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Abstract
The monotone rearrrangement algorithm was introduced by Hardy,

Littlewood and Pólya as a sorting device for functions. Assuming that
x is a monotone function and that an estimate x

n

of x is given, con-
sider the monotone rearrangement x̂

n

of x

n

. This new estimator is
shown to be uniformly consistent as soon as x

n

is. Under suitable
assumptions, pointwise limit distribution results for x̂

n

are obtained.
The framework is general and allows for weakly dependent and long
range dependent stationary data. Applications in monotone density
and regression function estimation are detailed. Asymptotics for rear-
rangement estimators with vanishing derivatives are also obtained in
these two contexts.

Keywords: Limit distributions, density estimation, regression function es-
timation, dependence, monotone rearrangement.

1 Introduction

Assume that (t
i

, x(t
i

))

n

i=1, for some points t
i

2 [0, 1] (e.g. (t
i

= i/n)), are
pairs of data points. The (decreasing) sorting of the points x(t

i

) is then an
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elementary operation and produces the new sorted sequence of pairs (t
i

, y(t
i

))

where y = sort(x) is the sorted vector. Let # denote the counting measure
of a set. Then we can define the sorting y of x by

z(s) = #{t
i

: x(t
i

) � s}
y(t) = z�1

(t),

where z�1 denotes the inverse of a function (if the points x(t
i

) are not unique
it denotes the generalized inverse).

The “sorting” of a function {x(t), t 2 [0, 1]} can then analogously be
defined by the monotone rearrangement (cf. Hardy et al. [21]),

z(s) = �{t 2 [0, 1] : x(t) � s},
y(t) = z�1

(t),

where the counting measure # has been replaced by the Lebesgue measure
�, and z�1 denotes the generalized inverse.

The monotone rearrangement algorithm of a set or a function has mainly
been used as a device in analysis, see e.g. Lieb and Loss [23, Chapter 3] or
in optimal transportation (see Villani [38, Chapter 3]). Fougères [15] was
the first to use the algorithm in a statistical context, for density estimation
under order restrictions. Meanwhile, Polonik [29, 30] also developed tools of
a similar kind for density estimation for multivariate data. More recently,
several authors revisited the monotone rearrangement procedure in the es-
timation context under monotonicity; see Dette et al. [12], Neumeyer [28],
Chernozhukov et al. [9], Birke and Dette [5], Jankowski and Wellner [22],
Volgushev and Dette [41], Birke et al. [6], Volguchev [39]. Some tests of
monotonicity have also been recently introduced, see e.g. Volguchev et al.
[40] and Birke et al. [7].

We introduce the following two-step approach for estimating a monotone
function. Assume that x is a monotone function on an interval I ⇢ R.
Assume also that we already have an estimate x

n

of x, but that this estimate
is not necessarily monotone. The procedure adopted in this paper is to use
the monotone rearrangement x̂

n

of x
n

as an estimate of x.
Under the assumption that we have process limit distribution results for

(a localized version of) the stochastic part of x
n

and that the deterministic
part of x

n

is asymptotically differentiable at a fixed point t0, with strictly
negative derivative, we obtain pointwise limit distribution results for x̂

n

(t0).
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The framework is general and allows for weakly dependent as well as long
range dependent data. This is the topic for Section 3, where we also explore
in more detail the applications of our general results to monotone density
and regression function estimation. These are the problems of estimating f
and m respectively in

(i) t1, . . . , tn stationary observations with marginal
decreasing density f on R+,

(ii) (t
i

, y
i

) observations from y
i

= m(t
i

) + ✏
i

,

t
i

= i/n, i = 1, . . . , n,m decreasing on [0, 1],

{✏
i

} stationary sequence with mean zero.

The standard approaches in these two problems have been isotonic regres-
sion for the regression problem, first studied by Brunk [8], and (nonparamet-
ric) Maximum Likelihood estimation (NPMLE) for the density estimation
problem, first introduced by Grenander [18]. A wide literature exists for
regression and density estimation under order restrictions. One can refer
e.g. to Mukerjee [27], Ramsay [32], Mammen [24], Hall and Huang [19],
Mammen et al. [25], Gijbels [17], Birke and Dette [4], Dette and Pilz [13],
Dette et al. [12] for the regression context. Besides, see Eggermont and
Lariccia [14], Fougères [15], Hall and Kang [20], Meyer and Woodroofe [26],
Polonik [29], Van der Vaart and Van der Laan [36], among others, for a
focus on monotone (or unimodal) density estimation. Anevski and Hössjer
[1] gave a general approach unifying both contexts. In their introduction,
Birke and Dette [5] provide nice references in which physical or economical
arguments justify the assumption of monotonicity. Our approach is simi-
lar in spirit to the general methods studied in Anevski and Hössjer [1] and
first introduced in the regression estimation setting by Mammen [24]: Start
with a preliminary estimator and make it monotone by projecting it on the
space of monotone functions. The present approach can however at some
point be considered preferable: The monotone rearrangement, being basi-
cally a sorting, is a simpler procedure than an L2-projection. Furthermore
the consistency and limit distribution results indicate similar properties to
Mammen’s and Anevski and Hössjer’s estimators. Besides, an important
advantage of our estimator is the finite sample behavior: Mammen’s estima-
tor is monotone but not necessarily smooth; Mammen actually studied two
approaches, one with kernel smoothing followed by monotonization and the
other approach the other way around, i.e. monotonization followed by kernel
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smoothing. Mammen showed that the two proposals are first-order equiva-
lent. However, their finite sample size properties are very different: the first
resulting estimator is monotone but not necessarily smooth, while the other
is smooth but not necessarily monotone, so that one needs to choose which
property is more important. This is not the case with our estimator, since if
we start with a smooth estimator of the function, e.g. a kernel estimator, the
monotone rearrangement will be smooth as well. This can however become
a disadvantage for instance when the estimand is discontinuous: then the
monotone rearrangement will “oversmooth” since it will give a continuous
result, while Mammen’s estimator will keep more of the discontinuity intact.

Note that our results are geared towards local estimates, i.e. estimates
that use only a subset of the data and that are usually estimators of esti-
mands that can be expressed as non-differentiable maps of the distribution
function such as e.g. density functions, regression functions, or spectral den-
sity functions. This differs from global estimates, as those considered for
example by Chernozhukov et al. [10] for quantile estimation. Chernozhukov
et al. [10] rearrange the empirical quantile function, and use the fact that
the rearrangement map is Hadamard differentiable together with Donsker
type results, to obtain general statements about the final estimator. This
approach is however not applicable in our case. In fact, our preliminary
estimators are all local estimators, and they do not converge weakly as pro-
cesses. Therefore the Hadamard differentiability of T has no implication in
our estimation problems; we need to make a more detailed reasoning, assum-
ing local limit process results for the preliminary estimator, together with
properties of the map T. These two features may be seen as replacements for
the Donsker result and the Hadamard differentiability result of T , that are
used in [10].

An approach similar to ours for local estimates is given in Dette et al.
[12], using a modified version of the Hardy-Littlewood-Pólya monotone rear-
rangement: The first step consists of calculating the upper level set function
and is identical to ours. However in the second step they use a smoothed
version of the (generalized) inverse, which avoids nonregularity problems for
the inverse map. The resulting estimator is therefore not rate-optimal, and
the limit distributions are standard Gaussian due to the oversmoothing.

Using kernel estimators as preliminary estimators of f and m on which the
monotone rearrangement is then applied, we are able to derive limit distri-
bution results for quite general dependence situations, demanding essentially
stationarity for the underlying random parts {t

i

} and {✏
i

} respectively. The
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results are however stated in a form that allows for other estimators than the
kernel based as starting points, e.g. wavelet or splines estimators.

The paper is organized as follows: In Section 2 we present the monotone
rearrangement algorithm as classically defined, and we derive some simple
properties that will be used in the sequel. Then we define the generic esti-
mator of the monotone function of interest, and state the consistency for the
estimator. In Section 3 the pointwise limit distribution properties are consi-
dered. For this purpose, we need to generalise the monotone rearrangement
map for some specific functions, as will be done in Sections 3.1 and 3.2. The
limit distribution given in Theorem 4 is of the general form

d�1
n

[x̂
n

(t0)� x(t0)]
L! T (A ·+ṽ(·; t0)) (0) +�,

where T is the monotone rearrangement map;

� = lim

n!1
d�1
n

[E{x
n

(t0 + sd
n

)}� x(t0)]

is the asymptotic local bias of the preliminary estimator; A is the uniform
limit, in s over compact intervals,

d�1
n

{x
b,n

(t0 + sd
n

)� x
b,n

(t0)} ! A,

(typically with A = x0
(t0) in our applications); and

ṽ(s; t0)
L
= lim

n!1
d�1
n

[x
n

(t0 + sd
n

)� E{x
n

(t0 + sd
n

)}]

is the weak local limit of the process part of the preliminary estimator; here
d
n

# 0 is a deterministic sequence that is determined by the dependence struc-
ture of the data. We then apply the obtained results to regression function
estimation and density estimation under order restrictions, and derive the
limit distributions for the estimators. This gives rise to some new universal
limit random variables, such as e.g. in the regression context T (s+B(s))(0)
with T the monotone rearrangement map and B standard two sided Brown-
ian motion for independent and weakly dependent data, or T (s+B1,�(s))(0)
with B1,� fractional Brownian motion with self similarity parameter �, when
data are long range dependent. The rate of convergence d

n

is e.g. for the
regression problem the optimal n�1/3 in the i.i.d. and weakly dependent data
context and of a non-polynomial rate in the long range dependent context,
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similarly to previously obtained results in isotonic regression for long range
dependent data, cf. Anevski and Hössjer [1].

In Section 4 we derive limit distribution results for the proposed estimator
in the case when the estimand has q vanishing derivatives while its (q + 1)st
derivative is strictly negative. The limit results are given in a general setting,
and applied to both the density function and regression function estimation
cases, and in similar dependence settings as for the "regular" case, that are
derived in Sections 3.3 and 3.4. The limit distribution results are now of the
form

d�1
n

[x̂
n

(t0)� x(t0)]
L! T (A

x

(·) + ṽ(·; t0)) (0),

where T is the monotone rearrangement map, A
x

(s) is a function that is
given as a uniform limit over compact intervals,

d�(q+1)
n

(x
b,n

(t0 + sd
n

)� x(t0)) ! A
x

(s)

as d
n

! 0, which (for symmetric kernels) is a convolution of a degree q + 1

monomial with the kernel, while ṽ is the limit process that turns up in the
above. The rate d

n

is now different: It is slower than above, and e.g. for
independent data, in both the density estimation and regression function
estimation contexts, it is d

n

= n�1/(3+2q).
In Appendix A we give some proofs for the results of Section 2. In Ap-

pendix B we state a general result on maximal bounds on the rescaled process
part. In the supplementary material, we prove the statement in Appendix B
as well as derive further useful but technical results on maximal bounds on
the rescaled process parts in the density and regression estimation problems,
i.e. for the local partial sum process and empirical processes, for weakly
dependent as well as long range dependent data. Furthermore in the sup-
plementary material we present a simulation study that illustrates the finite
sample behaviour of our estimator, and compare it to other estimators that
are considered in the paper of Birke and Dette [5].

In this context it may be instructive to compare our results with previ-
ously obtained results, for similar procedures. The estimator defined by Dette
et al. [12], is a two step procedure similar to ours for regression estimation
problems, consisting of first defining a smooth estimate of the estimand and
next do the monotone rearrangement of that estimator. We would like to
point out that the assumptions in the two approaches are somewhat differ-
ent: In our paper we use a fixed design setting, which enables us to use the
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Gasser-Müller estimator as the first step estimator, while the results in Dette
et al. [12] are derived in a random design setting. In [12] is used however an
extra smoothing procedure in the second step, and therefore their obtained
estimator is not the same as ours, and in fact their estimator may be seen as
a smooth monotone rearrangement of the preliminary estimator. More in-
terestingly, the two estimators give qualitatively very different results, with
different rates and different limit random variables. Within the class of con-
tinuously differentiable monotone functions, the estimator considered in [12]
is not rate optimal (for the independent data case, which is the only case
they consider), they get a slower rate than the optimal, cf. Theorem 3.2 in
[12]. Furthermore their limit random variable is Gaussian, with the Gaussian
distribution turning up due to the over smoothing in the second extra step,
whereas ours converge to the above defined new universal random variable.
We would like to also emphasize that we are able to state our results for also
dependent data, covering both weak and strong dependence. In Neumeyer
[28] the same estimator as ours is treated, for general estimands and thus
treating both regression and density estimation problem; the consistency of
the resulting estimator is derived (see Neumeyer [28, Theorem 3.1]).

2 The monotone estimation procedure

2.1 Monotone rearrangement: first definitions

Monotone rearrangements were originally defined by Hardy et al. [21, Chap-
ter 10.12] for non negative and integrable functions on [0, 1]. In Lieb and
Loss [23, Chapter 3], the definition is extended to Borel measurable func-
tions from Rn into C that vanish at infinity. We use their definition for Borel
measurable functions from R into R+ that vanish at infinity, in the sense that
for each positive u

r
f

(u) := �{t 2 R : f(t) > u} < +1 , (1)

where �(A) denotes the Lebesgue measure of any Borel set A on R. Note
that this definition holds in particular for integrable functions like densities
on R+ as considered in Fougères [15].

Definition 1. Let f be a positive function defined on R+ satisfying (1). The
monotone rearrangement of f is defined as the (right continuous) generalized
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inverse of r
f

, namely

T (f)(t) := inf{u 2 R+
: r

f

(u)  t} , (2)

for each positive t.

This rearrangement satisfies several properties that will be listed later in this
section, see Lemmas 2 and 3 and Theorem 1. Note that related results were
obtained by Chernozhukov et al. [10].

