
HAL Id: hal-00181859
https://hal.science/hal-00181859

Submitted on 24 Oct 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hardware Support for QoS-based Function Allocation in
Reconfigurable Systems

Michael Ullmann, Wansheng Jin, Jurgen Becker

To cite this version:
Michael Ullmann, Wansheng Jin, Jurgen Becker. Hardware Support for QoS-based Function Alloca-
tion in Reconfigurable Systems. DATE’05, Mar 2005, Munich, Germany. pp.259-264. �hal-00181859�

https://hal.science/hal-00181859
https://hal.archives-ouvertes.fr

Hardware Support for QoS-based Function Allocation

in Reconfigurable Systems

Michael Ullmann, Wansheng Jin, Jürgen Becker

Universität Karlsruhe (TH), Germany
{ullmann, jin, becker}@itiv.uni-karlsruhe.de

Abstract

This contribution presents a new approach for

allocating suitable function-implementation variants

depending on given quality-of-service function-
requirements for run-time reconfigurable multi-device

systems. Our approach adapts methodologies from the

domain of knowledge-based systems which can be used
for doing run-time hardware/software resource usage

optimizations.

Keywords: CBR, Algorithm, Resource Management

1. Introduction

During the last four years FPGAs have become the

favorite prototyping devices in many application areas of

computer sciences and electrical engineering. Since

modern FPGAs have a higher integration density offering

features like partial run-time reconfiguration (e.g. on

Xilinx Virtex II FPGAs) they have become attractive for a

variety of embedded applications and scientific

approaches exploiting theses features. Partial run-time

reconfiguration enables for a new class of embedded

applications utilizing FPGA resources at run-time as

flexible and adaptive hardware-accelerated coprocessors

[4]. Furthermore there already exist first academic

approaches implementing a complete reconfigurable

system-on-chip supporting run-time reconfiguration of

dedicated functions and their management at run-time

[7][8]. Other researchers already have implemented low

budget embedded operating systems running on soft-core

or hard-wired on-chip processors on FPGA (e.g. uClinux

on a Xilinx MicroBlaze [9]). Combining these approaches

using one or several low-cost reconfigurable devices plus

dedicated hardware like ASICs or DSPs will create

flexible and highly adaptive multi-purpose systems which

can be applied in a variety of application domains (e.g.

automotive infotainment, multimedia, control-oriented

applications etc.). The development and proof of such a

versatile system concept is a main research topic of our

research group. Our previous work consisted in the

development and implementation of a first run-time

reconfigurable system-on-chip, supporting flexible on-

demand hardware-task switching and a sophisticated run-

time reconfiguration and task management mechanisms

on Xilinx Virtex II FPGAs [7][10]. Although the tested

application domain in our previous work targets at

automotive control applications with soft time and

security constraints we intend to extend our approach for

other fields of application as already mentioned above.

Common embedded systems usually have a set of sub-

function realizations targeting only one type of hardware

for their execution (e.g. as slow software or hardware

accelerated functionality only). Additionally the location

for execution is normally pre-defined at design time. We

address this weak points, since we believe that run-time

reconfigurable systems in combination with dedicated

hardware resources will have benefits compared to

ordinary embedded application approaches which cannot

flexibly adapt to changing needs of users. Furthermore by

applying intelligent management mechanisms we

conceive to gain increases of system-performance and

energy/power-efficiency.

Figure 1. Reconfigurable HW/SW System

HW-Layer API (Data, Function-Negotiation, Reconfiguration)

Function- Allocation- Management

Application1

(MP3-Player)

Application2

(Video)

Application3

(Automotive

ECU)

Application4

(Cruise-

control)

Local Run-Time

Control (FPGAn)

Opcode/Bitstream-Repository (FLASH)

Local Run-Time

Control (FPGA1)

Module/

Function

Module/

Function

Local Run-Time

Control (FPGA1)

Module/

Function

Module/

Function

Module/

Function

Module/

Function

CBR-based Function-/ HW-Resource Selection

Local Run-Time

Control (GP-Proc)

APPLICATION-API (QoS, Functions, Communication)

CPU

As shown in figure 1 our previous approach can be re-

used as multiple entity at the lower reconfigurable

hardware layer of our conceived system approach.

