
Abstract

Recently a lot of multimedia applications are emerging on

portable appliances. They require both the flexibility of

upgradeable devices (traditionally software based) and a

powerful computing engine (typically hardware). In this

context, programmable HW and dynamic reconfiguration

allow novel approaches to the migration of algorithms

from SW to HW. Thus, in the frame of the Symbad project,

we propose an industrial design flow for reconfigurable

SoC’s. The goal of Symbad consists of developing a

system level design platform for hardware and software

SoC systems including formal and semi-formal

verification techniques.

1. Introduction and motivations

The recent introduction of embedded programmable

logic allows application-specific integrated circuit (ASIC)

and application-specific standard product (ASSP) vendors

to broaden the versatility of their products. Dynamic HW

reconfigurability is becoming a popular concept [1][2][3].

Different technologies can implement this concept, but the

so called “HW virtualization” based on field-

programmable gate arrays (FPGA’s) is the one where the

practical tradeoff among performance, size, power

consumption and costs can be achieved for a larger

number of final applications and not only prototypes.

Reconfigurable FPGA’s are particularly suited for

multimedia applications on portable appliances. In fact,

tomorrow's multimedia applications will require both the

flexibility of upgradeable devices, traditionally software-

based, and a powerful computing engine typically

embodied in hardware. Reconfigurable hardware (RH),

can meet both these requirements, being the performance

of a specific task executed in HW much faster than the

performance of the same task executed in SW. Multimedia

application domain is therefore a very good target for RH

architectures.

Due to complexity of reconfigurable architecture, the

design and verification phases cannot be independent

processes. Thus, the goal of the Symbad project is to

develop a system level design framework for hardware and

software SoC systems including formal verification

techniques and automatic test pattern generation (ATPG).

Formal verification is applied to specific problems related

to reconfigurability, while ATPG is used to detect design

errors in the early phase of design flow.

This paper describes a user scenario that motivates the

introduction of reconfigurable hardware into industrial

applications together with a vision on the platform, called

Vista, that should be built to support reconfigurable

computing. This platform and its verification techniques

will be assessed on the design of a reconfigurable SoC

targeted to multimedia applications. Moreover, the paper

emphasizes the use of formal and semi-formal techniques

during the verification process.

2. Configurable platform architecture

The proposed methodology is assessed with the design

of a reconfigurable image processing system where the

combinatorial complexity of reconfiguration makes

simulation, testing and verification so long, with existing

techniques, to make it unpractical for the usage in the

field. The impact of Symbad framework is important on

the productivity of design teams, optimization and

reliability of systems, and the development of SoC

products or embedded systems. In the frame of Symbad

we started with a stable design flow based on classical

approach, including:

I. Concept validation performed at the “C” level.

II. Modeling by a number of tasks, still in “C”, where

abstract communication is introduced.

III. Profiling of the various tasks based on the application

execution.

IV. Mapping on HW and SW resources.

V. Mapping parts of HW onto FPGA.

The actions in the list constitute the architecture

exploration process, where a single configuration must be

graded according to performance, silicon usage, power

consumption. This process includes a number of iterations

through II-III-IV steps to find the best product trade-off.

An Integrated Design and Verification Methodology for Reconfigurable

Multimedia Systems

 M.Borgatti, A.Capello, U.Rossi J.-L.Lambert, I.Moussa F.Fummi, G.Pravadelli

 STMicroelectronics, Agrate, Italy TNI-Valysosys, France University of Verona, Italy

 michele.borgatti@st.com jean-luc.lambert@tni-valiosys.com franco.fummi@univr.it

 andrea.capello@st.com imed.moussa@tni-valiosys.com pravadelli@univr.it

 umberto.rossi@st.com

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

Behavioral Synthesis and IP reuse

Level 4

FPGA RTL VHDL

Property coverage checking

SystemC

HW/SW partition

Architecture mapping

SW HW

Architecture description: Transactional Level

Performance evaluation

Property checking

HW partition

Contexts definition
Refinement for reconfig.

