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Abstract—Expressions describing the resonant frequency and 
quality factor of a dynamically-driven, polymer-coated 
microcantilever in a viscous liquid medium have been obtained. 
These generalized formulas are used to describe the effects the 
operational medium and the coating has on the device sensitivity 
when used in liquid-phase chemical sensing applications. The 
derived expressions are shown to reduce to well-known formulas 
for the case of an uncoated cantilever in an invisicid medium 
and the case of a coated cantilever in air. The theoretical results 
are compared to existing chemical sensor data in aqueous and 
viscous solutions.  

I. INTRODUCTION 
Polymer-coated microcantilevers have been extensively 

investigated for use as chemical sensor platforms [1-4].  
Microcantilevers have shown high sensitivities in chemical 
vapor detection due to their high surface area to mass ratio. 
Application of microcantilevers to liquid-phase detection has 
mostly focused on static mode detection because dynamically-
driven microcantilevers suffer from low frequency stability in 
viscous media [5].  The characteristics of uncoated 
dynamically-driven microcantilevers have been previously 
investigated in viscous media [6]. Recently, work has been 
done on characterizing the behavior of polymer-coated 
microcantilevers in a vacuum, which indicated significant 
chemically induced coating plasticization effects [1]. 
However, the effects of the polymer coating in a viscous 
liquid environment have not been studied. The present 
derivation extends previous work on uncoated and coated 
microcantilevers to obtain generalized formulas for the 
characteristics of a polymer-coated microcantilever operating 
in a viscous liquid medium.  

II. THEORY  

A.  Generalized Equation of Motion 
Figure 1 shows the length, L, width, b, and thickness, h1, 

of the microcantilever as well as the polymer layer’s 
thickness, h2.  The deflection function, w(x,t), which 
represents the vertical displacement along the length of the 
beam as a function of time is also indicated.  

Assuming that the microcantilever is a rectangular beam 
with L>>b, b>h1 and b>h2, undergoing small lateral 
deformations, the well-known equation of motion for an 
uncoated microcantilever operating in a vacuum is given by  
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where EI and mB are the beam’s flexural rigidity and mass per 
unit length, respectively, and F(x) is the position dependent 
forcing function per unit length operating at a angular 
frequency of ω [1]. Using the modifications to the equation of 
motion found in [1] and [6], a generalized equation of motion 
for a polymer-coated microcantilever in an unbounded, 
viscous liquid medium is given by 
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where mB
* is the effective mass per unit length and the 

flexural rigidity of the polymer-coated microcantilever is [1]   

 
 

 
Figure 1: A rectangular microcantilever shown with a polymer layer  
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E1 is the Young’s modulus of the base layer, E ′
2  and E ″

2  are 
the storage modulus and loss modulus of the polymer layer, 
respectively, and I1 and I2 are the moment of inertia of the 
base and polymer layer, respectively. For a system with a 
polymer layer, the moment of inertia can be calculated using 
a time-invariant neutral axis approximation [1]. For 
composite base-layer microcantilevers, such as a CMOS 
based cantilever, the flexural rigidity can be found by 
replacing E1I1 in eq. (4) with the sum of each layer’s flexural 
rigidity [7]. θ in eq. (3) is the composite loss angle of the 
beam, and is defined as  
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Here, the dependence of E ′
2  and E ″

2 on the operating 
frequency has been explicitly stated.   

The effective mass per unit length, mB
*, accounts for 

both the mass of the coated-cantilever and the displaced mass 
of the fluid, as well as the viscous damping caused by fluid 
shear near the edges of the microcantilever [8]. The viscous 
damping is represented by g1, given by 
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and the mass of the displaced fluid is represented by g2, given 
by [9] 
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Here,  ρL is the density of the medium and Γr(Re) and Γi(Re) 
are the real and imaginary components of the hydrodynamic 
function, Γ(Re), of the microcantilever, given by 
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In eq. (9), Ω(Re) is the function used to correct the 
hydrodynamic function of a beam of circular cross section, 
Γcirc(Re), to that of a rectangular beam [6]. K0 and K1 are 
modified Bessel functions. The hydrodynamic function is 
dependent on the Reynolds number [8], which is a measure of 

the ratio of inertial forces to the viscous forces acting on the 
beam, and is defined as 
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where ηL is the viscosity of the fluid. The force exerted by the 
fluid is a sum of the viscous force and the inertial forces,  
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Assuming a sinusoidal deflection function, eq. (11) can be 
converted to fit the form of eq. (2), resulting in the effective 
mass per unit length given by 
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and m is the mass of the microcantilever with the coating. 