Additionally dedicated hardware can be added in parallel.

The system is logically divided into different layers. At

the application level different applications are executed

depending on the location and the mode of operation (as

parallel hardware or sequential software tasks). Most

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

applications are conceived to have major parts in software

and some dedicated parts accelerated in reconfigurable

hardware or DSP. The application level is separated from

the lower system levels by an Application-API which

offers services for communication, sub-function calls and

quality of service (QoS) negotiation. A further system

level below is responsible for the proper allocation of

functions. Depending on the QoS demands, given by the

application’s function call an appropriate implementation

of the desired function must be found from a run-time

function repository. So this layer needs informations

about the available functions, their different

implementations and QoS features. Additionally it will

need informations about the current system load and

power consumption status, which are procured by the

HW-Layer API one level below. The HW-Layer API is

the interface for all hardware relevant aspects like

resource consumption, low-level communication and

reconfiguration of system parts. It connects the high level

components with the local system controllers, which may

be located on different devices (e.g. standard CPU, FPGA

(soft-core CPU) or DSP). These controllers are

responsible for the control of local run-time

reconfiguration and other sub-tasks like local task/

resource management and communication issues.

This paper will focus on some aspects of a QoS-aware

function allocation so that details on the other system

levels as they were not published yet will be presented in

future papers. Our contribution is structured as follows: In

section 2 we give a motivation for QoS-aware function

allocation and how it can be solved by means of a

simplified case-based-reasoning approach. Section 3

describes a short application example for our case-based-

reasoning approach whereas section 4 describes the

hardware/ software implementation and synthesis results

of the algorithm. The paper closes with a summary and

gives an outlook on our future work.

2. QoS-aware Function Allocation

In some cases, especially in multimedia applications it

is not sufficient to do a simple function call if a dedicated

function is needed which has to comply with additional

constraints like data/frame-rates, processing modes,

response deadlines etc. We conceive that the system

offers for one requested function type different

implementations which can be run as software or as

reconfigurable accelerated hardware having different

features. So there emerges the problem to identify a set of

most appropriate implementation variants which match

best to the given constraints from request. The found set

of implementation variants can be used for checking the

current system load and resource consumption state

concerning the feasibility of a best matching

implementation out of it which can be inserted on FPGA

or as software-task on a processor. It is possible that the

best matching implementation is not currently feasible

without preempting other active (hardware) tasks so an

alternative implementation can be offered to the calling

application which has to decide on it. The details on this

QoS negotiation mechanism as they are not presented

here will be in the scope of future papers. At this point it

is primarily here of interest how a best matching

implementation by given constraints can be found. Before

we introduce our approach we want to give an overview

on case-based reasoning and how parts of this approach

can be applied for solving that problem.

2.1. Case-based Reasoning Background

Case-based reasoning (CBR) is an approach for

developing knowledge-based systems that are able to

retrieve and reuse solutions that have worked for similar

situations in the past. CBR traces its roots to the work of

Roger Schank, Janet Kolodner and Michael Lebowitz in

the early 1980s [2][5][6]. Since the beginning of the

1990s CBR approaches are extensively applied in help-

desk applications and diagnostic expert systems for

customer support. In CBR systems expertise is embodied

in a library of past cases, rather than being encoded in

classical rules. Each case typically contains a description

of the problem, plus a solution and/or the outcome.

The knowledge and reasoning process used by an

expert to solve the problem is not recorded, but is implicit

in the solution. To solve a current problem: the problem is

matched against the cases in the case base, and similar

cases are retrieved. The retrieved cases are used to

suggest a solution which is reused and tested for success.