SW H HW

Hardwired

HW

Context

1

(S H W)
Consistency checking

Performance evaluation

(RTL SystemC)

Soft

HW

Reference

Architecture(s)

Level 1

Level 2

Level 3

Functional verification

(C)

Reachability checking

Figure 1: Proposed design and verification flow (Symbad).

Validation is performed once for the initial concept

description. Then, the verification of each iteration step has

to be postponed at the IV stage, where HW is described in

RTL and simulated at cycle level, and SW is executed on an

instruction set simulator (ISS) of the general purpose

processor. Then the final system verification is performed

after mapping HW onto FPGA. This approach was

considered acceptable for prototyping the proposed silicon

technology, but is definitely unsatisfactory to be deployed in

production, being the verification of each architectural

exploration step of the order of tens of hours. A remedy to

simulation slowness can be found in HW/SW co-

emulation/simulation, but this solution is still too expensive

and requires too many specialists to be economically

feasible.

Rather than building a brand new system design flow, it

is desirable to add useful features at I-II-III-IV stages by

providing better analysis capabilities and improving

predictability of the whole design flow. New technologies

are needed for this flow in order to enhance this approach.

These new technologies are:

• simulation at transactional level;

• formal/semi-formal verification.

Transactional level (TL) modeling is proposed as a way

to minimize the amount of events and information processed

during simulation to dramatically speed up the validation

time. In TL the communication is completely separated from

computation, and the focus is on the data rather than on the

way the transfer is executed. In the traditional previously

described flow, transactional simulation is only used in

phase I, II and III at “C level”. We propose to extend its use

to other phases by introducing it:

• At stage IV, by doing the simulation of a SystemC model

of the HW/SW mapping in order to do performance

evaluation. The speed of simulation being guaranteed by

the application software running on the host machine

(without any need for ISS use).

• At stage V, by adding to the model a modeling of the

FPGA reconfiguration. Here again the objective is to do

performance analysis taking into account the

downloading of bit streams through the bus.

This transactional level simulation is run with the help of

libraries and extensions of Vista tool [4].

On the other hand, formal and semi-formal verification

can be profitably applied at several stages of the above

approach as described in Section 3. Four approaches are

exploited in a cascade fashion to address different

verification problems at different design levels: ATPG to

quickly remove easy-to-detect design errors on the

behavioral description, linear programming verification to

verify real-time properties when timing information is

introduced, abstract interpretation to check reconfiguration

consistency after FPGA mapping, and model checking to

verify the correctness of the final RTL description.

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

3. Design flow methodology

Transactional level simulation and formal/semi-formal

verification can be included in the traditional design flow

described in Section 2. To accomplish the goal we propose a

novel methodology for designing and verifying

reconfigurable SoC’s. It is divided in four levels as shown in

Figure 1.

3.1. System level specification: level 1

In level 1, the flow begins with a purely functional

description of the system, there the system can be simulated

with the help of the standard SystemC simulator. This

permits to check that basic functionalities are actually

realized by the system. At that level, one does not know

which SystemC entities will be mapped onto hardware,

software or reconfigurable hardware.

At this level, functional verification is applied by using a

SystemC-based ATPG (Laerte++ [5]) to estimate the

coverage of test benches. The test pattern generator exploits

both simulation-based techniques, (e.g., genetic algorithms)

and formal-based ones (e.g., SAT-solvers). Coverage

measures are based on standard metrics (statement,

condition and branch coverage) and on the more accurate

bit-coverage metric exploiting high-level faults [6]. This

information is used to quickly identify potential design

errors.

Moreover, a new technology based on linear

programming verification (LPV [7]) is used for proving

deadlock freeness. The SystemC model is translated in an

abstract model where communication and synchronization

characteristics remains un-abstracted. Then deadlock

situations are checked formally, each deadlock situation

being translated in an unreachability property. These

properties can be automatically generated. Note that only

deadlock situation captured as unreachability property can

be check by this mean, LPV being only able to deal with

reachability problems.

