expresses the condition of admission of a person. This predicate has to be defined in the class Door as shown in (26). Such formalization needs the definition of the domain and the codomain of the partial injection function dap. Context Person --domain of dap partial function def :dom :Set(Person)= dap→iterate(c:TupleType(p:Person, d:Door); resultset:Set(Person)=Set{}|resultset.including(c.p)) (24) Context Person --codomain of dap partial function def :ran :Set(Door)= dap→iterate(c:TupleType(p:Person, d:Door); resultset:Set(Door)=Set{}|resultset.including(c.d)) (25) Context Door def :admitted(p : Person): Boolean = (self.origin = p.situation) (Person.aut→includes(tuple{p, self.destination})) (Person.dom→excludes(p))

Context

 Person :: pass(d : Door) pre: ran→includes(d) post: (sit→including(d.person, d.destination) and ran→excludes(d)

system has to manage the dynamic situation of the persons inside the buildings. We introduce a new set, sit, linking each person to the building in which he is located (2):

	Person	authorization	Building
		{unique}	1..*
		situation
	pass(b:Building)		1
		Fig. 1. Initial model
	System properties. The authorizations can be defined as a set of possible couples
	(person, building), where each couple links a person to a building in which he is
	authorized to enter. This set of couples is expressed as a binary relation between
	Person and Building and formalized in OCL as presented in (1).
	Context Person		
	--the binairy relation is expressed by two nested iterations
	def :aut :Set(TupleType(p :Person, b :Building))= Person ::allInstances→iterate(pr :Person ;	(1)
	resultset :Set(TupleType(p :Person, b :Building))=Set{}|
	pr.authorization→iterate(bt:Building;|resultset.including(tuple{pr,bt})))
	Moreover, the Context Person		
	--sit is a total function, expressed by one iteration
	def :sit :Set(TupleType(p :Person, b :Building))=
	Person ::allInstances→iterate(pr :Person ;
	resultset :Set(TypleType(p :Person, b :Building))=Set{}|
	resultset.including(tuple{pr,pr.situation}))