If necessary, the solution is then revised. Finally the

current problem and the final solution are retained as part

of a new case. The complete CBR-cycle is shown in

figure 2.

2.2. Case-base Representation and Similarity

Problem cases may have different representations.

These can be object-oriented, trees & graphs or sets of

simple pairs of attributes and their values. We have found

the latter representation appears to be best suited for our

purposes, since attributes of some type may describe

comparable features of different implementations. The

attributes’ values depend on their type and given value

range and can be of integer/real type, even discrete

ordered sets of symbols are possible if they can be

mapped onto integers. Typical types can be data-rates,

discrete processing modes (float/integer), power

consumption, code/bitstream-sizes, response times, frame

sizes, max. bit-error-rates etc. A local similarity measure

is needed for comparing attributes of same type between

different implementations. Such a measure is often based

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

on a transformation function which calculates from the

Euclidian or Manhattan distance of two given attributes a

similarity value in the range [0 ... 1], where 1 means that

both attribute values are identical and 0 means that both

values have a maximum distance (no similarity).

.
A B

i A B A B

i j

d x ,x
s x ,x = 1- ; d x ,x 0

1+ max d x ,x
(1) f

An example function is given in equ. (1) where xA, xB

are attribute values of same type from a request A and an

implementation case B. The function d(xi, xj) calculates

the distance / absolute difference between both values

where max(d(xi, xj)) represents the maximum possible

distance which can be determined at design time from all

attributes of same type given by the implementation

library. Since the request and implementation descriptions

may contain several attributes it is not sufficient to

calculate for every attribute pair (AReq_i, AImpl_i) a local

similarity si. All local similarities si have to be combined

into a global similarity which enables for comparing all

implementation variants of same basic function type with

the attribute description set of a given function request.

Such a needed function Sglobal is denoted as amalgamation
function which transforms an input vector located inside

an n-dimensional cube [0 ... 1]n back into a scalar range of

[0 ... 1]. A convenient function is the weighted sum of all

local similarities as shown in equ. (2). It is monotonous in

every argument and Sglobal(0, ...,0)=0; Sglobal(1, ...,1)=1.

1

1 1

, , ; 1 .
n n

n i i i

i i

globalS s s w s w (2) f

At this point it should be noted that other approaches

for similarity calculations are possible as well. A well

known method comes from statistical decision theory and

determines the Mahalanobis distance by calculating the

co-variance matrix of the whole set of function attributes.

This method is very effective concerning the results but

the computational efforts would be too large so we

decided to apply Manhattan distance metrics.

Figure 2. Case-based reasoning- cycle [1]

R
e
tr

ie
v
eNew

Case

Problem

Retain

R
e
v
is

e Reuse

New

CaseRetrieved

Case

Confirmed

Solution

Tested/

Repaired

Case

Solved

Case

Suggested

Solution

Knowledge

Case

Base

Learned

Case

R
e
tr

ie
v
eNew

Case

Problem

New

Case

Problem

Retain

R
e
v
is

e Reuse

New

CaseRetrieved

Case

Retrieved

Case

Confirmed

Solution

Tested/

Repaired

Case

Confirmed

Solution

Tested/

Repaired

Case

Solved

Case

Suggested

Solution

Knowledge

Solved

Case

Suggested

Solution

Knowledge

Solved

Case

Suggested

Solution

Knowledge

Case

Base

Case

Base

Learned

Case

Learned

Case

3. Application Example for Retrieval

Following short application example will give an

impression how a retrieval and similarity comparison can

be done. As shown in figure 3 an application requires an

FIR-equalizer functionality for audio DSP purposes. Each

offered type of basic-functionality has a global function-

ID which is used for finding the proper type entry inside

the function implementation tree. The nodes of this tree

are ordered in a hierarchy, where the nodes in the upper

level represent all function types whereas their successor

nodes at lower levels contain informations about their

related implementations like the implementation-ID

which can have a unique system-global or a local ID

value and a set of attributes, separable again by unique

type IDs, which contain details on each implementation’s

features like processing bitwidth, processing mode

(integer/float), output mode and sampling rate. Other

attributes like power consumption, response deadlines etc.

are conceivable. It should be noted here that such metrics

which characterize a functionality on QoS-aspects have to

be pre-defined by the designer as a set of attributes whose

values are derived from simulations and tests of the

function’s model. Depending on the application’s needs

the request’s attribute composition may vary.