3.2. Architecture mapping: level 2

At level 2, the description obtained is mapped onto an

architecture. This architecture mapping consists in deciding

HW/SW partitioning and in providing the HW with a

communication architecture (busses, point to point

communication, shared variables, etc). During this level,

simulation is used intensively for evaluating the different

possible architectures. The goal is to get the best

compromise between, for example, power consumption, bus

loading and memory accesses.

This level is a good target for formal verification issues.

It is also the level where the system performance analysis

can be applied by using the Vista tool. This later can be

used as it provides the user with libraries for representing

SystemC models of busses, peripherals and memory

elements. But this second phase does not take into account

the partition between pure HW and reconfigurable HW

(often called soft hardware).

In that phase, LPV is used to prove real-time properties

like timing deadline achievement and FIFO channel

dimensioning.

3.3. Architecture refinement and reconfiguration:

level 3

Reconfigurability issues appear at the third level. Here

the HW is separated in pure HW and reconfigurable HW. It

is then necessary to refine the previous analyses by

simulating a model of the system where the bit streams

download, due to reconfigurations, is part of the bus

loading. To do this, it is strictly necessary to introduce the

reconfigurability orders in the SW, and to provide libraries

for FPGA reconfiguration modeling. Finally, in order to

evaluate timings, the SW is annotated.

The Vista tool is used for evaluating the impact of the

reconfigurable hardware characteristics on the performances

of the system. The characteristics of the reconfigurable

hardware consist in a set of FPGA configurations which can

be changed by the software at run-time. Each configuration

contains a fixed set of computing resources (in the Symbad

case study: some HW modules implementing algorithms and

registers). The partition of algorithms and registers among

the different configurations is an important architectural

aspect which must be thoroughly tuned for obtaining

optimal performances. Unfortunately, the modification of

the software by introduction of reconfiguration instructions

cannot be done in an automatic manner. The reason

concerns the optimization of the system by reducing the

number of reconfigurations. Indeed, downloading bit

streams is costly in terms of bus loading and it is rather

tricky to ensure automatically a good reduction of them.

Another tool, called SymbC, is provided by the Symbad

project for formally verifying that the modified SW satisfies

the following fundamental consistency property: “each time

the software requires a hardware resource of the

reconfigurable part, this resource is actually available”.

Note that this property is only SW dependent, since in

the frame of Symbad, the software is lonely responsible for

initiating an FPGA reconfiguration. Symbc takes at the

input:

• The application C code containing FPGA

reconfiguration instructions and resource calls C code.

• A configuration information containing:

- The name and signature of the reconfiguration

procedure.

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

- The name of the functions that are implemented in

the FPGA (and that can be absent from it).

- The FPGA configuration characteristics (i.e., which

function is present in which configuration) and

provides at its output a certificate of consistency

(proving formally that any functions is only invoked

when it is present in the FPGA) or a counter-example

showing a problem.

3.4. RTL generation: level 4

At level 4, the RTL code is produced. Depending on the

architecture chosen at level 2, some properties are defined

to formally check the correctness of the HW/SW interface.

Model checking and SAT solving are used at this level

[8][9]. However, proven properties cannot completely

assure the correctness of the design implementation, since

some behaviors may have been not considered. Thus, how

many properties should the verification engineer define to

completely check the implementation? Few works, based on

symbolic methods, are related to the properties

incompleteness topic [10][11][12], but their applicability is

limited by the state explosion problem. To solve the

problem, we have developed a tool, called property

coverage checker (PCC), that evaluate the completeness of

properties by mixing functional and formal verification [13].

The designer uses a model checker to prove properties

on the RTL model. Either a proof certificate or a counter

example is expected for each property. The design needs to

be revised each time a property failure is obtained. When all

properties have been proved, the PCC is used. If it shows

that not enough properties have been used, again, the

designer will have to extend the set of properties and check

the new ones. The cycle continues until no more refinement

is possible.