A particular class of functions for which (1) is satisfied is the set of
bounded functions defined on a finite interval I ⇢ R. Denote B(I) = {f :

f(I) bounded} and D(I) = {f : f decreasing on I}. Let r
f,I

be the right
continuous map from f(I) to R+, defined for each u 2 f(I) by

r
f,I

(u) := �{t 2 I : f(t) > u} = �{I \ f�1
(u,1)}.

as the (right continuous) generalized inverse of r
f,I

T
I

(f)(t) := inf{u 2 f(I) : r
f,I

(u)  t� inf I} . (3)

The following lemmas and theorem are listing some simple and useful
properties of the maps u 7! r

f,I

(u), f 7! r
f,I

and f 7! T
I

(f) respectively.
The proofs are straightforward and relegated to Appendix A for more clarity.

Lemma 1. Assume I ⇢ R is a finite interval, and f 2 B(I). Then

(i) If f has no flat regions on I, i.e. �{I \ f�1
({u})} = 0

for all u 2 f(I), then r
f,I

is continuous,
(ii) If there is a u0 2 f(I) such that �{I \ f�1

({u0})} = c > 0 then r
f,I

has a discontinuity at u0 of height c,
(iii) If f has a discontinuity at t0 2 I and f is decreasing, then r

f,I

admits a flat region with level t0.

Lemma 2. Let I ⇢ R be a finite interval, and assume f 2 B(I). Then

(i) If c is a constant then r
f+c,I

(u) = r
f,I

(u� c), for each u 2 f(I) + c.

(ii) r
cf,I

(u) = r
f,I

(u/c) if c > 0, for each u 2 cf(I).

(iii) f  g ) r
f,I

 r
g,I

.

(iv) Let f
c

(t) = f(tc). Then c r
fc,I = r

f,I

.

(v) Let f
c

(t) = f(t+ c). Then r
fc,I = r

f,I

.
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Lemma 3. Let I ⇢ R be a finite interval and assume f, g are functions in
B(I). The monotone rearrangement map T

I

satisfies the following:

(i) T
I

(f + c) = T
I

(f) + c, if c is a constant;
(ii) T

I

(cf) = cT
I

(f), if c > 0 is a constant;
(iii) f  g ) T

I

(f)  T
I

(g);

(iv) Let f
c

(t) = f(ct); then T
I/c

(f
c

)(t) = T
I

(f)(ct);

(v) Let f
c

(t) = f(t+ c); then T
I�c

(f
c

)(t) = T
I

(f)(t+ c).

The previous result implies that the map T
I

is continuous, as stated in the
following theorem.

Theorem 1. Let || · || be the supremum norm on B(I). Then the map T
I

is a
contraction, i.e. ||T

I

(f)�T
I

(g)||  ||f�g||. In particular, T
I

is a continuous
map, i.e. for all f

n

, f 2 B(I),

||f
n

� f || ! 0 ) ||T
I

(f
n

)� T
I

(f)|| ! 0,

as n tends to infinity.

Note that Lemma 2 holds (with identical proof) for T as defined in (2),
and Lemma 3 follows from that. Thus Theorem 1 also holds in this case for
the supremum norm over R+, with identical proof.

Remark 1. One can also refer to Lieb and Loss [23, Theorem 3.5] for a
proof of the contraction property (the "non expansivity" property of the map
T
I

), for the Lp-norms for functions f and g vanishing at infinity.

Finally, observe that when the function f is replaced by a stochastic
process x defined almost surely, then for almost every realisation of x, one
can define r

x

(resp. r
x,I

) and thereafter its generalized inverse. Thus one
can define the monotone rearrangement almost surely for every stochastic
process with finite support or satisfying (1) almost surely. We will make use
of this last concept to define new estimators in the next section.

2.2 The new estimators: definition and first properties

Let x be a function of interest such as a density function, a regression func-
tion, or a spectral density, for example. Assume x is non increasing. Consider
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an estimator x
n

of x constructed from n observations, which is not supposed
to be monotone. Typically, x

n

can be an estimator based on kernel, wavelets,
splines, etc. Let @

n

denote the support of x
n

. Assume that x
n

is such that
it is possible to define either T (x

n

) as in (2) (when @
n

is infinite) or T@n(xn

)

as in (3) (when @
n

is finite). This will in particular be the case as soon as
x
n

is a density of B(R+
), or x

n

is a regression function on [0, 1]. For sake of
simplicity, a unique notation T will be used in the following to refer equally
to T or T@n .

Definition 2. We define as a new estimator of x the monotone rearrange-
ment of x

n

, namely T (x
n

). This is a non increasing estimator of x.

Theorem 2. (i). Assume that {x
n

}
n�1 is a uniformly consistent estimator of

x (in probability, uniformly on a compact set B ⇢ R). If x is non increasing,
then {T (x

n

)}
n�1 is also a uniformly consistent estimator of x (in probability,

uniformly on B).
(ii). Assume that {x

n

}
n�1 is an estimator that converges in probability in

Lp-norm to x, and that {x
n

}
n�1 and x are vanishing at infinity. If x is non

increasing, then {T (x
n

)}
n�1 also converges in probability in Lp-norm to x.

Proof Part (i) follows from the fact that ||x|| = sup

t2K |x(t)| is a norm
(for every compact K ⇢ R), that T (x) = x if x is non increasing, and that
T is a contraction with respect to || · ||, by Theorem 1. To get (ii), assume
that ||x

n

� x||
L

p
P! 0, and then note that

||T (x
n

)� x||
L

p
= ||T (x

n

)� T (x)||
L

p  ||x
n

� x||
L

p ,

thanks to Lieb and Loss [23, Theorem 3.5]. 2

Remark 2. The strong convergence in Lp-norm of T (f
n

) to f , as a conse-
quence of the corresponding result for f

n

, was first established in Fougères
[15, Theorem 5] in the case when f

n

is the kernel estimator of a density
function f ; the assumption that the functions {f

n

}, f vanish at infinity are
then naturally satisfied. Chernozhukov et al. [9] give a refinement of the non
expansivity property, see their Proposition 1, part 2, providing a bound for
the gain done by rearranging f

n

and examining the multivariate framework
as well.
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3 Limit distribution results

Simple monotone estimators have been defined in Section 2.2 that satisfy sev-
eral desired consistency properties. The aim of this section is to go further
into asymptotic properties, focusing on pointwise limit distribution results
for these estimators. To this purpose, we will first provide a more general
definition of monotone rearrangement for some specific functions (and pro-
cesses), and then state in Section 3.2 the main result of the paper in a general
setting. The particular results obtained for density regression function esti-
mations will next be developed.

3.1 Extension of monotone rearrangement algorithm

If ' is a function for which r
'

(u) is possibly infinite for some positive u, a
definition of T (') can be given locally around a fixed point x 2 I0, where I0
is a finite interval, as soon as the function ' satisfies the following property:

Let I0 and the function ' be given. Assume there exists a constant
M = M(', I0) < 1 and a finite interval I1 = I1(', I0) � I0 such
that

inf

t2(inf I1,sup I0)
'(t) > �M and sup

t2(sup I1,1)
'(t) < �M, (4)

inf

t2(�1,inf I1)
'(t) > +M and sup

t2(inf I0,sup I1)
'(t) < +M. (5)

Theorem 3. Let I0 be a finite and fixed interval, and let ' be a continuous
function R such that (4) and (5) are satisfied. Then for any finite interval J
containing I1, one has T

J

(') ⌘ T
I1(') on I0.

Proof The proof consists of the following three steps: (i) We construct
a point y⇤ on which T

J

and T
I1 agree, i.e. such that T

J

(')(y⇤) = T
I1(')(y⇤).

(ii) We show that inf I1  y⇤  inf I0. (iii) We show that if T
J

(') and T
I1(')

agree at y⇤, they will coincide on [y⇤, sup Io] =:

˜I.
(i) Define y1 := inf{y 2 I1 : '(y) < ' ([inf J, y))}. Then by (5) we

have that '(y1) � +M , which by the definition of y1 implies that also
inf '([inf J, y1)) � +M . Furthermore, from the left part of (4) and the right
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part of (5) it follows that '(I0) ⇢ (�M,+M). This implies that

y1 < inf{y 2 J : '(y) 2 (�M,M)}
 inf{y 2 J : '(y) 2 '(I0)}
=: z0,

where the first inequality follows from continuity of ', the definition of y1
and the theorem of intermediate values. Thus y1 2 I1, z0  inf I0 and y1 < z0
and so also z0 2 I1.

As a consequence, one has

r
',J

{'(y1)} = �{t 2 J : '(t) > '(y1)}
= �{t 2 J \ (�1, y1) : '(t) > '(y1)}

+�{t 2 J \ (y1,1) : '(t) > '(y1)}
= y1 � inf J + �{t 2 I1 \ (y1,1) : '(t) > '(y1)},

where the first two terms in the last equality follow since from the definition
of y1, '(t) > '(y) for all t 2 J \ (y1,1), while the last term in the last
equality follows from y1 2 I1. Similarly, one has

r
',I1{'(y1)} = �{t 2 I1 \ (�1, y1) : '(t) > '(y1)}

+�{t 2 I1 \ (y1,1) : '(t) > '(y1)}
= y1 � inf I1 + �{t 2 I1 \ (y1,1) : '(t) > '(y1)},

Thus the following equality holds

r
',J

{'(y1)}+ inf J = r
',I1{'(y1)}+ inf I1 := y

?

(6)

Then T
J

(')(y
?

) = inf{u 2 '(J) : r
',J

(u)  r
',J

('(y1))}, which since r
',J

is a decreasing function, is equal to '(y1). Similarly, '(y1) = T
I1(')(y?), and

we have shown that T
J

(')(y
?

) = '(y1) = T
I1(')(y?), and thus the two maps

agree at y
?

.
(ii): From the right hand parts of (4) and (5) follow that

T
J

(')(inf I0)  M. (7)

Furthermore

T
J

(')(y⇤) = '(y1) � M. (8)
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Since T
J

(') is a decreasing function (7) and (8) imply that y⇤  inf I0, and
(6) implies that y⇤  inf I1.

(iii): Finally we prove that if T
J

(') and T
I1(') coincide at y

?

, they will
coincide on ˜I = [y⇤, sup I0]. Let u 2 [�M,'(y1)] =:

˜Y be arbitrary, and
write on one hand

r
',J

(u) = �{t 2 J : '(t) > u}
= �{t 2 J : '(t) > '(y1)}+ �{t 2 J : '(y1) � '(t) > u}
= r

',J

{'(y1)}+ �{t 2 J \ (y1,1) : '(y1) � '(t) > u}
= r

',I1{'(y1)}+ inf I1 � inf J

+�{t 2 I1 \ (y1,1) : '(y1) � '(t) > u},

where the next to last equality follows since by the definition of y1, '(t) 
'(y1) only for t > y1, and the last equality follows from (6) and since y1 2 I1.
On the other hand,

r
',I1(u) = r

',I1{'(y1)}+ �{t 2 I1 : '(y1) � '(t) > u}
= r

',I1{'(y1)}+ �{t 2 I1 \ (y1,1) : '(y1) � '(t) > u},

so that

r
',J

(u) + inf J = r
',I1(u) + inf I1. (9)

Next, since T
J

(') and T
I1(') are decreasing, T

J

(')(y⇤) = T
I1(')(y⇤) =

'(y1), inf I1  y⇤  inf I0, and inf '([y
?

, sup I0]) > �M , we obtain

T
J

(')(˜I) ⇢ ˜Y ,

T
I1(')(˜I) ⇢ ˜Y . (10)

Therefore, for t 2 ˜I,

T
J

(')(t) = inf{u 2 '(J) : r
',J

(u)  t� inf J}
= inf{u 2 ˜Y : r

',J

(u)  t� inf J}
= inf{u 2 ˜Y : r

',I1(u)  t� inf I1}
= inf{u 2 '(I1) : r',I1(u)  t� inf I1}
= T

I1(')(t) .

The second equality above holds since T
J

(')(y⇤) = '(y1) = sup

˜Y , inf ˜I = y⇤,
T
J

(') is decreasing and because of the first part of (10), the third equality

13



follows from (9), and the next to last equality is similar to the second (with
T
I1 replacing T

J

and using the second part of (10)). 2

Note also that the interval I1 can without loss of generality be taken
to be symmetric around 0 e.g. as I1 = [�k, k]: In fact assuming that (4)
and (5) hold with some I1 and M we can replace I1 with [�k, k], with k =

max(| inf I1|, | sup I1|), then (4) and (5) will hold for I1 = [�k, k] and with
the same M .

Corollary 1. Let I0 ⇢ R be a finite and fixed interval. Assume ' is contin-
uous and satisfies (4) and (5). Then for each t 2 I0, one can define

T (')(t) := lim

k!+1
T[�k,k](')(t). (11)

Remark 3. Even if this definition seems to be dependent on I1 = I1(', I0),
it is not, because of Theorem 3 and since we define T (') locally, namely only
on I0. So in particular one has T (')(t) = T

I1(t) for each t 2 I0.

We next state a simple condition that ensures (4) and (5).

Lemma 4. Let ' be a locally bounded function on R, such that

lim

x!�1
'(x) = � lim

x!+1
'(x) = +1.

Then for any interval I0 there exists a finite interval I1 � I0 and a finite
constant M such that (4) and (5) hold.