Figure 3. Function r quest at case-base

Type FIR Equalizer IDType=1

Function Implementation Tree = Case-Base

FPGA Impl. IDImpl =1

ACB_1= 16 Bitwidth

ACB_2= 0 Integer-Mode

ACB_3= 2 Output Surround

ACB_4= 44 kSamples/s

DSP Impl. IDImpl =2

ACB_1= 16 Bitwidth

ACB_2= 0 Integer-Mode

ACB_3= 1 Output Stereo

ACB_4= 44 kSamples/s

General Purp. Proc. IDImpl =3

ACB_1= 8 Bitwidth

ACB_2= 0 Integer-Mode

ACB_3= 0 Output Mono

ACB_4= 22 kSamples/s

Type 1D-FFT IDType=2

List of Constraining Attributes

AReq_1 = 16 (Bitwidth)

AReq_3 = 1 (stereo-mode)

AReq_4 = 40 (kSamples/s)

Function Request - Description

Desired Type: FIR Equalizer IDType= 1

Request on Case-Base

e

As first step all function type entries have to be

checked for finding the required type (IDType). It should

not happen that the desired type is not found since the

application’s functional requirements should already be

known at design time, otherwise the function can not be

served. In the given example case the desired function-

IDType = 1 is found and three possible implementations for

different execution targets (FPGA, DSP, General Purpose

Proc.) have to be checked. Figure 3 shows that the

request’s attribute-set does not have to be completely

specified; incomplete subsets are possible as well which is

a nice property of case-based retrieval. As next step all

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

corresponding attributes are retrieved from each

implementation attribute sub-table and for every

implementation k a similarity value Sglobal(k) is calculated

by applying equ. (1) and (2) as shown in table 1. If a

corresponding implementation attribute is not found, its

local similarity si can be set to 0 because a missing

attribute can be seen as unsatisfiable requirement.

The dmax values as used in table 1 were taken from an

extra table (not shown here) which was generated at

design time containing supplemental data on the

attributes’ design-global upper/lower value bounds (see

also figure 4 (right – maxrange-1)).

As the results show from table 1 the DSP-based

function-implementation matches best to the given

requirements. The FPGA-implementation produces the

second-best similarity whereas the standard software

implementation has a rather low similarity which would

not satisfy the demands if the attributes were inspected

manually. It’s conceivable to reject all results below a

given threshold similarity. In the given example the

allocation manager would check now for each acceptable

solution its feasibility concerning the system load and

would suggest the remaining implementation-variants to

the calling application. Since every available function

realization has a unique identifier it will be possible to

retrieve the function’s corresponding configuration data

(CPU opcode/ FPGA bitstream) from a global function

repository for reconfiguration.