B. Generalized Resonant Frequency 
The resonant frequency of a coated-microcantilever in a 

viscous medium can be found using the generalized equation 
of motion, eq. (2). It is commonly assumed that the Young’s 
modulus of the base layer is frequency-independent. For the 
polymer layer, the Young’s modulus depends on the 
frequency.  However, a first approximation can be taken 
equal to its value taken at the operating resonant frequency. 
The Reynolds number of the system is linearly proportional 
to the resonant frequency. This dependence must be 
considered whenever the viscous forces are significant (i.e., 
relatively small Reynolds numbers). Assuming a frequency-
dependent hydrodynamic function, the resonant frequency 
obtained by solving eq. (2) is given by   
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where iα is the ith root of 
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and Λr(Re) and Λi(Re) are the real and imaginary components 
of Λ(Re), which is the defined as the derivative of the 
hydrodynamic function. This function can be obtained as  
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      Λ(Re) is only dependent on the Reynolds number since 
Ω(Re) also has a derivative inversely proportional to ω .  
Through the use of an iterative process, eq. (14) can be 
solved.  Iterative correction uses an initial guess for ω (for 
example, the resonant frequency in a vacuum). A value for 
the Reynolds number can then be calculated, which in turn 
can be used to update the value of the ω. 

If both the Young’s modulus of the polymer layer and the 
Reynolds number are assumed frequency-independent near 
resonance, the resonant frequency can be simplified to  
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It can be shown that both eq. (14) and eq. (21) reduce to 
the well-known expression for the resonant frequency of a 
coated-microcantilever in a vacuum (g1=g2=0) [2], given by  
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with α0 ≅  1.875 corresponding to the fundamental flexural 
mode.  

If there are only small dissipative effects from both the 
medium and the polymer in a viscous liquid medium, the 
resonant frequency simplifies to  
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This is equivalent to the resonant frequency obtained in [6]. 
When the medium is assumed inviscid, eq. (23) can be further 
simplified to a form analogous to the one presented in [10] as 
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C. Quality Factor 
Operation in a viscous liquid medium drastically 

decreases the frequency stability of microcantilevers in an 
oscillator configuration.  Equation (2) can be used to 
calculate the quality factor of the system.  Because it is 
difficult to obtain an analytical expression for the quality 

factor, it is best solved numerically.  This is done by 
calculating the upper and lower 3 dB frequencies through an 
iterative process. 

If both the Young’s modulus of the polymer layer and the 
Reynolds number are again considered constant in the range 
of operational frequencies, the quality factor can be obtained 
from eq. (2) as  
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The above approximation is found to be in good 
agreement with the numerically derived generalized quality 
factor for Re>>1. Assuming operation in a vacuum, g1 and g2 
are both zero and eq. (25) reduces to the one presented in [1],  
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In low loss systems, eq. (25) can further be approximated 
as  
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For an uncoated cantilever, eq. (27) reduces to the 
estimation of the quality factor in low loss from [6]. Other 
losses can be added into the quality factor by the well-known 
equation for dealing with multiple loss systems, as 
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Qi is the quality factor associated with a particular loss source.  
In practical applications, the losses caused by the medium and 
the polymer coating are normally the dominant terms. Using 
eq. (28), taking only into account these losses, the quality 
factor can be approximated as 
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When ( ) ''1 EIg
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ω  is negligible, eq. (27) reduces to eq. (29). 

Under certain conditions, other losses, such as from the 
squeeze film effect or clamping, can significantly contribute to 
the decrease of the quality factor [8].  

D. Effects of Chemical Analyte Soption into the Coating 
Introduction of a chemical analyte into the operational 

medium will not only change the medium’s viscosity and 



density, but will also affect the characteristics of the coated 
microcantilever through chemical sorption into the polymer 
layer.  For example, the density and thickness of the polymer 
layer will increase; the moment of inertia for both layers will 
change due to a shift in the neutral axis; and the complex 
Young’s moduli of the polymer layer will change.  While 
these effects on the resonant frequency, fres, are generally 
assumed negligible, they can be significant in the 
determination of ∆fres.  This shift in the resonant frequency in 
turn can be used to determine the chemical concentration of 
the analyte in the medium.  

The change in the viscosity and density of the solution 
can be accounted for by differential measurement using an 
uncoated reference cantilever of the same geometry; 
therefore, these effects will not be included in the discussion 
herein. Assuming only small variations in the system, the 
shift in the resonant frequency can be found as a function of 
the change in microcantilever mass, ∆m, changes in storage 
and loss modulus, ∆E ′

2  and ∆E ″
2 , and changes in the 

moments of inertia ∆I1 and ∆I2 as                  
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In eq. (30), the λ terms describe the sensitivities to various 
changes in the system, and are given as 
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It is noted that the swelling induced change in the 
polymer thickness is included in the ∆I terms. All other terms 
(terms including ∆ products) have been assumed negligible 
for small frequency shifts.  Also, eq. (31d) and eq. (31e) show 

that shifts in the moment of inertia can be disregarded. This is 
similar to what was shown in [2]. Equations (30) and (31) can 
then be used to analyze the sensitivity response of coated 
microcantilever chemical sensors.   

III. RESULTS 

A. Simulations 
Simulations are performed to illustrate the effects of 

coating and medium properties for various microcantilever 
geometries.  The polymer layer used in these simulations is 
polyisobutylene (PIB). The Young’s modulus for PIB has 
been previously characterized in [11].  Figure 2 and 3 shows 
the frequency response of a polymer-coated microcantilever 
to different aqueous mixtures of glycerol and ethanol, 
respectively.  