Proof Let I0 = [a, b] and put M = sup

x�a

'(x). Since ' is locally
bounded and lim

x!+1 '(x) = �1 it follows that M < 1. Since
lim

x!�1 '(x) = +1 there is a c < a such that '(x) > M for all x  c. Let
c
M

:= sup{x < a : '(t) > M 8 t  x}. Define then m = inf

x2[cM ,b] '(x).
Since lim

x!1 '(x) = �1, there exists a d > b such that for all x � d,
'(x) < min(m,�M). Let d

m,M

:= inf{x > b : '(t) < min(m,�M) 8 t > x}.
Then (4) and (5) hold with I1 = [c

M

, d
m,M

]. 2

Note that T as defined in (2) is a continuous map with the metric gene-
rated by the supnorm on compact intervals, while T defined as a extension
via the local definition in (11) is not. The first statement follows from the fact
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that T as defined in (2) is easily seen to satisfy the properties in Theorem 1,
with the supnorm over I replaced by the the supnorm metric on compact
intervals. The lack of continuity with the respect of uniform convergence on
compact intervals is however of no importance for us, in our use of continuity
for deriving consistency and limit distributions: We will derive limit distri-
bution results only via local versions T[�c,c], for which we have established
continuity in Theorem 1. The consistency is derived using the global map
only in the density estimation problem, for which we use definition (2) for
T . For the regression problem we apply our results to functions defined on
[0, 1] and thus there is no need for a global definition then.

3.2 Asymptotic distribution in a general framework

Let J ⇢ R be a finite or infinite interval, and C(J) the set of continuous
functions on J . Let {x

n

}
n�1 be a sequence of stochastic processes in C(J)

and let t0 be a fixed interior point in J . Assume that either J is finite or that
x
n

satisfies (1) almost surely, so that T (x
n

) the monotone rearrangement of
x
n

can be defined almost surely, as seen in Section 2.1. In this section, limit
distribution results for the random variable T (x

n

)(t0) will be derived, where
T is the monotone rearrangement map defined as T

J

if J is finite or T if J is
infinite. The proof of these results are along the lines of Anevski and Hössjer
[1], and their notation will be used for clarity. Decompose in particular x

n

into a deterministic part and a stochastic part

x
n

(t) = x
b,n

(t) + v
n

(t),

for t 2 J . Given a sequence d
n

# 0 and an interior point t0 in J define
J
n,t0 = d�1

n

(J � t0). Then, for s 2 J
n,t0 , it is possible to rescale respectively

the stochastic and deterministic parts of x
n

as

w̃
n

(s; t0) = d�1
n

{v
n

(t0 + sd
n

)� v
n

(t0)},
g̃
n

(s) = d�1
n

{x
b,n

(t0 + sd
n

)� x
b,n

(t0)}.

This decomposes the rescaling of x
n

as

d�1
n

{x
n

(t0 + sd
n

)� x
n

(t0)} = g̃
n

(s) + w̃
n

(s; t0).

However, due to the fact that the final estimator needs to be centered at
the estimand x(t0) and not at the preliminary estimator x

n

(t0), it is more
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convenient to introduce the following rescaling

ṽ
n

(s; t0) = d�1
n

v
n

(t0 + sd
n

)

= w̃
n

(s; t0) + d�1
n

v
n

(t0),

g
n

(s) = d�1
n

{x
b,n

(t0 + sd
n

)� x(t0)}
= g̃

n

(s) + d�1
n

{x
b,n

(t0)� x(t0)},

so that

y
n

(s) := g
n

(s) + ṽ
n

(s; t0) = d�1
n

{x
n

(t0 + sd
n

)� x(t0)}. (12)

This definition of the rescaled deterministic and stochastic parts is slightly
different from the one in Anevski and Hössjer [1], and is due to the fact
that we only treat the case where the preliminary estimator and the final
estimator have the same rates of convergence, in which case our definition is
more convenient, whereas in Anevski and Hössjer [1] other possibilities occur.

The limit distribution results will be derived using a classical two-step pro-
cedure, cf. e.g. Prakasa Rao [31]: A local limit distribution is first obtained,
under Assumption 1, stating that the estimator T (x

n

) converges weakly in a
local and shrinking neighbourhood around a fixed point. Then it is shown,
under Assumption 2, that the limit distribution of T (x

n

) is entirely deter-
mined by its behaviour in this shrinking neighbourhood.

Assumption 1. There exists a stochastic process ṽ(·; t0) 6= 0 such that

ṽ
n

(·; t0)
L! ṽ(·; t0),

on C(�1,1) as n ! 1. The functions {x
b,n

}
n�1 are monotone and there

are constants A < 0 and � 2 R such that for each c > 0,

sup

|s|c

|g
n

(s)� (As+�)| ! 0,

as n ! 1.

In the applications typically

A = lim

n!1

g̃
n

(s)

s
= x0

(t0),

� = lim

n!1
d�1
n

{x
b,n

(t0)� x(t0)},
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so that A is the local asymptotic linear term and � is the local asymptotic
bias, both properly normalized, of the preliminary estimator x

n

. Define the
(limit) function

y(s) = As+�+ ṽ(s; t0). (13)

We next give a condition that enables a definition of the monotone re-
arrangement for processes. Let {z

n

} be an arbitrary sequence of stochastic
processes.

Assumption 2. Let I0 be a given compact interval and � > 0. There exists
a positive constant c = c(�) such that [�c, c] � I0 and a finite positive M =

M(�) such that

lim inf

n!1
P

(
inf

s2(�c,sup I0)
z
n

(s) > �M, sup

s2(c,1)
z
n

(s) < �M

)
> 1� �, (14)

and

lim inf

n!1
P

(
inf

s2(�1,�c)
z
n

(s) > +M, sup

s2(inf I0,c)
z
n

(s) < +M

)
> 1� �. (15)

Note that in the applications typically both c(�) ! 1 and M(�) !
1 as � # 0. There is no restriction in assuming this, so in the sequel we
assume that lim

�!0 c(�) = 1 and lim

c!1 �(c) = 0. Denote T
c

= T[�c,c].
Consider D

n

(�) = D
n

(�(c)) as the set of ! such that it is possible to define
the monotone rearrangement T (z

n

)|
I0 of z

n

on I0.

Lemma 5. Let I0 be a finite and fixed interval in R, and {z
n

} be a sequence
of continuous stochastic processes on R such that Assumption 2 holds. Then

lim

c!1
lim inf

n!1
P [D

n

(�(c))] = 1

lim

c!1
lim inf

n!1
P (sup

I0

|T
c

(z
n

)(·)� T (z
n

)(·)| = 0) = 1.

Proof Let � > 0 be arbitrary. Let A
n

(�, c,M) and B
n

(�, c,M) be the
sets for which the probabilities are bounded in (14) and (15), respectively,
for some finite c = c(�). Then, using Theorem 3 with I1 = [�c, c] and I0 = I,
it follows that A

n

\B
n

⇢ {sup
I

|T
c

(z
n

)�T
J

(z
n

)| = 0 for each compact interval
J � [�c, c]} := C

n

(�, c,M). Therefore lim inf

n!1 P (C
n

(�, c,M)) � 1 � 2�.
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Note that C
n

(�, c,M) is included in the set D
n

(�) on which it is possible to
define T (z

n

)|
I0 , namely as lim

k!1 T
k

(z
n

)|
I0 , and which is further included

in the set E
n

(�, c) := {sup
I

|T
c

(z
n

) � T (z
n

)| = 0}. A priori the definition
of T depends on �, so that T (z

n

)|
I0 = T �

(z
n

)|
I0 . We will show, however,

that the definition is independent of �. In fact, consider �1 < �2, so that
c1 = c(�1) > c2 = c(�2) and M1 = M(�1) > M2 = M(�2). Then by the
triangle inequality

sup

I0

|T �1
(z

n

)� T �2
(z

n

)|  sup

I0

|T �1
(z

n

)� T
c1(zn)|+ sup

I0

|T
J̃

(z
n

)� T �2
(z

n

)|,

with ˜J := [�c1, c1].
Then the first term on the right hand side is zero on C

n

(�1, c1,M1), since
C

n

(�1, c1,M1) ⇢ E
n

(�1), and the second term on the right hand side is zero on
C

n

(�2, c2,M2) since ˜J is a compact set containing [�c2, c2]. Therefore on the
set C

n

(�1, c1,M1)\C
n

(�2, c2,M2) the left hand side is zero, and thus T �1 |
I0 =

T �2 |
I0 on that set. Note also that P (D

n

(�1) \D
n

(�2)) � P (C
n

(�1, c1,M1) \
C

n

(�2, c2,M2)) � 1 � 2�1 � 2�2. Thus T �1 |
I0 = T �2 |

I0 when both definitions
exist, and they do with an as high probability as desired. This shows that
the definition of T does not depend on �.

Now, since � > 0 is arbitrary, letting � # 0 and noting that this implies
that c ! 1, and using

P (E
n

(�, c)) � P (C
n

(�, c,M)) � 1� 2�

proves the second statement of the lemma. Noting that D
n

� C
n

(�, c,M)

proves the first statement of the lemma. 2

The next result is the main limit distribution result, stating that the
rescaled estimator converges in distribution to a “universal” limit random
variable T (y)(0). The existence of the limit r.v. is made explicit in the
proof of the theorem, we can for now define it (when it exists, and the proof
of the following theorem shows that the limit exists as soon as y satisfies
Assumption 2) as a limit in probability

T (y)(0)
P

= lim

c!1
T
c

(y)(0).

In the following theorem J ⇢ R will be a (finite or infinite) interval, in
our applications J = [0, 1] or J = R+.
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Theorem 4. Let J ⇢ R be an interval, and t0 be a fixed point belonging
to the interior of J . Suppose Assumption 1 holds. Assume moreover that
{y

n

}
n�1 and y are continuous processes and that Assumption 2 holds for both

{y
n

}
n�1 and y respectively defined by (12) and (13). Then

d�1
n

[T
J

(x
n

)(t0)� x(t0)]
L! T [A ·+ṽ( · ; t0)](0) +�, (16)

as n ! 1.

Proof Let c be a positive and finite constant and denote T
c,n

= T[t0�cdn,t0+cdn].
We can decompose

d�1
n

{T
J

(x
n

)(t0)� x(t0)} = d�1
n

{T
J

(x
n

)(t0)� T
c,n

(x
n

)(t0)}
+d�1

n

{T
c,n

(x
n

)(t0)� x(t0)}. (17)

Let us first consider the second term of the right hand side of (17) and
introduce

�
n

(s) := x
n

(t0 + sd
n

) = x(t0) + d
n

y
n

(s). (18)

Applying Lemma 3 leads to

T
c,n

(x
n

)(t0 + sd
n

) = T
c

(�
n

)(s) = d
n

T
c

(y
n

)(s) + x(t0),

which gives

d�1
n

{T
c,n

(x
n

)(t0)� x(t0)} = T
c

(y
n

)(0).

Assumption 1 implies that y
n

L! y on C[�c, c], with y defined in (13). Ap-
plying the continuous mapping theorem on T

c

, cf. Theorem 1, proves

d�1
n

{T
c,n

(x
n

)(t0)� x(t0)}
L! T

c

(y)(0) (19)

as n ! 1. Lemma 5 via Assumption 2 with z
n

= y shows that we can
define the limit random variable T (y)(0) as a limit in probability so that, as
c ! 1,

T
c

(y)(0)
P! T (y)(0). (20)
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Next we consider the first term of the right hand side of (17). Let r be
a positive and finite constant and denote A

n,r = [t0 �rd
n

, t0 +rd
n

]. From
(18) and Lemma 3 it follows that

sup

An,r

d�1
n

|T
c,n

(x
n

)(·)� T
J

(x
n

)(·)| = sup

[�r,r]
|T

c

(y
n

)(·)� T
Jn,t0

(y
n

)(·)|,

with y
n

as defined in (12). Using Lemma 5 with I = [�r,r] shows that

d�1
n

{T
c,n

(x
n

)(t0)� T
J

(x
n

)(t0)}
P! 0 (21)

when n ! 1.
Let first n tend to infinity in (17), and apply Slutsky’s theorem with the

use of (19), (21). Note that when c ! 1, (20) gives the result. 2

Remark 4. The approach for deriving the limit distributions is similar to
the general approach in Anevski and Hössjer [1] with a preliminary estima-
tor that is made monotone via the L2-projection on the space of monotone
functions. There are however a few differences:
� Anevski and Hössjer look at rescaling of an integrated preliminary estima-
tor of the monotone functions, whereas we rescale the estimator directly. Our
approach puts a stronger assumption on the asymptotic properties of the pre-
liminary estimator, which is however traded off against weaker conditions on
the map T , since we only have to assume that the map T is continuous; had
we dealt with rescaling as in Anevski and Hössjer we would have had to prove
that the composition d

dt

(

˜T ) (with ˜T defined by ˜T (F )(t) =
R

t

0 T (F
0
)(u) du) is

a continuous map, which is generally not true for T equal to the monotone
rearrangement map; it is however true, under certain conditions, for ˜T equal
to the least concave minorant map (when T becomes the L2-projection on the
space of monotone functions), cf. Proposition 2 in Anevski and Hössjer [1].
� We are able to do rescaling for the preliminary estimator directly since
it is a smooth function. On the contrary, for some of the cases treated in
Anevski and Hössjer this is not possible, e.g. for the isotonic regression and
the NPMLE of a monotone density the rescaled stochastic part is asymptot-
ically white noise. As a consequence our rescaled deterministic function is
assumed to be approximated by a linear function, whereas the rescaled deter-
ministic function in Anevski and Hössjer [1] is assumed to be approximated
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by a convex or concave function.
� The rescaling is here centered at x(t0), and not at x

n

(t0), which makes it
more convenient to apply the limit distribution result we get. 2

The rest of this section is to apply the previous result to two nonpara-
metric inference problems: next subsection deals with the estimation of a
monotone density function, and the last one with estimating a monotone re-
gression function. Limit distributions for estimators of a marginal decreasing
density f for stationary weakly dependent data with marginal density f as
well as of a monotone regression function m with stationary errors, that are
weakly or strongly dependent, will be derived.

All limit distribution results stated will be for processes in C(�1,1)

with the uniform metric on compact intervals and the Borel �-algebra.