Table 1. Retrieval – similarity example

Sglobal

44-8=36

2-0=2

16-8=8

dmax

0.85wj=1/3Impl. ID= 1 : FPGA

0.89444404

0.661213

1016161

sid(AReq_i, ACB_i)ACB_iAReq_ii

Sglobal

44-8=36

2-0=2

16-8=8

dmax

0.85wj=1/3Impl. ID= 1 : FPGA

0.89444404

0.661213

1016161

sid(AReq_i, ACB_i)ACB_iAReq_ii

Sglobal

44-8=36

2-0=2

16-8=8

dmax

0.96wj=1/3Impl. ID= 2 : DSP

0.89444404

10113

1016161

sid(AReq_i, ACB_i)ACB_iAReq_ii

Sglobal

44-8=36

2-0=2

16-8=8

dmax

0.96wj=1/3Impl. ID= 2 : DSP

0.89444404

10113

1016161

sid(AReq_i, ACB_i)ACB_iAReq_ii

Sglobal

44-8=36

2-0=2

16-8=8

dmax

0.43wj=1/3Impl. ID= 3 : GP-Proc

0.511822404

0.661013

0.1188161

sid(AReq_i, ACB_i)ACB_iAReq_ii

Sglobal

44-8=36

2-0=2

16-8=8

dmax

0.43wj=1/3Impl. ID= 3 : GP-Proc

0.511822404

0.661013

0.1188161

sid(AReq_i, ACB_i)ACB_iAReq_ii

best

It is still possible that no matching feasible variant was

found so that the application has to repeat its request with

rather relaxed constraints giving a chance to the third low

performance implementation (IDImpl=3). Otherwise the

application can not call the function. If a function was

allocated and instantiated on hardware it is not necessary

to repeat the retrieval procedure at repeated function calls.

The allocation manager could create a kind of bypass-

token containing data one the previous selection which

can be reused at repeated function calls so that only an

availability check on the function and its allocated

resources has to be done.

4. Hardware/Software Implementation

The function allocation manager’s retrieval

functionality can be implemented in software or as

hardware mapped algorithm. Although case-based

retrieval is a rather control oriented algorithm we have

been able to model, simulate and synthesize an

accelerated retrieval unit on FPGA.

4.1. Data Structures

As first step the needed data structures for request and

implementation-tree were defined. We decided to use

linear lists which can be connected by reference pointers

for creating complex tree structures. Each list contains

several entries like IDs, values, pointers and is terminated

by a dedicated NULL-entry. These lists can be easily

mapped on linear organized RAM-blocks if all list

elements use the same word length per entry (e.g. 16 or

32 bits). Figure 4 (left) shows the structure of a list

containing the request description including the desired

function type, attributes and weighting factors wi to be

used. The internal order of entries is predefined so that an

attribute’s ID is always followed by its value and weight.

Additionally the attribute-blocks have to be pre-sorted by

their ID in ascending order. This measure is applied in all

other list-structures as well (see figure 5) and aims at

improving the retrieval efficiency of the algorithm.

Because each attribute has to be searched by its ID in

each implementation’s attribute-list it is possible to avoid

a repeated search from the top of each list.