4. Case study

The proposed design and verification methodology has

been applied to a face recognition system by mapping the

application to a reconfigurable platform. The nature of the

reconfigurable platform allows specifications of the system

to translate to the target implementation, leaving flexibility

to possibly implement other applications of the same family.

The target application consists of recognition of a face

previously acquired by a low-resolution CMOS camera. The

recognition phase is performed comparing the unknown face

to a database of twenty different faces under multiple poses.

Applications are low cost smart toys, advanced human-

machine interfaces and color CMOS camera processors.

The reference model of the complete system

functionality is a collection of programs written in C. A first

implementation of the face recognition system was built

upon a reconfigurable platform based on embedded FPGA

and an extensible 32-bit microprocessor. This

implementation hase been obtained by following a top-down

methodology without specific focus on reconfigurable

systems. The design flow was based on a “static” approach

where all HW resources being implemented were assumed

to be simultaneously available in the system. Moreover,

FPGA definition and consistency check was done manually.

This resulted to be a difficult and error prone process.

Out of the same reference model a new design and

implementation process has been done following the

proposed methodology. This includes transaction-level

modeling and architecture exploration as well as formal

checks oriented at the consistency of reconfigurable

systems. As seen in Section 3 the methodology is articulated

into four different refinements of the system description.

4.1. Design exploration

The level 1 description is a pure functional un-timed

point-to-point communication model written in SystemC

2.0. Referring to Figure 2, CAMERA is the abstract

representation of a CMOS camera device, DATABASE is

an abstract representation of a nonvolatile memory system

that will be eventually implemented to a flash memory

device. At this level of abstraction simulation is performed

at transactional level and its results can be matched against

the C reference model. Match of results consists of trace

files comparison as the TL model captures data consistently

to the reference one.

The complete simulation of the system TL model took

less than 15 seconds when executed on a Sun U80 dual-

processor workstation running Solaris 2.8 OS. The

functionality was fully verified against the reference model

and the debug was eased by the untimed nature of the

model. This step of the flow was completed in a couple of

weeks starting from the availability of the reference model.

At level 2, architectural exploration begins. Within the

system modeling and simulation environment (Vista) the

designer was supported in automating the partitioning of the

level 1 system description into HW and SW. SW

modules have been collapsed to a single large SW task

. This task models the SW partition of the system

being executed into a CPU model (ARM7TDMI in the

actual design) and corresponds to a simple cyclostatic

scheduling for the 10 original SystemC modules. No

further modeling of operating system functionalities

can be done at this level of system description.
This HW/SW partition is based on designer’s knowledge

about the heaviest computational tasks. This ranking of the

most demanding tasks is done by execution profiling of the

UT code developed at level 1. Therefore accurate profiling

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

is of key relevance to estimate performance of the

architecture under investigation.

BAY

EROSION

CAMERA

ROOT EDGE ELLIPSE CRTBORD.

DISTANCE

CRTLINE CALCLINE

CALCDIST.

WINNER

DATABASEBAY

EROSION

CAMERA

ROOT EDGE ELLIPSE CRTBORD.

DISTANCE

CRTLINE CALCLINE

CALCDIST.

WINNER

DATABASE

Figure 2: Level 1 face recognition system
Timing information is the most important system figure

at level 2. Cycle accurate timing of SW can be automatically

extracted by Vista based on a library of model(s) of

available processor(s). Annotation into SystemC models of

SW part is fully automated. Annotation refers to the

execution time of the embedded SW that will eventually run

on the target CPU. This means that simulation uses SystemC

code modeling the embedded SW for the purpose of timing

estimation only. Therefore it is possible to add code into the

systemC model (for instance to ease debug) without

affecting the timing figures. This is the case of printfs or

file-system calls that are executed but skipped for timing

annotation (unless they belong to the original code).

Also, suitable TL timing information must be annotated

into SystemC models of HW parts. Reasonable assumptions

on HW timing rely on designer’s experience on performance

of HW logic and coprocessors into the target technology.