3.3 Application to monotone density estimation

For the density estimation problem let {t
i

}1
i=1 denote a stationary process

with marginal density function f . Define the empirical distribution func-
tion F

n

(t) =

1
n

P
n

i=1 1{tit} and the centered empirical process F 0
n

(t) =

1
n

P
n

i=1(1{tit} � F (t)). Consider a sequence �
n

such that �
n

# 0, n�
n

" 1 as
n ! 1, and define the centered empirical process locally around t0 on scale
�
n

as

w
n,�n(s; t0) = ��1

n,�n
n{F 0

n

(t0 + s�
n

)� F 0
n

(t0)}

= ��1
n,�n

nX

i=1

(1{tit0+s�n} � 1{tit0}

�F (t0 + s�
n

) + F (t0)),

where

�2
n,�n

= Var
⇥
n
�
F 0
n

(t0 + �
n

)� F 0
n

(t0)
 ⇤

= Var

"
nX

i=1

�
1{t0<tit0+�n} � F (t0 + �

n

) + F (t0)
 
#
.

In this section we introduce a (monotone) estimator of a monotone den-
sity function for stationary data, for which we derive consistency and limit
distributions.
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Let t1, t2, . . . denote a stationary process with marginal density function
f lying in the class of decreasing density functions on R+, and define the fol-
lowing estimator of the marginal decreasing density for the sequence {t

i

}
i�1:

Let x
n

(t) = (nh)�1
P

n

i=1 k{(t� t
i

)/h} be the kernel estimator of the den-
sity f , with k a bounded density function supported on [�1, 1] such thatR
k0
(u)du = 0, and h > 0 the bandwidth (cf. e.g. Wand and Jones [42]), and

define the (monotone) density estimate

ˆf
n

(t) = T (x
n

)(t), (22)

where T is the monotone rearrangement map on R+ as defined in (2). Note
that ˆf

n

is monotone and positive, and integrates to one, cf. equation (4) of
Section 3.3. in Lieb and Loss [23].

A straightforward consequence of Theorem 2 and standard convergence
results for the kernel density estimate is the following consistency result:

Proposition 1. The random function ˆf
n

defined by (22) is a uniformly con-
sistent estimator of f in probability uniformly on compact sets, and in prob-
ability in Lp-norm.

In the following, the limit distributions for ˆf
n

in the independent and
weakly dependent cases are derived. We will in particular make use of re-
sults on the weak convergence w

n,�n

L! w, on D(�1,1), as n ! 1, for
independent and weakly dependent data {t

i

}, derived in Anevski and Hössjer
[1].

The kernel estimator can be written x
n

= x
b,n

+ v
n

with

x
n

(t) = h�1

Z
k0
(u)F

n

(t� hu) du,

x
b,n

(t) = h�1

Z
k0
(u)F (t� hu) du, (23)

v
n

(t) = h�1

Z
k0
(u)F 0

n

(t� hu) du.

Rescaling is done on a scale d
n

that is of the same asymptotic order as h, so
that we put d

n

= h. The rescaled process is

ṽ
n

(s; t0) = c
n

Z
k0
(u)w

n,dn(s� u; t0) du,

with c
n

= d�1
n

(nh)�1�
n,dn .
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Theorem 5. Let {t
i

}
i�1 be a stationary sequence with a monotone marginal

density function f such that sup

t2It0
f 0
(t) < 0 and f 2 C1

(I
t0) for an open

interval I
t0 3 t0 where t0 > 0. Assume that Et4

i

< 1. Let x
n

be the kernel
density function defined above, with k a bounded and compactly supported
density such that k0 is bounded. Suppose that one of the following conditions
holds:

[a] {t
i

}
i�1 is an i.i.d. sequence,

[b] 1) {t
i

}
i�1 is a stationary �-mixing sequence with

P1
i=1 �

1/2
(i) < 1 ;

2) f(t0) = F 0
(t0) exists, as well as the joint density f

k

(s1, s2) of
(t1, t1+k

) on [t0 � �, t0 + �]2 for some � > 0, and k � 1 ;

3)

1X

k=1

M
k

< 1 holds, for M
k

= sup

t0��s1,s2t0+�

|f
k

(s1, s2)� f(s1)f(s2)|.

Then choosing h = an�1/3 and a > 0 an arbitrary constant, we obtain

n1/3{ ˆf
n

(t0)� f(t0)}
L! aT [f 0

(t0) ·+ṽ(·; t0)](0) + f 0
(t0) a

Z
uk(u) du,

as n ! 1, where ṽ(s; t) is as in (42), with c = a�3/2f(t0)
1/2, and w a

standard two sided Brownian motion.

Proof If k0 is bounded and k has compact support, the continuity of the
map

C(�1,1) 3 z(s) 7!
Z

z(s� u)k0
(u) du 2 C(�1,1)

implies that, choosing d
n

such that c
n

! c as n ! 1 for some constant c,
one gets:

ṽ
n

(s; t0)
L! c

Z
k0
(u)w(s� u; t0) du =: ṽ(s; t0), (24)

on C(�1,1), as n ! 1, thanks to the continuous mapping theorem. Here
w is the weak limit of {w

n

}. Theorems 7 and 8 of Anevski and Hössjer [1]
state that w

n,�n(s, t0)
L! B(s) on D(�1,1) under the respective assump-

tions in [a] and [b], where B(s) is a two sided standard Brownian motion.
This establishes the first part of Assumption 1 for both cases [a] and [b].
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Next notice that x
b,n

(t) = h�1
R
k( t�u

h

)f(u) du is monotone. A change of
variable and a Taylor expansion in x

b,n

prove the second part of Assumption
1 with A = f 0

(t0) and

d�1
n

{x
b,n

(t0)� f(t0)} ! f 0
(t0)

Z
uk(u) du = �.

The statement of Assumption 2 is relegated to the appendix, see Corollary 2
in the supplementary material. Theorem 5 therefore holds as an application
of Theorem 4.

Let us finally check that the scale d
n

can be chosen so that c
n

! c, as
assumed at the beginning of the proof:

- Independent data case [a]: We have �2
n,dn

⇠ nd
n

f(t0), so that

d�1
n

(nh)�1�
n,dn ⇠ d�3/2

n

n�1/2f(t0)
1/2.

Choosing d
n

= an�1/3 we get c = a�3/2f(t0)
1/2.

- Mixing data case [b]: Similar to the proof of case [a].
2

Remark 5. The present estimator was first proposed for independent data
by Fougères [15], who stated the strong consistency uniformly over R+ for
T (f

n

) and derived some partial results for the limit distribution. The results
for the monotone density function estimator are similar to the results for
the Grenander estimator (the NPMLE) of a monotone density, in that we
have cube root asymptotics and a limit random variable that is a nonlinear
functional of a Gaussian process, for independent and weak dependent data;
see Prakasa Rao [31] and Wright [43] for the independent data cases, and
Anevski and Hössjer [1] for the weak dependent data cases. In our case
however we obtain one extra term that arises from the bias in the kernel
estimator. Our estimator is really closer in spirit to the estimator obtained
by projecting the kernel estimator on the space of monotone functions (i.e.
kernel estimation followed by isotonic regression) first proposed by Anevski
and Hössjer [1]; note that we obtain the same bias term as in Anevski and
Hössjer [1].
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Remark 6. The results for the long range dependence case is similar to the
result for the isotonic regression of a kernel estimator, cf. Anevski and Höss-
jer [1]. In this situation ṽ

n

(s; t0) is asymptotically a linear function of s with
a random slope, implying that the monotone rearrangement of g

n

+ ṽ
n

is just
g
n

+ ṽ
n

which evaluated at zero is zero. This is due to the fact that for long
range dependent data the limit process of the empirical process is a determin-
istic function multiplied by a random variable, cf. the remark after Theorem
12 in Anevski and Hössjer [1]. Thus the limit distribution for the final esti-
mator for long range dependent data is the same as the limit distribution for
the kernel estimator itself, i.e. nd/2{ ˆf

n

(t)�f(t)} and nd/2{f
n

(t)�f(t)} have
the same distributional limit. See Csörgö and Mielniczuk [11] for a derivation
of this limit distribution.

3.4 Application to monotone regression function esti-

mation

For the regression function estimation problem let {✏
i

}1
i=�1 be a stationary

sequence of random variables with E(✏
i

) = 0 and Var(✏
i

) = �2 < 1. Let
�2
n

=Var(
P

n

i=1 ✏i). The two sided partial sum process w
n

is defined by

w
n

(t
i

+

1

2n
) =

(
1
�n
(

✏0
2 +

P
i

j=1 ✏j), i = 0, 1, 2, . . . ,
1
�n
(� ✏0

2 �
P�1

j=i+1 ✏j), i = �1,�2, . . . ,

and linearly interpolated between these points. Note that w
n

2 C(R).
Let Cov(k) = E(⇠1⇠1+k

) denote the covariance function of a generic sta-
tionary sequence {⇠

i

}, and distinguish between three cases (of which [a] is a
special case of [b].)

[a] Independence: the ✏
i

are independent.

[b] Weak dependence:
P

k

|Cov(k)| < 1.

[c] Strong (long range) dependence:
P

k

|Cov(k)| = 1.

Weak dependence can be further formalized using mixing conditions as
follows: Define two �-algebras of a sequence {⇠

i

} as F
k

= �{⇠
i

: i  k} and
¯F
k

= �{⇠
i

: i � k}, where �{⇠
i

: i 2 I} denotes the ��algebra generated
by {⇠

i

: i 2 I}. The stationary sequence {⇠
i

} is said to be "'-mixing" or
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"↵-mixing" respectively if there is a function '(n) or ↵(n) ! 0 as n ! 1,
such that

sup

A2F̄n

|P (A|F0)� P (A)|  '(n),

sup

A2F0,B2F̄n

|P (AB)� P (A)P (B)|  ↵(n), (25)

respectively. Finally, long range dependence is usually formalized using sub-
ordination or assuming the processes are linear; we will treat only (Gaussian)
subordination.

In this section we introduce an estimator of a monotone regression func-
tion. We derive consistency and limit distributions, under general depen-
dence assumptions.

Assume m is a C1-function on a compact interval J ⇢ R, say J = [0, 1]
for simplicity; let (y

i

, t
i

), i = 1, · · · , n be pairs of data satisfying

y
i

= m(t
i

) + ✏
i

,

where t
i

= i/n. Define ȳ
n

: [1/n, 1] 7! R by linear interpolation of the points
{(t

i

, y
i

)}n
i=1, and let

x
n

(t) = h�1

Z
k((t� u)/h)ȳ

n

(u) du , (26)

be the Gasser-Müller kernel estimate of m(t), cf. Gasser and Müller [16],
where k is a density in L

2
(R) with compact support, for simplicity take

supp(k) = [�1, 1]. Let h be the bandwidth, for which we assume that h !
0, nh ! 1.

To define a monotone estimator of m, we put

m̃(t) = T[0,1](xn

)(t), t 2 J, (27)

where T[0,1] is the monotone rearrangement map on [0, 1]. A straightforward
application of Theorem 2 and standard consistency results for regression
function estimators imply the following consistency result:

Proposition 2. The random function m̃ defined by (27) is a uniformly con-
sistent estimator of m in probability uniformly on compact sets, and in prob-
ability in Lp norm.
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Clearly x
n

(t) = x
b,n

(t) + v
n

(t), with

x
b,n

(t) = h�1

Z
k(

t� u

h
)m̄

n

(u) du, (28)

v
n

(t) = h�1

Z
k(

t� u

h
)✏̄

n

(u) du,

where the functions m̄
n

and ✏̄
n

are obtained by linear interpolation of
{(t

i

,m(t
i

))}n
i=1 and {(t

i

, ✏
i

)}n
i=1 respectively. For the deterministic term

x
b,n

(t) ! x
b

(t) = m(t), as n ! 1. Note that m̄
n

, and thus also x
b,n

, is
monotone. Put

w̄
n

(t) =

n

�
n

Z
t

0

✏̄
n

(u) du.

Since supp(k) = [�1, 1] and if t 2 (1/n+h, 1�h), from a partial integration
and change of variable we obtain

v
n

(t) =

�
n

nh

Z
k0
(u)w̄

n

(t� uh) du.

It can be shown that w̄
n

and w
n

are asymptotically equivalent for all depen-
dence structures treated in this paper. Let us now recall how the two sided
partial sum process behaves in the different cases of dependence we consider:

[a] When the ✏
i

are independent, we have the classical Donsker theorem,
cf. Billingsley [3], implying that

w
n

L! B, (29)

as n ! 1, with B a two sided standard Brownian motion on C(R).
[b] Define

2
= Cov(0) + 2

1X

k=1

Cov(k). (30)

Assumption 3. [��mixing] Assume {✏
i

}
i2Z is a stationary �-mixing se-

quence with E✏
i

= 0 and E✏2
i

< 1. Assume further
P1

k=1 �(k)
1/2 < 1 and

2 > 0 in (30).

Assumption 4. [↵�mixing] Assume {✏
i

}
i2Z is a stationary ↵-mixing se-

quence with E✏
i

= 0 and E✏4
i

< 1, 2 > 0 in (30) and
P1

k=1 ↵(k)
1/2�✏ < 1,

for some ✏ > 0.
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Assumption 3 or 4 imply that �2
n

! 2 and that Donsker’s result (29) is
valid, cf. Anevski and Hössjer [1] and references therein.