Funktionstyp ID

Attribut ID

Attribut Wert

Attribut Gewicht

Listen Ende

Attribut Gewicht w

Attribut Wert

Attribut ID

Functiontype ID

Attribute ID

Attribute Value

•End of List

Attribute Weight wi

Attribute Value

Attribute ID

Function Requirements

Description - Pointer

Attribute Weight wi

L
is

t
e
n

tr
ie

s

p
re

s
o

rt
e
d

 b
y

ID

Funktionstyp ID

Attribut ID

Attribut Wert

Attribut Gewicht

Listen Ende

Attribut Gewicht w

Attribut Wert

Attribut ID

Functiontype ID

Attribute ID

Attribute Value

•End of List

Attribute Weight wi

Attribute Value

Attribute ID

Function Requirements

Description - Pointer

Attribute Weight wi

Funktionstyp ID

Attribut ID

Attribut Wert

Attribut Gewicht

Listen Ende

Attribut Gewicht w

Attribut Wert

Attribut ID

Functiontype ID

Attribute ID

Attribute Value

•End of List

Attribute Weight wi

Attribute Value

Attribute ID

Function Requirements

Description - Pointer

Attribute Weight wi

L
is

t
e
n

tr
ie

s

p
re

s
o

rt
e
d

 b
y

ID

L
is

t
e
n

tr
ie

s

p
re

s
o

rt
e
d

 b
y

ID

Attribut ID

Lower Bound

Upper Bound

Attribut Max

Lower Bound

Upper Bound

Listen Ende

Attribut Max-Bereich

Attribut ID

Attribute ID

Lower Bound

Upper Bound

Attribute Max Range -1

Lower Bound

Upper Bound

•End of List

Attribute Max Range -1

Attribute ID

Attributes

Supplemental- Data

Pointer
L

is
t

e
n

tr
ie

s

p
re

s
o

rt
e

d
 b

y
 I
D

Attribut ID

Lower Bound

Upper Bound

Attribut Max

Lower Bound

Upper Bound

Listen Ende

Attribut Max-Bereich

Attribut ID

Attribute ID

Lower Bound

Upper Bound

Attribute Max Range -1

Lower Bound

Upper Bound

•End of List

Attribute Max Range -1

Attribute ID

Attributes

Supplemental- Data

Pointer
L

is
t

e
n

tr
ie

s

p
re

s
o

rt
e

d
 b

y
 I
D

L
is

t
e

n
tr

ie
s

p
re

s
o

rt
e

d
 b

y
 I
D

Request list structure Attribute list structure

Figure 4. Request list and attribute list

Since the next requested attribute has a larger ID value

than its predecessor it is possible to continue searching

from the current position instead of doing a repeated

search from the top of the local list. As a consequence the

effort for searching becomes linear.

Another auxiliary list which is used for similarity

calculation is shown in figure 4 (right). The entries are

grouped again in blocks and they are pre-sorted by

attribute IDs for the same reasons as mentioned before.

The fourth entry of each attribute block (maxrange-1)

contains a pre-calculated reciprocal value of dmax+1.

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

Since it is a constant we do not need to implement an

expensive hardware divider saving resources. By using

the reciprocal value we can do a rather fast multiplication

with the attributes’ absolute difference instead of doing a

slow division (see also equ. (1)). Figure 5 shows the

implementation-tree structure which is a hierarchical tree

of three levels. Similar to figure 3 it contains a top level

list including implementation-IDs and reference pointers

to the corresponding implementation lists. Each

implementation list contains blocks sorted by

implementation ID with pointers referencing to lists of

attribute/value pairs of each implementation. All partial

lists are generated at design time creating one big block of

linear concatenated lists.

Figure 5. Implementation-tree structure

Funktionstyp ID

Verweis

Funktionstyp ID

Verweis

Listen Ende

Verweis

Funktionstyp ID

Functiontype ID

Reference Pointer

Functiontype ID

Reference Pointer

•End of local List

Reference Pointer

Functiontype ID

Implementation Tree / Case Base

List Entry Pointer

Listen Ende

Funktionsrealisierung ID

Verweis

Funktionsrealisierung ID

Verweis

Verweis

Funktionsrealisierung ID

•End of local List

Funct. Implementation ID

Reference Pointer

Funct. Implementation ID

Reference Pointer

Reference Pointer

Funct. Implementation ID

Implementation List

Listen Ende

Attribut ID

Attribut Wert

Attribut ID

Attribut Wert

Attribut Wert

Attribut ID

•End of local List

Attribute ID

Attribute Value

Attribute ID

Attribute Value

Attribute Value

Attribute ID

Attributes of Implementation

L
is

t
e
n

tr
ie

s

p
re

s
o

rt
e

d
 b

y
 I

D

L
is

t
e

n
tr

ie
s

p
re

s
o

rt
e

d
 b

y
ID

L
is

t
e
n

tr
ie

s

p
re

s
o

rt
e
d

 b
y

ID

Level 0

Level 1

Level 2

4.2. Hardware Implementation

The hardware implementation of the retrieval unit was

done by modeling its behavior in Matlab Stateflow at

first. We developed some tools in Matlab for creating and

exporting all needed data structures (implementation-tree,

request list etc.) so that they can be easily used for testing

purposes in Stateflow, VHDL and C. After testing and

verifying of our Stateflow model we converted the

behavioral model into synthesizable VHDL code by using

a special conversion tool JVHDLgen [3]. This tool is still

in beta state of development but it proved to work fine

although we had to do some minor restrictions to our

Stateflow model since not all features of Stateflow are

currently supported. Additionally some manual code

modifications were necessary for synthesizing the model

onto Xilinx Virtex II 3000 FPGA using Xilinx ISE 6.2.