Annotation is manual for HW models.

In addition to the feature of timing annotation, another

automation that is provided to help the architectural

exploration phase is related to structural modification of the

architecture under investigation. There are two main

transformations that are required:

1. Transforming the UT model to the TL timed by adding

one or more connections (buses, X-bars, etc).

2. Incrementally modify the TL timed model to move tasks

between the HW and SW partitions.

Transformation 1 is made up of the following elementary

operations:

• Grouping the first candidate SW into a single task

featuring the union of all point-to-point connections.

• Instantiating the SW task into the selected CPU model

featuring a single bus interface.

• Instantiating connection resources.

• Connecting the CPU model and all HW parts to the

connection resources.

Transformation 2 can be divided into two basilar

operation:

• Moving one module from HW to SW side.

• Moving one module from SW to HW side.

Each transformation foresees to build a new wrapper for

the SW side and, eventually, to add or remove a connection

to the connecting resource. Profiling and annotation have to

be repeated for the new SW task, but it’s an automated

feature of the system modeling and simulation environment

(Vista). For the hardware side, timing annotation must be

done only in the case of modules moved from the SW to

HW.

The TL model of the partitioned system is able to

produce a simulation speed closed to 200kHz when

executing on a Sun U80 dual-processor workstation, running

Solaris 2.8 OS. Functionality has been fully verified

matching the results against the level 1 ones. One week has

been the time cost to perform the architectural exploration

of the system, including the profiling step, annotations of

both HW and SW side and collecting statistics of the final

architecture.

Level 3 of the methodology flow is the heart of the

reconfigurable platform. Here the dynamic reconfigurable

device (FPGA) is instantiated into the design and some of

the HW modules, obtained from the previous HW/SW

partitioning, are carried inside the FPGA.

Moving functionality from pure HW to FPGA, or

viceversa, is not a demanding task. Operation steps to

perform the mapping are described below:

• Instantiating the FPGA SystemC model into the design

and connect it to the connecting resource (bus).

• Disconnecting the HW modules from bus and

connecting to the FPGA, defining the appropriate

contexts.

• Inserting the FPGA’s reconfiguration calls and the

functional calls to mapped resources into the SW.

For the target architecture under investigation it has been

quite reasonable that modules DISTANCE and ROOT be

mapped both into the FPGA. They have been spitted into

two different contexts, named config1 and config2. Manual

instrumentation of the SW code has been performed, that is

a specific configuration is loaded into the FPGA before the

functions that belongs to it are called. The FPGA context

switch becomes relevant in evaluating the system

performance, so the same analysis performed at level 2 is to

be applied to confirm the effectiveness of the designer’s

choice about the FPGA resource mapping.

The simulation speed of this level of the methodology

flow is closed to 30kHz when executing on a Sun U80 dual-

processor workstation, running Solaris 2.8 OS. Functionality

has been fully verified matching the results against the level

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

2 ones. Less than one week was required to perform the

mapping of the HW modules into the FPGA, the integrity

check of the software and to collect performance reports for

the architecture under analysis.

Level 4 represents the final mapping of the chosen

architecture. The complete task of mapping the SystemC to

RTL, a.k.a behavioral synthesis, is much farther the purpose

of Vista. In our test case we can easily support a few pre-

defined IP’s, mainly concerning the CPU, the connection

resource (AMBA bus), the FPGA and the memory.

Automated interface synthesis is part of the foreseeable

options, and also checkers for those interfaces could be

automatically generated. For the current design, interface

synthesis between SW side and HW parts, that is the

construction of dedicated wrappers to convert RTL SystemC

protocol, used by HW modules, to transactional level, used

by the connection resource, was manually performed for

each HW module. One week has been spent to build the

interfaces, time that could be significantly reduced by the

automation of the phase.