[c] We model long range dependent data {✏
i

}
i�1 using Gaussian subordi-

nation: More precisely, we write ✏
i

= g(⇠
i

) with {⇠
i

}
i2Z a stationary Gaussian

process with mean zero and covariance function Cov(k) = E(⇠
i

⇠
i+k

) such that
Cov(0) = 1 and Cov(k) = k�dl0(k), with l0 a slowly varying function at in-
finity1 and 0 < d < 1 fixed. Furthermore g : R 7! R is a measurable function
with E{g(⇠1)2} < 1. An expansion g(⇠

i

) in Hermite polynomials is available

g(⇠
i

) =

1X

k=r

1

k!
⌘
k

h
k

(⇠
i

),

where equality holds as a limit in L2
('), with ' the standard Gaussian

density function. The functions h
k

(t) = t�k

(d/dt)k(tke�t

2
) are the Hermite

polynomials of order k, the functions

⌘
k

= E {g(⇠1)hk

(⇠1)} =

Z
g(u)h

k

(u)�(u) du,

are the L2
(')-projections on h

k

, and r is the index of the first non-zero
coefficient in the expansion. Assuming that 0 < dr < 1, the subordinated
sequence {✏

i

}
i�1 exhibits long range dependence (see e.g. Taqqu [34, 35]),

and Taqqu [34] also shows that

��1
n

X

int

g(⇠
i

)

L! z
r,�

(t),

in D[0, 1] equipped with the Skorokhod topology, with variance �2
n

= Var
{
P

n

i=1 g(⇠i)} = ⌘2
r

n2�rdl1(n)(1 + o(1)), where

l1(k) =

2

r!(1� rd)(2� rd)
l0(k)

r. (31)

The limit process z
r,�

is in C[0, 1] a.s., and is self similar with parameter

� = 1� rd/2. (32)

The process z1,�(t) is fractional Brownian motion, z2,�(t) is the Rosenblatt
process, and the processes z

r,�

(t) are all non-Gaussian for r � 2, cf. Taqqu
1i.e. l0(tk)/l0(t) ! 1 as t ! 1 for each positive k.
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[34]. From these results follows a two sided version of Taqqu’s result stating
the behavior of the two sided partial sum process:

w
n

L! B
r,�

,

in D(�1,1), as n ! 1, where B
r,�

are the two sided versions of the
processes z

r,�

.
In the sequel, rescaling is done at the bandwidth rate, so that d

n

= h.
For s > 0, let consider the following rescaled process:

ṽ
n

(s; t) = d�1
n

(nh)�1�
n̂

Z
w̄

n̂

(h�1t+ s� u)k0
(u) du

L
= d�1

n

(nh)�1�
n̂

Z
w̄

n̂

(s� u)k0
(u) du, (33)

with n̂ = [nh] the integer part of nh, where the last equality holds due to
the stationarity (exactly only for t = t

i

and asymptotically otherwise). Note
that the right hand side holds also for s < 0.

With the bandwidth choice d
n

= h we obtain a non-trivial limit process ṽ;
choosing d

n

such that d
n

/h ! 0 leads to a limit “process” equal to a random
variable and d

n

/h ! 1 to white noise. In the first case the limit distribution
of T (x

n

) on the scale d
n

will be the constant 0, while in the second case it
will (formally) be T (m0

(t0) · +ṽ(·))(0) which is not defined (T can not be
defined for generalized functions, in the sense of L. Schwartz [33]).

Theorem 6. Assume m is monotone on [0, 1] and for some open interval
I
t0 3 t0, m 2 C1

(I
t0) and sup

t2It0
m0

(t) < 0 with t0 2 (0, 1). Let x
n

be
the kernel estimate of m defined in (26), with a non-negative and compactly
supported kernel k such that k0 is bounded, and with bandwidth h specified
below. Suppose that one of the following conditions holds.

[a] {✏
i

} are independent and identically distributed, E✏
i

= 0;
�2

=Var(✏
i

) < 1, and h = an�1/3, for an arbitrary a > 0,

[b] Assumption 3 or 4 holds, �2
n

= Var(

P
n

i=1 ✏i), 2 is defined in (30),

and h = an�1/3, with a > 0 an arbitrary constant,
[c] ✏

i

= g(⇠
i

) is a long range dependent subordinated Gaussian sequence
with parameters d and r, h = l2(n; a)n

�rd/(2+rd) with a > 0 and
n 7! l2(n; a) is a slowly varying function defined in the proof below.
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Then, correspondingly, we obtain

h�1{m̃(t0)�m(t0)}
L! T [m0

(t0) ·+ṽ(·; t0)](0) +m0
(t0)

Z
uk(u) du,

as n ! 1, where m̃ is defined in (27),

ṽ(s; t) = c

Z
w(s� u)k0

(u) du, (34)

and respectively

[a] w = B ; c = �a�3/2,

[b] w = B ; c = a�3/2,

[c] w = B
r,�

; c = |⌘
r

|a (where � defined in (32)).

Proof The conclusions of the theorem follow by an application of The-
orem 4 in the context of monotone regression function. Assume first that
d
n

= h is such that

d�1
n

(nh)�1�
n̂

= d�2
n

n�1�
n̂

! c > 0. (35)

Then w
n

L! w in D(�1,1), using the supnorm over compact intervals
metric, under the respective assumptions in [a], [b] and [c]. Besides, note
that if k0 is bounded and k has compact support, the map

C(�1,1) 3 z(s) 7!
Z

z(s� u)k0
(u) du 2 C(�1,1)

is continuous, in the supnorm over compact intervals metric. Thus, under the
assumptions that k0 is bounded and k has compact support, the continuous
mapping theorem implies that

ṽ
n

(s; t)
L! ṽ(s; t), (36)

where ṽ(s; t) is defined in (43). This yields the first part of Assumption 1.
Furthermore

g̃
n

(s) = h�1

Z
`(u)m̄

n

(t0 � hu) du

= h�1

Z
`(u)m(t0 � hu) du+ r

n

(s),
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with `(v) = k(v + s)� k(v) and r
n

a remainder term. Since
Z

v�`(v) dv =

⇢
0, if � = 0,
�s, if � = 1,

it follows by a Taylor expansion of m around t0 that the first term converges
towards As, with A = m0

(t0). The remainder term is bounded for any c > 0

as

sup

|s|c

|r
n

(s)|  h�1
sup

|s|c

Z
|`(u)| du sup

|u�t0|(c+1)h
|m̄

n

(u)�m(u)|

= O(n�1h�1
) = o(1).

Furthermore

d�1
n

{x
b,n

(t0)�m(t0)} ! m0
(t0)

Z
uk(u) du =: �,

as n ! 1, which proves Assumption 1.
Proof that Assumption 2 holds is relegated to the appendix, see Corollary

1 in the supplementary material. An application of Theorem 4 then finishes
the proof of Theorem 6. It only remains to check whether d�1

n

(nh)�1�
n̂

!
c > 0 for the three types of dependence.

- Independent case [a]: We have �2
n̂

= �2nd
n

. Thus d�1
n

(nh)�1�
n̂

=

�n�1/2h�3/2, and (45) is satisfied with c = �a�3/2 if d
n

= h = an�1/3.

- Mixing case [b]: The proof is similar to the proof of [a], replacing �
by .

- Long range data case [c]: Since �2
n̂

= ⌘2
r

(nd
n

)

2�rdl1(ndn), if we choose
d
n

= h we will have

d�2
n

n�1�
n̂

= d�2
n

n�1|⌘
r

|(nd
n

)

1�rd/2l1(ndn)
1/2 ! |⌘

r

|a (37)

if and only if

d
n

= n�rd/(2+rd)l2(n; a), (38)

where l2 is another function slowly varying at infinity, implicitly defined
in (37). Thus (45) follows with c = |⌘

r

|a and h = d
n

given in (47).
2
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Remark 7. The present estimator is similar to the estimator first presented
by Mammen [24]: Mammen proposed to do isotonic regression of a kernel
estimator of a regression function (using bandwidth h = n�1/5), whereas
we do monotone rearrangement of a kernel estimator. Mammen’s estimator
was extended to dependent data and other bandwidth choices by Anevski and
Hössjer [1] who derived limit distributions for weak dependent and long range
dependent data that are analogous to our results; for the independent data
case and bandwidth choice h = n�1/3 the limit distributions are similar with
rate of convergence n1/3 and nonlinear maps of Gaussian processes.

4 Limit results for density and regression func-

tion estimators with q vanishing derivatives

The results we have established in the previous section can in fact be extended
to the case when the estimand x is monotone and has q vanishing moments
at the point of interest t0, so when x(t0) 6= 0, x(i)

(t0) = 0 for j = 1, . . . , q and
x(q+1)

(t0) < 0. We present these results here. We will make an analogous
derivation to the case when x0

(t0) < 0, and we will highlight when there is a
difference to the case already treated.

We give proofs for the independent data, the weak dependent and the long
range dependent cases. Our results give other rates of convergence and other
(new) limit random variables. For instance the limit results that we obtain
for the independent data case will be with the (slower rate of convergence)
n�1/(q+3), and the limit r.v. will be of the form

T (A(s) + ṽ(s))(0),

where A is (when k is a symmetric kernel) a convolution of the monomial
sq+1, of order q + 1, with the kernel function k(s) and ṽ is the same process
as the one already treated, while T is the monotone rearrangement map.

Thus let x be a function satisfying the above assumption that it has
q vanishing derivatives at a point t0 that is in the interior of its support,
while xq+1

(t0) < 0. Suppose that x
n

is a preliminary estimator of x that we
partition as

x(t) = x
b,n

(t) + v
n

(t).
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Let d
n

# 0 as n ! 1, be a deterministic sequence. Define the rescaled
deterministic and stochastic parts, respectively, by

g
n

(s) = d�(q+1)
n

(x
b,n

(t0 + sd
n

)� x(t0)),

ṽ
n

(s; t0) = d�(q+1)
n

v
n

(t0 + sd
n

),

as in Section 3.2 and also

y
n

(s) = g
n

(s) + ṽ
n

(s; t0) (39)
= d�(q+1)

n

(x
n

(t0 + sd
n

)� x(t0)). (40)

Then Assumption 1 is replaced by

Assumption 5. There exists a stochastic process ṽ(·; t0) 6= 0 such that

ṽ
n

(·; t0)
L! ṽ(·; t0),

on C(�1,1) as n ! 1. The functions {x
b,n

}
n�1 are monotone and there

exists a function A(s) such that for each c > 0

sup

|s|c

|g
n

(s)� A(s)|

as n ! 1.

Let us also define the limit process

y(s) = A(s) + ṽ(s; t0). (41)

Then we have the following general theorem.

Theorem 7. Let J ⇢ R be an interval, and t0 a fixed point in the interior
of J . Suppose that Assumption 5 holds. Assume furthermore that {y

n

}
n�1

and y are continuous processes and that Assumption 2 holds for both {y
n

}
n�1

and y, defined in (40) and (41) respectively. Then

d�(q+1)
n

[T
J

(x
n

(t0))� x(t0)]
L! T [A(·) + ṽ(·; t0)](0),

as n ! 1.

Proof The proof is completely analogous to the proof of Theorem 4:
At appropriate places simply replace the factor d

n

with dq+1
n

and d�1
n

with
d
�(q+1)
n

. 2
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4.1 Monotone density function estimation

We now apply the above general result to the estimation of a monotone
density f function such that f (j)

(t0) = 0 for j = 1, . . . , q and f (q+1)
(t0) < 0.

Recall the definition of the empirical distribution function F
n

and centered
empirical distribution function F 0

n

in Section 3.3. Let �
n

be a sequence such
that �

n

# 0, n�
n

" 1 as n ! 1, and define the centered empirical process
w

n,�n locally around t0 on the scale �
n

, exactly as in Section 3.3, with the
same definition of normalising factor �2

n,�n
. Furthermore, define the kernel

function x
n

as the preliminary estimator of f as in Section 3.3, and note that
we can write the kernel estimator as x

n

= x
b,n

+ v
n

, with x
n

, x
b,n

, v
n

given in
Equation (23) in Section 3.3. Again we will choose the bandwidth and the
local scale to be the same d

n

= h.
We now however obtain the rescaled process

ṽ
n

(s; t0) = c
n

Z
k0
(u)w

n,dn(s� u; t0) du,

with a (different) scale factor c
n

= d
�(q+1)
n

(nh)�1�
n,dn .

Theorem 8. Let {t
i

}
i�1 be a stationary sequence with a monotone marginal

density function f such that

(i) f (j)
(t0) = 0 for j = 1, . . . , q,

(ii) sup

t2It0
f (q+1)

(t) < 0,

(iii) f 2 Cq+1
(I

t0),

for an open interval I
t0 3 t0 where t0 > 0. Assume that Et4

i

< 1. Let x
n

be the kernel density function defined above, with k a bounded and compactly
supported density such that k0 is bounded. Suppose that one of the following
conditions holds:

[a] {t
i

}
i�1 is an i.i.d. sequence,

[b] 1) {t
i

}
i�1 is a stationary �-mixing sequence with

P1
i=1 �

1/2
(i) < 1 ;

2) f(t0) = F 0
(t0) exists, as well as the joint density f

k

(s1, s2) of
(t1, t1+k

) on [t0 � �, t0 + �]2 for some � > 0, and k � 1 ;

3)

1X

k=1

M
k

< 1 holds, for M
k

= sup

t0��s1,s2t0+�

|f
k

(s1, s2)� f(s1)f(s2)|.
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Then choosing h = an�1/(3+2q) and a > 0 an arbitrary constant, we obtain

n1/(3+2q){ ˆf
n

(t0)� f(t0)}
L! T (A

f

(·) + ṽ
n

(·; t0))(0),

as n ! 1, where ṽ(s; t) is as in (42), with c = a�(q+3/2)f(t0)
1/2, the function

A
f

(s) is defined as

A
f

(s) =

1

(q + 1)!

f (q+1)
(t0)

Z
k(u)(s+ u)q+1 du

and w a standard two sided Brownian motion.

Proof The first part of Assumption 1 is established as in the proof of
Theorem 5, with

ṽ(s; t0) = c

Z
k0
(u)w(s� u; t0) du (42)

and w a two sided standard Brownian motion, under the respective assump-
tions in [a] and [b].

Again we notice that x
b,n

(t) = h�1
R
k( t�u

h

)f(u) du is monotone. A change
of variable and a Taylor expansion in the expression for x

b,n

proves the second
part of Assumption 1 with limit function

A(s) =

1

(q + 1)!

f (q+1)
(t0)

Z
k(u)(s+ u)q+1 du .