For low Reynolds numbers, Re, i.e. high viscosity fluid 
and/or low density, the results indicate that the hydrodynamic 
function cannot be considered frequency-independent. 
Therefore, g1 and g2 must be considered frequency dependent 
in calculating the resonant frequency. Figure 3 indicates that 
the resonant frequency is not just dependent on the viscosity, 
but the overall Reynolds number. While ethanol has a higher 
viscosity compared to water, its higher fluid density leads to 
an overall higher Reynolds number and resonant frequency.  

The calculated quality factor using the upper and lower 3 
dB frequencies and eq. (25) shows a negligible difference in 
water and glycerol. Figures 4 and 5 compare the calculated 
quality factor with that of low loss approximation using eq. 
(27). As expected, eq. (27) is shown to be inappropriate for 
high viscosity media. The difference between the 
approximation and the exact calculation is found to increase 
as the Reynolds number decreases. In the calculations, it is 
assumed that the Young’s modulus of the coating does not 
change as a function of the operational medium. 
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Figure 2: Calculated resonant frequency of a 100x20x2 µm 

microcantilever coated with 0.5 µm of PIB in varying mixtures of glycerol 
(up to 64%, or 18 cP) 
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microcantilever with a 0.5 µm PIB polymer-coating in varying mixtures of 
ethanol 

 

Chemical absorption into the polymer coating is then 
simulated assuming an increase of polymer mass by up to 5% 
(45.85 pg), a storage modulus decrease by up to 10% (-6.73 
MPa), and a loss modulus increase by up to 100% (+102.48 
MPa) (Figs. 6 and 7).  The mass absorption is found to cause 
up to a 42 Hz decrease in the resonant frequency in water, 
whereas the coating plasticization effects contribute up to an 
additional 9.9 Hz decrease in the resonant frequency. In 40% 
glycerol (~3.6 cP), the same mass loading causes up to a 23.9 
Hz decrease in the resonant frequency, whereas the coating 
plasticization effects contribute an additional 11.7 Hz 
decrease in the resonant frequency.  This indicates that the 
sensitivity to mass loading decreases in higher viscosities 
solutions, while the sensitivity to changes in the Young’s 
modulus increases in higher viscosities. 
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Figure 4:  Calculated quality factor of a 100x20x2 µm microcantilever 

with a 0.5 µm PIB coating in varying mixtures of glycerol (up to 64%) 
compared with the small loss approximation Qapprox 
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Figure 5: Calculated quality factor of a 100x20x2 µm microcantilever 

with a 0.5 µm PIB polymer-coating in varying mixtures of ethanol compared 
with the small loss approximation Qapprox 

 

B. Comparison to Experimental Data  
Recently performed experiments have shown the 

feasibility of dynamically-driven CMOS multilayer 
microcantilever chemical sensors in liquid environments [3].  
With a reference microcantilever to account for the effects of 
the medium, the response of a 150x140x8.2 µm CMOS-based 
microcantilever coated with 0.3 µm of PIB to 350 ppm 
ethylbenzene was found to result in a shift in the resonant 
frequency of about 85 Hz.  However, the theoretical model 
used in [3] assuming only mass loading predicted a 63 Hz 
shift in the resonant frequency.  

For this cantilever geometry since the condition L>>b is 
not satisfied, shearing effects can no longer be considered 
negligible. For the associated fluid properties, the Reynolds 
number is quite large, i.e. Re>>1. Using eq. (23), g2 can be 
obtained as  
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Figure 6: Shifts in the resonant frequency of a 100x20x2 µm 

microcantilever with a 0.5 µm PIB coating in water undergoing mass 
absorption of up to 45 pg with and without coating plasticization effects 
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plasticization effects 
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Using the measured resonant frequencies, f0 and fres, in air and 
the liquid, respectively, g2, can be empirically extracted from 
eq. (32), and g1 can be assumed zero. 

Using eq. (30a) and the frequency shift from mass 
loading, the decrease in the resonant frequency due to mass 
absorption alone is 63 Hz at a concentration of 350 ppm. 
Assuming up to a -70% decrease in storage modulus and up 
to a 700% increase in loss modulus, an additional 7 Hz 
decrease in the resonant frequency can be accounted for by 
coating plasticization (Fig. 8). 
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Figure 8: Comparison of experimentally measured values in [3] for the 

resonant frequency shift of a 150x140x8.2µm microcantilever coated with 
0.3 µm of PIB to the theoretically calculated frequency shift taking into 
account first mass absorption and then mass absorption and plasticization 
effects. Note that a reference cantilever is used in [3] to account for the 
effects of changes in the medium properties.  

IV. CONCLUSIONS  
Generalized equations for the resonant frequency and 

quality factor of a dynamically driven, polymer-coated 
microcantilever accounting for the effects of the medium and 
the polymer coating have been presented.  It is found that the 
resonant frequency and quality factor can be significantly 
affected by non-mass loading effects. It is also found that the 
resonant frequency’s sensitivity to mass loading and other 
system properties are dependent on the medium of operation. 
The generalized equations obtained in this work simplify to 
known special cases and can be used to estimate the 
contribution of non-mass absorption effects in the response of 
dynamically-driven microcantilever chemical sensors. 
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