Figure 6. Most similar retrieval algorithm

Extract function basic-type from

request and look in case-base for

corresponding entry

Selection of next function implementation from

sub-list, store ID of corresponding

implementation from case-base

Determine type and value of next

attribute from request, get range constant dmax

from attribute-supplemental list

Look in attribute list of implementation for a

matching attribute entry and get its value

_

max

,
1

1

i i CB

i

i

d A A
S

d A
0

i
S 0
i
S

i i
S S S w

i i
S S S w

attribute found attribute not found

Last attribute from

request processed ?

S > SBest ?

Keep S and implementation ID

Last implementation

in list ?

no

no

yes

yes /

deliver most similar

implementation ID

Max. Clock:

BRAMS(18Kbit):

MULT18X18s:

CLB-Slices:

Resources: Xilinx Virtex II 3000

 MHz

2 of 96 2 %

2 of 96 2 %

441 of 14336 3 %

Figure 6 gives an overview on the main parts of the

implemented algorithm. The shown version is able to find

the most similar implementation. The delivered results

will be the ID and similarity value of the best matching

implementation. The main components of the retrieval

unit’s data path are depicted in figure 7. It should be noted

that this data path’s schematic was derived from the

Stateflow model as the generated VHDL code is less

suitable for extracting control- and data path information.

The processing bitwidth of all attribute values was

defined at 16 bit. Our tests showed that this bitwidth is

sufficient even for fixed point calculations without

seriously losing accuracy. We have been able to show that

we get the same retrieval results in high precision floating

point Matlab simulation as we get from VDHL simulation

using ModelSim.

Table 2. Synthesis results on XC2V3000

77Max. Clock:

BRAMS(18Kbit):

MULT18X18s:

CLB-Slices:

Resources: Xilinx Virtex II 3000

 MHz

2 of 96 2 %

2 of 96 2 %

441 of 14336 3 %

77

The hardware design takes 441 CLB slices, two

2x18bit hardware multipliers and can be operated at 75

MHz (see also table 2). A small amount of additional

memory of about 4.5 kB is needed for storing the

implementation-tree giving space for a full set of 15

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

function types containing 10 implementations * 10

attributes each, using 16 bit words for each entry (see

table 3, reference pointers are included).

Figure 7. Data-path - Most similar retrieval

Type A
i_CB

w
i

(1+D
max_i

)-1

CB-MEM

CTRL

(incl.Mem_ptr)

ABS(X)

A
i

A
i_CB

Type A
i

Diff(A
i,
A

_i_CB
)

S
i

0

Exist A
i_CB

?

Req_Mem_Addr.

CB_Data

Req-MEM

Req_Data

TEMP

Smax

S= Si*wi

Realis_ID ID

Smax

Realis_ID_max

IDmax

?

New_Req Req_Ptr

CB_Mem_Addr.

Type A
i_CB

w
i

(1+D
max_i

)-1

CB-MEM

CTRL

(incl.Mem_ptr)

ABS(X)

A
i

A
i_CB

Type A
i

Diff(A
i,
A

_i_CB
)

S
i

0

Exist A
i_CB

??

Req_Mem_Addr.

CB_Data

Req-MEM

Req_Data

TEMP

Smax

S= Si*wi

Realis_ID ID

Smax

New_Req Req_Ptr

CB_Mem_Addr.

Realis_ID_max

IDmax

?