To check Assumption 2 for the case q � 1 is much easier than for the case q =
0, which is the case treated in Section 3. This can be seen in the statement
of Lemma 1 in the supplemental part: the rescaled processes ṽ

n

are the same
for this new case q � 1 as for the already treated case q = 0. However, the
rescaled limit deterministic part A(s) is, for q � 1, a smoothed out higher
order monomial (s+ u)q+1, which of course has not linear increase/decrease
(as when r = 0) but polynomial increase. That means that one should
compare ṽ

n

in A and B of Lemma 1 not with e.g. in A of Lemma 1 the linear
function ⌧(s� c) but instead with ⌧(s� c)q+1. But bounds of this form are
easier to establish for polynomial increase than for linear increase, and in
fact if we have established bounds for linear increase then we automatically
get (at least) the same bounds for polynomial increase.

Finally in order to check that we can choose the scale d
n

so that c
n

! c,
we make the following calculations.
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(1) Independent data case [a]: We have �2
n,dn

⇠ nd
n

f(t0), so that

c
n

= d�(q+1)
n

(nh)�1�
n,dn

⇠ d�(q+3/2)
n

n�1/2f(t0)
1/2.

This tells us that we should choose d
n

= an�1/(3+2q) we get c =

a�3/2f(t0)
1/2.

(2) Mixing data case [b]: Similar to the proof of case [a].
2

4.2 Monotone regression function estimation

Next we treat the regression estimation problem for a regression function
m such that m(j)

(t0) = for j = 1, . . . , q and m(q)
(t0) < 0 for t0 the point

of interest. We have the same setting for the regression problem as in Sec-
tion 3.4, so m is a function defined on [0, 1], equidistant design t

i

= i/n,
and data (t

i

, y
i

) from the model y
i

= m(t
i

) + ✏
i

where {✏
i

} is a stationary
sequence of independent, weakly dependent or long range dependent data.
Define the two-sided partial sum process w

n

and the function ȳ
n

exactly as
in Section 3.4, and the Gasser-Müller kernel estimate as in Equation (26).
The monotone estimator of m is defined as m̃(t) = T[0,1](xn

)(t). Again we
can write x

n

= x
b,n

+ v
n

, with x
b,n

and v
n

given in Equation (28). We note
that since the process w

n

is defined exactly the same way as in Section 3.4,
we have that w

n

L! a limit process which is Brownian motion or Fractional
Brownian motion, or something else, depending on the dependence structure
for the data {✏

i

}, as in Section 3.4.
We choose bandwidth equal to the local scale factor h = d

n

, and rescale
the process part as

ṽ
n

= d�(q+1)
n

(nh)�1�
n̂

Z
w̄

n̂

(s� u)k0
(u) du,

while the deterministic part is rescaled as

g
n

(s) = d�(q+1)
n

(x
b,n

(t0 + sd
n

)� x(t0)).

Theorem 9. Assume m is monotone on [0, 1] and
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(i) m(j)
(t0) = 0 for j = 1, . . . , q,

(ii) sup

t2It0
m(q+1)

(t) < 0,

(iii) m 2 Cq+1
(I

t0),

for an open interval I
t0 3 t0, with t0 2 (0, 1). Let x

n

be the kernel estimate of
m defined above, with a non-negative and compactly supported kernel k such
that k0 is bounded, and with bandwidth h specified below. Suppose that one of
the following conditions holds.

[a] {✏
i

} are independent and identically distributed, E✏
i

= 0;
�2

=Var(✏
i

) < 1, and h = an�1/(3+2q), for an arbitrary a > 0,

[b] Assumption 3 or 4 holds, �2
n

= Var(

P
n

i=1 ✏i), 2 is defined in (30),

h = an�1/(3+2q), with a > 0 an arbitrary constant,
[c] ✏

i

= g(⇠
i

) is a long range dependent subordinated Gaussian sequence
with parameters d and r, h = l2(n; a)n

�rd/(2+q+rd) with a > 0 and
n 7! l2(n; a) is a slowly varying function defined in the proof below.

Then, correspondingly, we obtain

d�1
n

{m̃(t0)�m(t0)}
L! T [A

m

(·) + ṽ(·; t0)](0),

as n ! 1, where

ṽ(s; t) = c

Z
w(s� u)k0

(u) du, (43)

A
m

(s) =

m(q+1)
(t0)

(q + 1)!

Z
(u+ s)q+1k(u) du. (44)

and respectively

[a] w = B ; c = �a�(q+3/2),

[b] w = B ; c = a�(q+3/2),

[c] w = B
r,�

; c = |⌘
r

|a (where � defined in (32)).

Proof If we choose d
n

= h in such a way so that

d�(q+1)
n

(nh)�1�
n̂

! c > 0, (45)
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then we obtain the first part of Assumption 1

ṽ
n

(s; t)
L! ṽ(s; t),

as in the proof of Theorem 6.
For the rescaling of the deterministic part g

n

, similarly to as in the proofs
of Theorem 6 and Theorem 8, one can show that the second part of Assump-
tion 1 holds, with

A
m

(s) =

m(q+1)
(t0)

(q + 1)!

Z
(u+ s)q+1k(u) du.

The proof that Assumption 2 holds is similar to the reasoning in the proof
of Theorem 8.

It only remains to check whether d�1
n

(nh)�1�
n̂

! c > 0 for the three
types of dependence.

1. Independent case [a]: We have �2
n̂

= �2nd
n

. Thus d
�(q+1)
n

(nh)�1�
n̂

=

�n�1/2d
�(q+3/2)
n

, and (45) is satisfied with c = �a�(q+3/2) if d
n

= h =

an�1/(3+2q).

2. Mixing case [b]: The proof is similar to the proof of [a], replacing �
by .

3. Long range data case [c]: Since �2
n̂

= ⌘2
r

(nd
n

)

2�rdl1(ndn), if we choose
d
n

= h we will have

d�(q+1)
n

(nh)�1�
n̂

= d�(q+1)
n

(nh)�1|⌘
r

|(nd
n

)

1�rd/2l1(ndn)
1/2

! |⌘
r

|a (46)

if and only if

d
n

= n�rd/(q+2+rd)l2(n; a), (47)

where l2 is another function slowly varying at infinity, implicitly defined
in (46). Thus (45) follows with c = |⌘

r

|a and h = d
n

given in (47).
2
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5 Conclusions

We considered the feature of estimating an arbitrary monotone function x, via
a monotone rearrangement of a “preliminary” estimator x

n

of the unknown
x. We derived consistency and limit distribution results for the monotonized
estimator that hold under rather general dependence assumptions.

The work done here has been with the use of kernel based methods for
the preliminary estimator x

n

of x. Other methods, such as wavelet based
ones, are possible. We would like to emphasise that the only assumptions
required are given in Assumptions 1 and 2.

The small simulation study that has been performed in the supplementary
material deals with independent data, as also done in Dette et al. [12] and
Birke and Dette [5]. This independence framework is the only one considered
in the density context too. A larger panel of dependence situations in the
comparisons would clearly be of interest.

We have studied applications to density and regression function estima-
tion. Other estimation problems that are potentially possible to treat with
our methods are e.g. spectral density estimation, considered by Anevski and
Soulier [2], and deconvolution, previously studied by van Es et al. [37].
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Supplementary material: The supplementary material gives further con-
ditions under which Assumption 2 holds, with application to the density and
regression function estimation cases, stated in Appendix B, as well as all
proofs. Furthermore it contains a simulation study that illustrates the finite
sample behaviour of our estimator, and compare it to other estimators that
are considered in the paper of Birke and Dette [5].
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A Proofs of Section 2

Proof of Lemma 1: Assertions (i) and (ii) both follow from the fact that

lim

u!u0

|r
f,I

(u)� r
f,I

(u0)| = lim

u!u0

�{t 2 I : max(u, u0) � f(t) > min(u, u0)}

= �{I \ f�1
({u0})},

which is equal to 0 in (i), and to c in (ii). Finally, assertion (iii) arises from
writing that r

f,I

(u) = r
f,I

(f(t�0 )) = t0 for each u 2 (f(t+0 ), f(t
�
0 )). 2

Proof of Lemma 2: (i)-(iii) follow from the definition; indeed, for each
u 2 f(I) + c, r

f+c,I

(u) = �{t 2 I : f(t) + c > u} = r
f,I

(u � c), and for
each u 2 cf(I), r

cf,I

(u) = �{t 2 I : cf(t) > u} = r
f,I

(u/c) if c > 0. As for
(iii), {t 2 I : f(t) > u} ⇢ {t 2 I : g(t) > u}, for each fixed u, if f  g.
Statement (iv) follows from r

fc,I(u) = �{t 2 I/c : f(ct) > u} = �{s/c 2 I/c :
f(s) > u} = r

f,I

(u)/c, for each u 2 f(I). Statement (v) is a consequence of
r
fc,I(u) = �{t 2 I � c : f(t+ c) > u} = �{s� c 2 I � c : f(s) > u} = �{t 2
I : f(t) > u}, for each u 2 f(I). 2

Proof of Lemma 3: Let I = [a, b]; each assertion is a consequence of its
counterpart in Lemma 2. Let t 2 I; statement (i) follows from T

I

(f+c)(t) =
inf{u 2 f(I) + c : r

f,I

(u � c)  t � a} = T
I

(f)(t) + c, whereas (ii) comes
from T

I

(cf)(t) = inf{u 2 cf(I) : r
f,I

(u/c)  t � a} = cT
I

(f)(t). To show
(iii), note that f  g ) r

f,I

 r
g,I

) T
I

(f)  T
I

(g). Assertion (iv) follows
from the fact that for each t 2 I/c, T

I/c

(f
c

)(t) = inf{u 2 f(I) : r
f,I

(u) 
ct � a} = T

I

(f)(ct). Finally, statement (v) follows since for each t 2 I � c,
T
I�c

(f
c

)(t) = inf{u 2 f(I) : r
f,I

(u)  t+ c� a} = T
I

(f)(t+ c). 2

Proof of Theorem 1: Let f, g be functions in B(I). Clearly g(u) �
||f � g||  f(u)  g(u) + ||f � g||, which by Lemma 3 (i) and (iii) im-
plies that T

I

(g)(u) � ||f � g||  T
I

(f)(u)  T
I

(g)(u) + ||f � g||, so that
|T

I

(f) � T
I

(g)|(u)  ||f � g||, for each u. Since the right hand side is inde-
pendent of u, the absolute value on the left hand side can be replaced by the
supremum norm, which implies the statement of the theorem. 2
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B Maximal bounds for rescaled partial sum and

empirical processes

In this section we state conditions under which Assumption 2 holds. Fur-
ther specialisations of these conditions to density and regression function
estimation are given in the supplementary material.

Recall that

g̃
n

(s) = d�1
n

{x
b,n

(t0 + sd
n

)� x
b,n

(t0)}, (48)
ṽ
n

(s) = d�1
n

v
n

(t0 + sd
n

).

Since under Assumption 1

y
n

(s)� {g̃
n

(s) + ṽ
n

(s)} = d�1
n

{x
b,n

(t0)� x(t0)}
! �,

as n ! 1, and |�| < 1, establishing Assumption 2 for the process g̃
n

+ ṽ
n

implies that it holds also for the process y
n

= g
n

+ ṽ
n

. Therefore it is enough
to establish Assumption 2 for y

n

replaced by g̃
n

+ ṽ
n

.
Recall that for the cases that we cover the rescaled processes are of the

form

ṽ
n

(s; t0) = c
n

Z
k0
(u)z

n

(s� u; t0) du,

with z
n

= w
n,dn the local rescaled empirical process in the density estimation

case and z
n

= w
n

the partial sum process in the regression case. This implies
that for the density estimation case the support of ṽ

n

is stochastic, since it
depends on max1in

t
i

, while for the regression estimation case it does not
depend on the data {✏

i

} and is as a matter of fact compact and deterministic.
The proof of the following Lemma is given in the supplementary material.

Lemma 6. Let supp(k) ⇢ [�1, 1]. Suppose that Assumption 1 holds. Assume
that t0 has a neighbourhood I = [t0� ✏, t0+ ✏] such that ⌧ := sup

t2I x
0
(t) < 0.

Suppose also that

x0
b,n

(t+ sd
n

) ! x0
(t), (49)

as n ! 1, for all t 2 I.
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Then (14) and (15) written for z
n

= g̃
n

+ ṽ
n

are implied by the two results:
(A). For every � > 0 and 0 < c < 1 there is a finite M > 0

lim inf

n!1
P


\

s2(c,d�1
n ✏){ṽn(s) <

M

2

� ⌧(s� c)}
�

> 1� �.

(B). For every � > 0 and finite M > 0 there is a finite C, not depending on
�, such that for each c > C

lim sup

n!1
P

(
sup

s2d�1
n (0,`(n))

ṽ
n

(s) >
M

2

� ⌧(d�1
n

✏� c)

)
< �, (50)

where `(n) is a deterministic function which satisfies either of

(i) lim inf

n!1
P{max

1in

t
i

< `(n)} = 1,

or

(ii) `(n) ⌘ max supp(x
n

) if lim sup

n!1
max supp(x

n

)  K < 1.
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Abstract

This is the supplementary material for Anevski and Fougères, “Limit

properties of the monotone rearrangement for density and regression

function estimation”, which in this document is referred to as the main

article.

Keywords: Limit distributions, density estimation, regression function es-
timation, dependence, monotone rearrangement.

1 Maximal bounds for rescaled partial sum and

empirical processes

In this section we derive conditions under which Assumption 2 in the main
article holds, for the density and regression function estimation cases. Recall
the definitions of the localised and rescaled bias and process parts

g̃n(s) = d

�1

n {xb,n(t0 + sdn)� xb,n(t0)}, (1)
ṽn(s) = d

�1

n vn(t0 + sdn).
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We recall that it is enough to establish Assumption 2 in the main article for
g̃n + ṽn. The main general result that we will prove is the following lemma.