4.2. Design verification

The SystemC description realized at level 1 has been

verified first by using Laerte++. The memory inspection

capability of Laerte++ allows us to quickly identify and

remove design errors related to incorrect memory

initialization. These errors reflected on a less precise images

matching. On the other hand, the application of LPV

allowed efficient hunt of deadlock conditions.

At level two, the HW/SW partitioning and the

introduction of an AMBA bus required a new verification

phase focused on timing issues. ATPG is not suited to detect

timing errors, thus, LPV has been used to prove real-time

properties like timing deadline achievement and FIFO

channel dimensioning.

After reconfigurable device instantiation, the full

integrity of the design has been tested by application of

SymbC. This assured that for any path of the application’s

control flow the FPGA was loaded with the necessary

functions.

Finally, model checking has been applied at level 4.

Formal properties related to the correct implementation of

critical RTL modules have been defined. The adoption of

PCC allowed us to identify property missing in the initial

verification plan that none of previous verification phases

have revealed.

5. Conclusion

The characteristics of a powerful design and verification

flow, featuring semi-formal and formal techniques, have

been reported together with a test case to benchmark the

effectiveness of the novel approach. A vision was presented

on the architectural challenges and the required

programming environment for reconfigurable platform.

Moreover, a verification strategy is proposed that efficiently

exploits different techniques at different design levels.

6. References

[1] D.Panigrahi, C.N.Taylor, S.Dey, “A Hardware/Software

Reconfigurable Architecture for Adaptive Wireless Image

Communication”, Proc. ASP-DAC, pp.553-560, 2002.

[2] Y.Li, T.Callahan, E.Darnell, R.Harr, U.Kurkure,

J.Stockwood. “Hardware-software co-design of embedded

reconfigurable architectures”, Proc. DAC, pp. 507-512,

2000.

[3] D.Verkest; D.Desmet; P.Avasare; P.Coene; S.Decneut;

F.Hendrickx; T.Marescaux; J.Y.Mignolet; R.Pasko;

P.Schaumont: “Design of a Secure, Intelligent, and

Reconfigu-rable Web Cam Using a C Based System Design

Flow”, Proc. Asilomar Conference on Signals Systems &

Computers, pp. 463-467, 2001.

[4] I. Moussa, T. Grellier, and G. Nguyen, “Exploring SW

Performance using SoC Transaction-level Modelling”, Proc.

DATE, pp. 120-125, 2003

[5] A.Fin, F.Fummi, “Laerte++: an Object Oriented High-Level

TPG for SystemC Designs”, Proc. FDL, 2003.

[6] F. Ferrandi, F. Fummi, and D. Sciuto, “Implicit Test

Generation for Behavioral VHDL Models”, Proc. ITC, pp.

436-441, 1998.

[7] S. Dellacherie, S. Devulder, and J-L. Lambert, “Software

verification based on linear programming”. LNCS, Vol.

1709, pp.1147-1165, 1999

[8] K.L.McMillan, “Symbolic Model Checking”, Academic

Press, Norwell, MA, 1993.

[9] I.Beer, S.Ben-David, C.Eisner, A.Landver, “Rulebase, an

Industry-Oriented Formal Verification Tool”, Proc. DAC,

pp. 655-660, 1996.

[10] Y.Hoskote, T.Kam, P.H.Ho, X.Zao, “Coverage Extimation

for Symbolic Model Checking”, Proc. DAC, pp. 300-305,

1999.

[11] S.Katz, O.Grumberg, D.Geist, “Have I Written Enough

Properties? – A Method of Comparison between

Specification and Implementation”, Proc. CHARME, pp.

280-297, 1999.

[12] H.Chockler, O.Kupferman, R.P.Kurshan, M.Y. Vardi, “A

Practical Approach to Coverage in Model Checking”, Proc.

CAV, pp. 66-78, 2001.

[13] A.Fedeli, F.Fummi, G.Pravadelli, U.Rossi, F.Toto, "On the

Use of a High-level Fault Model to Check Properties

Incompleteness", Proc. MEMOCODE, pp.145-152, 2003

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