Apart from the hardware implementation we also

mapped the retrieval algorithm into a C program running

on a Xilinx MicroBlaze soft-processor at 66 MHz. The

software version which takes only 1984 bytes of opcode

and 1208 bytes for variables proved to produce identical

retrieval and similarity results for a selected set of test

cases where we created different implementation-trees

and requests. The same test cases were applied to the

hardware implementation and we compared the

performance results of both implementations. As result

we have found that our hardware version is at 66 MHz

about 8.5 times faster than the software solution.

Table 3. Case-base memory consumption

Memory consumption of request:

Memory consumption of case-base:

(16 bit-words each entry/pointer)

Attributes per Implementation:

Types of basic functions in total:

Attributes per Request:

Implementations per function type:

Different types of attributes in total:

64 Bytes

4.5 kB

10

15

10 (worst case)

6

10

Memory consumption of request:

Memory consumption of case-base:

(16 bit-words each entry/pointer)

Attributes per Implementation:

Types of basic functions in total:

Attributes per Request:

Implementations per function type:

Different types of attributes in total:

64 Bytes

4.5 kB

10

15

10 (worst case)

6

10

5. Conclusions and Outlook

We have proved the feasibility of a hardware

accelerated function-retrieval on QoS requirements based

on methodologies from case-based reasoning theory.

Although we adopted the CBR-retrieval and similarity

determination steps for our purposes some might argue

that the presented approach does not implement a

complete CBR-cycle as shown in figure 2. Actually many

practical CBR-implementations restrict to the retrieval

step only and re-use the found solution without adaptation

and assessment step, since a reasonable adaptation of the

found solution is a very complex and time consuming

process, which is not necessary in a retrieval of static

implementations. Although the implementation-tree is

currently a static structure we conceive dynamic update

mechanisms of Case-Base-data structures and function

repositories at run-time enabling for a self-learning

system as new aspects of our future work. Our next step

will be an extension for getting n most similar solutions

from retrieval which offers the possibility for checking

out the feasibility of different matching variants.

Additionally we think about optimizations of the used

implementation-tree structure and retrieval finite state

automaton for getting a better speed-up. Furthermore a

rather compacted attribute block representation could be

used for loading IDs and values as blocks within one step

speeding everything up at least by factor 2.

6. References

[1] A. Aamodt, E. Plaza, “Case-based reasoning: foundational

issues, methodological variations, and system approaches”,

AI Communications, March 1994, 7(l):39-59,.

[2] B. Bartsch-Spörl, M. Lenz, A. Hübner, “Case-Based

Reasoning -- Survey and Future Directions”, Lecture Notes

in Artificial Intelligence, Vol. 1570, Springer-Verlag,

Berlin, Heidelberg (1999), pp. 67-89.

[3] http://www.fzi.de

[4] B. Griese, E. Vonnahme, M. Porrmann, U. Rückert,

„Hardware Support for Dynamic Reconfiguration in

Reconfigurable SoC Architectures”, Proceedings of the

14rd International Conference on Field Programmable

Logic and Application (FPL'04), 2004, August, Springer,

pp. 842 – 846.

[5] J. L. Kolodner, “Retrieval and Organizational Strategies in

Conceptual Memory”, Lawrence Erlbaum, Hillsdale, New

Jersey, 1984.

[6] R. C. Schank, “Dynamic Memory: A Theory of Learning in

Computers and People”, Cambridge University Press, New

York, 1982.

[7] M. Ullmann , M. Hübner, B. Grimm, J.Becker,"On-

Demand FPGA Run-Time System for Dynamical

Reconfiguration with Adaptive Priorities", Proceedings of

the 14rd International Conference on Field Programmable

Logic and Application (FPL'04), 2004, August, Springer,

pp. 454 - 463.

[8] H. Walder, M. Platzner, “A Runtime Environment for

Reconfigurable Hardware Operating Systems”, Proceedings

of the 14rd International Conference on Field

Programmable Logic and Application (FPL'04), 2004,

August, Springer, pp. 831 – 835.

[9] http://www.itee.uq.edu.au/~jwilliams/mblaze-uclinux/

[10] http://www.xilinx.com/

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