Lemma 1. Let supp(k) ⇢ [�1, 1]. Suppose that Assumption 1 in the main

article holds. Assume that t

0

has a neighbourhood I = [t

0

� ✏, t

0

+ ✏] such

that ⌧ := supt2I x
0
(t) < 0. Suppose also that

x

0
b,n(t+ sdn) ! x

0
(t), (2)

as n ! 1, for all t 2 I.

Then (14) and (15) in the main article written for zn = g̃n+ṽn are implied

by the two results:

(A). For every � > 0 and 0 < c < 1 there is a finite M > 0

lim inf

n!1
P


\s2(c,d�1

n ✏){ṽn(s) <
M

2

� ⌧(s� c)}
�

> 1� �.

(B). For every � > 0 and finite M > 0 there is a finite C, not depending on

�, such that for each c > C

lim sup

n!1
P

(
sup

s2d�1
n (0,`(n))

ṽn(s) >
M

2

� ⌧(d

�1

n ✏� c)

)
< �, (3)

where `(n) is a deterministic function which satisfies either of

(i) lim inf

n!1
P{max

1in
ti < `(n)} = 1,

or

(ii) `(n) ⌘ max supp(xn) if lim sup

n!1
max supp(xn)  K < 1.

Condition (A) can be seen as boundedness on small sets (i.e. on the
sets (c, d

�1

n ✏)), while the conditions in (B) are bounds outside of small sets;
the small sets are really compact (of the form (0, ✏)) on the t-scale, and are
increasing due to the rescaling done for the s-scale.

Condition (B)(ii) is appropriate for the regression function estimation
case, since then lim supn!1 max(supp(xn)) is bounded by 1+max(supp(k)) =

2, while for the density estimation case we will have to invoke the more subtle
assumptions in (B)(i).
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Proof In order to show (14) in the main article, we first prove that for each
� > 0 there is a 0 < M < 1 and a 0 < c < 1, with c independent of �, such
that

lim inf

n!1
P{sup

s�c
(g̃n + ṽn)(s) < �M} � 1� �. (4)

Let g̃n be defined in (1). Consider the function

kn(s) =

8
<

:

⌧s, on (�✏d

�1

n , ✏d

�1

n ),

⌧✏d

�1

n on (✏d

�1

n ,1),

�⌧✏d

�1

n on (�1,�✏d

�1

n ).

Then from (2) we obtain

g̃n(s)  kn(s) on R+

,

g̃n(s) � kn(s) on R�
,

for all large enough n, since g̃n is decreasing (as weighted mean of decreasing
functions) and g̃n(0) = 0.

Let � be given and suppose part (A) of the assumptions is satisfied, with
some M and arbitrary 0 < c < 1. We will consider the hypotheses (B)(i)

and (B)(ii) separately:

(B)(i) Since the kernel k has support in [�1, 1] one has supp(xn) ⇢
(min

1in ti � h,max

1in ti + h). Using the rescaling t = t

0

+ sdn this
implies that

supp(g̃n), supp(ṽn) ⇢ �t

0

+ d

�1

n (min ti � h,max ti + h) =: I

(i)
n .

Since t

0

> min ti and h is positive, the supremum over all s 2 I

(i)
n can be

replaced by a supremum over all s 2 (c, d

�1

n max ti), as n tends to 1, and
thus we need to show

lim inf

n!1
P

(
sup

(c,d�1
n max ti)

(g̃n + ṽn)(s) < �M

)
� 1� �. (5)

Then for c � 3M/2|⌧ |, we will have kn(c) = �3M/2. This implies that for
c � 3M/2|⌧ |,

P

(
sup

(c,d�1
n max ti)

yn(s) < �M

)
� P (\s2(c,d�1

n ✏){ṽn(s) <
M

2

� ⌧(s� c)}

\{ sup

s2d�1
n (✏,max ti)

ṽn(s) <
M

2

� ⌧(d

�1

n ✏� c)}),

3



so that (5) follows from the two results

lim inf

n!1
P

(
sup

s2d�1
n (✏,max ti)

ṽn(s) <
M

2

� ⌧(d

�1

n ✏� c)

)
> 1� �, (6)

lim inf

n!1
P


\s2(c,d�1

n ✏){ṽn(s) <
M

2

� ⌧(s� c)}
�

> 1� �. (7)

The relation (7) is satisfied by assumption (A) and thus we need to treat
(6). Let ` be the deterministic function given in assumption (B)(i). Note
first that

P

(
sup

d�1
n (✏,`(n))

ṽn(s) <
M

2

� ⌧(d

�1

n ✏� c)

)

 P

(
sup

d�1
n (✏,`(n))

ṽn(s) <
M

2

� ⌧(d

�1

n ✏� c)| max

1in
ti < `(n)

)
+ P

⇢
max

1in
ti > `(n)

�

< P

(
sup

d�1
n (✏,`(n))

ṽn(s) <
M

2

� ⌧(d

�1

n ✏� c)| max

1in
ti < `(n)

)
+ �

for all n � N for some N , since limn!1 P {max

1in ti > `(n)} = 0. There-
fore, for all n � N , we have

P

(
sup

d�1
n (✏,max ti)

ṽn(s) <
M

2

� ⌧(d

�1

n ✏� c)

)

� P

(
sup

d�1
n (✏,`(n))

ṽn(s) <
M

2

� ⌧(d

�1

n ✏� c) | max

1in
ti < `(n)

)
P

⇢
max

1in
ti < `(n)

�

�
 
P

(
sup

d�1
n (✏,`(n))

ṽn(s) <
M

2

� ⌧(d

�1

n ✏� c)

)
� �

!
P

⇢
max

1in
ti < `(n)

�

�
 
P

(
sup

d�1
n (0,`(n))

ṽn(s) <
M

2

� ⌧(d

�1

n ✏� c)

)
� �

!
P

⇢
max

1in
ti < `(n)

�
.

Thus since limn!1 P {max

1in ti < `(n)} = 1, taking complements leads to
(6) as soon as for c > C

lim sup

n!1
P

(
sup

d�1
n (0,`(n))

ṽn(s) >
M

2

� ⌧(d

�1

n ✏� c)

)
< �,
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i.e. (3).

(B)(ii). It follows from the definition of K and from supp(k) ⇢ [�1, 1]

that supp(xn) ⇢ (�h,K + h), so that

supp(g̃n), supp(ṽn) ⇢ �t

0

+ d

�1

n (�h, h+K) =: I

(ii)
n .

Again this implies that the supremum of ṽn over I

(ii)
n can be replaced by a

supremum over all s 2 (c, d

�1

n K) and thus (4) will follow as soon as

lim inf

n!1
P

(
sup

(c,d�1
n K)

(g̃n + ṽn)(s) < �M

)
> 1� �. (8)

For arbitrary M and c � 3M/2 we have

P

(
sup

(c,d�1
n K)

(g̃n + ṽn)(s) < �M

)

� P (\s2(c,d�1
n ✏){ṽn(s) <

M

2

� ⌧(s� c)}

\{ sup

s2d�1
n (✏,K)

ṽn(s) <
M

2

� ⌧(d

�1

n ✏� c)}),

so that (8) follows from

lim inf

n!1
P

(
sup

s2d�1
n (✏,K)

ṽn(s) <
M

2

� ⌧(d

�1

n ✏� c)

)
> 1� �,

and (7), which ends the derivation for the case (ii).

Now we prove that with M as above

lim inf

n!1
P

⇢
inf

inf I1ssup I0
yn(s) � �M

�
> 1� �. (9)

Note that with M = Mc corresponding to the bound for c, we have kn(c) =

�3Mc/2 and thus Eyn(c)  �3Mc/2  �Mc �Mc/2. Since g̃n(s) ! As on
compact intervals, if n is large enough then we have Eyn(s) � As� ✏ for each
✏ > 0 arbitrarily small. Thus for sM = �Mc/2A

Eyn(sM) � �Mc

2

� ✏,

5



for n large enough. Finally from (4) and by the symmetry of the distribution
of ṽn around 0, we have that with M replaced by max{Mc,�2A sup I

0

}, both
(4) and (9) hold, and (6) is proven.

Equation (15) in the main article can be proven in a similar way, which
yields the lemma. 2

Lemma 1 states conditions (A) and (B) as sufficient conditions for Assump-
tion 2 in the main article.

To further simplify condition (B) in Lemma 1, using Boole’s inequality
and the stationarity of the process ṽn we get in both cases (i) and (ii)

P

(
sup

d�1
n (0,`(n))

ṽn(s) >
M

2

� ⌧(d

�1

n ✏� c)

)
(10)

 d

�1

n `(n)P

(
sup

(0,1)
ṽn(s) >

M

2

� ⌧(d

�1

n ✏� c)

)
,

where `(n) is defined for hypothesis (i) and replaced by K when dealing
with hypothesis (ii). As a consequence, in Case (i) (resp. Case (ii)) the
probability (10) will converge to 0 as soon as

↵(n) := P

(
sup

(0,1)
ṽn(s) >

M

2

� ⌧(d

�1

n ✏� c)

)
! 0

faster than d

�1

n `(n) ! 1, i.e. that ↵(n) = o(dn `(n)
�1

) as n ! 1 (resp.
↵(n) = o(dn)). The following conditions are thus respectively sufficient to
insure that (10) tends to 0, as n ! 1:

(i) P

⇢
max

1in
ti < `(n)

�
! 1 and d

�1

n `(n)↵(n) ! 0,

(ii) d

�1

n ↵(n) ! 0.

The examination of the convergence of ↵(n) will be treated for the density
and regression estimation problems, separately in subsections B.1 and B.2.

To further simplify (A) in Lemma 1, note that

\s2(c,d�1
n ✏){ṽn(s) <

M

2

� ⌧(s� c)}

� \i2Z\(c,d�1
n ✏){ sup

s2[i,i+1)

ṽn(s) <
M

2

� ⌧(i� c)} =: An.

6



Thus, taking complements, part (A) of Lemma 1 follows as soon as for
every � and arbitrary 0 < c < 1 there is a 0 < M < 1 such that
lim supn!1 P (A

c
n) < �. However,

P (A

c
n) 

X

i2Z\(c,d�1
n ✏)

P

(
sup

s2[i,i+1)

ṽn(s) >
M

2

� ⌧(i� c)

)


[d�1

n ✏]X

i=[c]

P

(
sup

s2[0,1)
ṽn(s) >

M

2

� ⌧(i� c)

)
,

where the equality follows from the stationarity of ṽn. In the sequel we will
establish maximal inequalities of the form

P

(
sup

s2[0,1)
ṽn(s) > a

)
 Ca

�p (11)

for some constant p > 1; assume for now that these are established. Then

lim sup

n!1
P (A

c
n) 

1X

i=[c]

C

1

(

M
2

� ⌧(i� c)))

p

 C

p|⌧ |p

✓
2

M

◆p�1

< �,

where the next to last inequality holds by an integral approximation of the
series and the last by choosing M = M(�) > 2(C/p�|⌧ |p)1/(p�1). Thus as-
sumption (A) in Lemma 1 follows from (11) with p > 1; inequalities of the
form (11) will next be treated.

1.1 Maximal bounds for the rescaled partial sum pro-

cess

Let k be a kernel which is bounded, piecewise differentiable, with a bounded
derivative, say 0  |k0|  ↵. Assume that the sequence h = hn is such that
nh ! 1. We have (see (32) in the main article)

ṽn(s, t0)
L
= d

�1

n (nh)

�1

�n̂

Z
w̄n̂(s� u)k

0
(u) du,

7



where dn = h is chosen so that d

�1

n (nh)

�1

�n̂ ! 1 and n̂ = [nh]. Now w̄n̂

is asymptotically equivalent to the piecewise constant partial sum process
which we therefore will use for notational simplicity, and which we denote
(with a slight abuse of notation) with wn̂.

We show the convergence of ↵(n) in which ṽn(s) is replaced by wn̂(s):
this will be sufficient since

|ṽn(s)|  sup

u2[�1,1]
|wn̂(s� u)|

Z
|k0

(u)| du,

and thus

sup

s2(0,1)
|ṽn(s)|  c sup

s2(0,1)
sup

u2[�1,1]
|wn̂(s� u)|

 c sup

s2[�1,2]
|wn̂(s)|,

with c =

R
|k0

(u)| du, and since the behaviour of the process wn̂ on (0, 1) and
on (�1, 2) is qualitatively the same.

Proposition 1. Let p � 2 be given and assume that the sequence {✏i}i�1

satisfies E✏p
1

< 1. Then under the assumptions of Theorem 6 in the main

article

P

 
sup

s2(0,1)
wn̂(s) > M/2� ⌧(�h

�1 � c)

!
 Ch

p
,

where C is a finite constant, and ⌧ = supt2I x
0
(t).

Proof Let a := M/2 + ⌧c and b := �⌧�. One has

wn̂(s)� wn̂(s
0
) =

1

�n̂
Sn(s, s

0
),

with

Sn(s, s
0
) =

[sn̂]X

i=[s0n̂]+1

✏i.

8



[a] If {✏i} is an i.i.d. sequence the moment bound in Theorem 2.9 in
Petrov [13] implies

E|Sn(s, s
0
)|p  c(p)

0

B@
[sn̂]X

i=[s0n̂]+1

E|✏i|p +

0

@
[sn̂]X

i=[s0n̂]+1

E(✏i)2
1

A
p/2
1

CA

 c

0 �|s� s

0|n̂+ |s� s

0|p/2n̂p/2
�

where c(p) depends on p only and c

0
= c(p) ·max(||✏

1

||
2

,E|✏
1

|p).

[b] If {✏i} is a stationary sequence that is ↵-mixing (and thus also �-
mixing) satisfying the mixing condition (25) in the main article, then Theo-
rem 1 in Doukhan [7] implies

E|Sn(s, s
0
)|p  max(n̂|s� s

0|Mp,✏, n̂
p/2|s� s

0|p/2Mp/2
p,2 ),

where Mp,✏ = ||✏i||pp+✏, and thus

E|Sn(s, s
0
)|p  c

00
max(n̂|s� s

0|p, n̂p/2|s� s

0|2),

with c

00
= max((E|✏i|p+✏

)

p/(p+✏)
, (E|✏i|2+✏

)

2/(2+✏)
).

Therefore, for both independence and weak dependence cases, equation
(12.42) of Billingsley [2] is satisfied, so that Theorem 12.2 in Billingsley [2]
implies

P

 
sup

s2(0,1)
wn̂(s) > a+ bh

�1

!

 P

 
max

k2(1,n̂)
�

�1

n̂

�����

kX

i=1

✏i

����� > a+ bh

�1

!


K

0
pC(n̂)

�

p
n̂(a+ bh

�1

)

p
,

where the first inequality follows ⇠  |⇠| for arbitrary ⇠ 2 R and the second
from Theorem 12.2 in Billingsley [2], and with C(n̂) = c

0
(n̂ + n̂

p/2
) for i.i.d.

data and C(n̂) = c

00
max(n̂, n̂

p/2
) for mixing data. Since in both cases �n̂ =

n̂

1/2 and thus n̂/�

p
n̂ = n̂

1�p/2 and n̂

p/2
/�

p
n̂ = 1, we get the bound

P

 
sup

s2(0,1)
wn̂(s) > a+ bh

�1

!
 Ch

p
, (12)

9



if p � 2.

[c] In the long range dependent case we have

E(S

2

ñ) ⇠ ⌘

2

r l1(ñ)ñ
2�
,

with l

1

as in (31) in the main article, and according to de Haan [5], equation
(12.42) in Billingsley [2] is satisfied, with

� = 2,

↵ = 2�,

ul = {C
1

⌘

2

r l1(ñ)}1/2�,

for some constant C

1

> 0. Theorem 12.2 in Billingsley [2] then leads to

P

 
max

k2(1,n̂)
�

�1

n̂

�����

kX

i=+1

✏i

����� > a+ bh

�1

!


K

0
2,2�

(a+ bh

�1

)

2

�

2

ñ

 
ñX

i=1

ui

!
2�

=

C

(a+ bh

�1

)

2

,

with C = C

1

K

0
2,2�, as �

2

n̂ = ⌘

2

r l1(ñ)n̂
2�. Thus in the long range dependent

case (12) holds for p = 2. 2

Corollary 1. Suppose the assumptions of Theorem 6 in the main article are

satisfied; then Assumption 2 in the main article holds for yn = gn + ṽn and

for y as defined in (13) in the main article in each context [a], [b] and [c]

listed in Theorem 6 in the main article.

Proof Note first that if xb,n is defined by (28) in the main article, if m is
a C

1-function, and k is a kernel with compact support, then x

0
b,n(t+ sdn) !

m

0
(t) for each t when n ! 1. Besides, a consequence of Proposition 1 is

that

lim inf

n!1
P

"
sup

s2(0,h�1K)

ṽn(s) <
M

2

� ⌧(h

�1

✏� c)

#
� 1� �.

Thus, condition (B)(ii) in Lemma 1 is satisfied as soon as d�1

n d

p
n = d

p�1

n ! 0,

which is equivalent to p > 1. Thus the existence of two moments suffices to

10



get condition (B) (ii) of Lemma 1 for i.i.d., mixing and subordinated Gaus-
sian long range dependent sequences. Condition (A) of Lemma 1 follows
immediately from Proposition 1. Hence Lemma 1 can be applied, so that
Assumption 2 holds for yn = gn + ṽn. An analogous result for y defined by
(13) in the main article follows easily from the stationarity and finite second
moments of ṽn. 2

1.2 Maximal bounds for the rescaled empirical process

The rescaled process is

ṽn(s; t0) = cn

Z
k

0
(u)wn,dn(s� u; t

0

) du

with cn = d

�1

n (nh)

�1

�n,dn . Note that, similarly to the regression case, deriv-
ing the maximal bound for the process wn,dn implies the maximal bound for
the process ṽn.

Proposition 2. Under the assumptions of Theorem 5 in the main article,

there exists a positive constant C

0
such that

P

 
sup

s2(0,1)
wn,dn(s) > M/2� ⌧(✏h

�1 � c)

!
 C

0
h

4

.

Proof Let a := M/2+ ⌧c and b := �⌧✏. For independent or mixing data
satisfying the assumptions of Theorem 5, formula (84) in the proof of Lemma
5 in the tech report version of Anevski and Hössjer [1] says that

E|wn,dn(s; t0)� wn,dn(s
0
; t

0

)|4  k

✏

(s� s

0
)

2 (13)

with 0 < ✏ < 1 chosen such that ✏  ndn|s� s

0|. Similarly to the arguments
in that proof, taking p a number which satisfies

✏

ndn
 p,

and m a finite number, (13) and Theorem 12.2 in Billingsley implies that

P ( max

1im
|wndn(s+ ip; t

0

)� wndn(s; t0)| � �) 
˜

k

✏�

4

m

2

p

2

,
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with ˜

k a constant only depending on the mixing coefficients. Noting that
✏, p are constants, (satisfying the above restrictions) taking s = 0 and noting
that wn,dn(0; t0) = 0, this implies the statement of the Proposition. 2

Corollary 2. Suppose the assumptions of Theorem 5 in the main article are

satisfied; then Assumption 2 holds for yn = gn + ṽn and for y as defined in

(13) in the main article, in each context [a] and [b] listed in Theorem 5.

Proof Note first that if xb,n is defined by (23) in the main article, if f is
a C

1-function, and k is a kernel with compact support, then x

0
b,n(t+ sdn) !

f

0
(t) for each t when n ! 1. Furthermore, a consequence of Proposition 2

is that

lim inf

n!1
P

 
sup

s2(0,h�1
max ti)

ṽn(s) <
M

2

� ⌧(h

�1

✏� c)

!
� 1� �

if there exists a function `(n) such that

P{max

1in
ti  `(n)} ! 1 and h

p�1

`(n) ! 0, (14)

as n ! 1, and with p � 4. Noting that

P

⇢
max

1in
ti > `(n)

�
 n

E|ti|p
`(n)

p
=

nI

`(n)

p
.

and that h = dn, we see that the conditions in (14) are implied by

`(n)

�p
n ! 0, d

p�1

n `(n) ! 0,

which is equivalent to
n

1/p
<< `(n) << d

1�p
n .

In the case of i.i.d. and mixing data, when dn = n

�1/3, this implies that p

should satisfy

1

p

<

p� 1

3

, (p

2 � p) > 3

, p >

1 +

p
13

2

.
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This, together with the restriction p � 4 in Proposition 2, implies that the
existence of four moments suffices to establish (B)(i) in Lemma 1 for i.i.d.
and mixing data. Condition (A) in Lemma 1 is immediate from Proposition
2. Hence Lemma 1 can be applied, so that Assumption 2 in the main article
holds for yn = gn+ ṽn. An analogous result for y defined by (13) in the main
article follows easily from the stationarity and finite second moments of ṽn.
2

2 Illustration of the finite-sample properties

Simulation studies available in the literature, which exhibit the small sam-
ple size behavior of the rearrangement of a kernel estimator of a density,
and compare it to different competitors, are e.g. Fougères [8], Meyer and
Woodroofe [11], Hall and Kang [9], Chernozhukov et al. [4]. In this section
we illustrate via a small simulation study the finite sample behavior of the
rearrangement estimator in the regression setting, and compare it with the
competitors already considered in Birke and Dette [3]. Our aim is to give
complementary information to the one collected from Dette et al. [6] and
Birke and Dette [3]. We therefore make use of the same simulation setting,
which is recalled here for completeness. The only difference is that we con-
sider the framework of fixed design as developed in our paper, whereas they
illustrated the random design setting. Indeed, we have also performed the
simulation study in the random design case, and since it gave similar results,
we prefer to show the fixed design only, for sake of coherence with the model
considered in our paper.

Consider the non parametric regression model (ii) as stated in Section 1,
with independent and normally distributed errors with standard deviation
� = 0.05. We follow Birke and Dette [3] and generate samples of size n = 25

from (ii) for the two once continuously differentiable regression functions

m

1

(x) =

8
<

:

�8x

2

+ 4x x 2 [0, 1
4

]
1

2

x 2 (1
4

,

3

4

]
8x

2 � 12x+ 5 x 2 (3
4

, 1]
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and

m

2

(x) =

8
<

:

12

5

x

2

x 2 [0, 1
4

]
�2

5

x

2

+

7

5

x+

7

40

x 2 (1
4

,

3

4

]
12

5

x

2 � 14

5

x+

7

5

x 2 (3
4

, 1]

As initial (unconstrained) estimate m̂, we use either a local linear regres-
sion estimate, as available from the R package KernSmooth via the proce-
dure locpoly, or a Nadaraya-Watson regression estimate, also available from
KernSmooth (procedure ksmooth). The smooting parameter is in both cases
denoted by hr. Then three competing isotone estimators are implemented:
(a) the estimator m̂I defined by Dette et al. [6] and also studied by Birke and
Dette [3], available from the R package monreg (procedure monreg) ; therein,
hd = h

1.01
r is used as the second smoothing parameter, as done in Birke and

Dette [3] ; (b) the estimator m̂SI discussed in Mukerjee [12] and Mammen
[10]; it consists in monotonizing the initial estimate m̂ by the PAVA algo-
rithm, that is available from the R package Iso (procedure pava); (c) the
estimator T (m̂) introduced in Definition 2 of the main paper as the increasing
rearrangement of m̂ ; recall that the implementation of T (m̂) is straightfor-
ward, since it only requires to sort the values of the initial estimate m̂. Note
that we could also have considered the estimator m̂IS as done in Birke and
Dette [3], but since the forementioned authors obtained very similar results
for m̂SI and m̂IS, we decided to skip one of them, keeping only m̂SI .

As a simple illustration of the four competitors described above, Figure 1
shows the results obtained for one sample of n = 25 observations for the un-
constrained local linear regression estimate and the three isotone estimates,
for both regression functions m

1

and m

2

. Two different bandwidths (h = 0.02

and 0.05) are used for the initial step, illustrating the effect of smoothing.
Some patterns (that occur for most of the samples) can be observed on Fig-
ure 1: (a) the smaller the smoothing parameter h is, the bigger effect the
monotonizing step has; (b) except for very small bandwidths, the three iso-
ton competitors perform rather similarly; (c) the implementation in monreg

of the density regression estimate m̂I seems to break down for very small
bandwidths; (d) the rearrangement T (m̂) looks slightly downwards biased.

In order to evaluate more accurately the comparative performances of
the four competitors, Figure 2 shows the L2-error obtained from 500 samples
of n = 25 observations for each of these estimators. Figure 2 corroborates
several features that could be seen on Figure 1. More precisely, the following
comments can be formulated from Figure 2: (a) the smaller the smoothing pa-
rameter hr is, the bigger effect the monotonizing step has; (b) except for very
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Figure 1: Estimates as a function of t 2 (0, 1) obtained for one sample of
n = 25 observations for the unconstrained local linear m̂(t) (green, solid
line), the monotonized m̂SI(t) (green, dashed line), the density regression
estimate m̂I(t)(blue, dotted line), and the rearrangement T (m̂)(t) (red, dot-
dashed lines). The true regression function (black, solid line) is respectively
m

1

on the first row, and m

2

on the second row. The bandwidth used for the
evaluation of m̂ is respectively hr = 0.02 on the left hand-side, and hr = 0.05

on the right hand-side.

small bandwidths, both isotone competitors m̂SI and T (m̂) perform rather
similarly; the third one m̂I looks less performant. Note that this last point
does not completely confirms what can be seen from Figure 1(b) of Birke and
Dette [3]. We think that we have reproduced the same experimental design,
but were not able to find what can make our findings partially discordant
; (c) the implementation in monreg of the density regression estimate m̂I

breaks down for very small bandwidths when starting from the local-linear
regression estimate, but this drawback does not occur when starting from
the Nadaraya-Watson regression estimate ; (d) as expected, the estimation
in case of the regression model m

2

is globally easier than in case of m
1

for
all the competitors.

Lastly, the additional information of comparing the two initial estimates
(denoted respectively by m̂LL and m̂NW ) and their rearrangements T (m̂LL)
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Figure 2: L2-error as a function of the bandwidth hr 2 [0.01, 0.3] obtained
from 500 samples of n = 25 observations for the unconstrained local linear
m̂ (black, solid line), the monotonized m̂SI (green, dashed line), the density
regression estimate m̂I(blue, dotted line), and the rearrangement T (m̂) (red,
dot-dashed lines). Initial m̂ used is the local-linear estimate on the left hand-
side part of the figure, and the Nadaraya-Watson’s one on the right hand-side
part of the figure. The regression model is respectively m

1

on the first row,
and m

2

on the second row.

and T (m̂NW ) is provided on Figure 3, which shows the L2-error obtained from
500 samples of n = 25 observations for both unconstrained estimates and the
associate rearranged estimates. One can see from Figure 3 that rearranging
the Nadaraya-Watson estimate m̂NW produces a larger improvement than
rearranging the local-linear estimate m̂LL, especially for small bandwidths.
Besides, starting from m̂LL seems to slightly outperform starting from m̂NW .
Finally, as already said from Figure 2, performing the estimation in case of
the regression model m

2

is easier than for m
1

.
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Figure 3: L2-error as a function of the bandwidth hr 2 [0.01, 0.3] obtained
from 500 samples of n = 25 observations for both unconstrained (in black)
estimates (solid line for m̂LL and dashed line for m̂NW ) and the associate
rearranged (in red) estimates T (m̂LL) (solid line) and T (m̂NW ) (dashed line).
The regression model is respectively m

1

on the left, and m

2

on the right.
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