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Abstract

The aim of this work is to study the implementation fea-
sibility of a VLS (Virtual Lambda Sensor) by a TSK (Tak-
agi, Sugeno, Kang) singleton FIS (Fuzzy Inference System).
Such a sensor could be used in a model based EMS (En-
gine Management System) for trade gasoline engines. FIS
design target is to obtain a system with a fixed data repre-
sentation (i.e. 10 bit) and a limited number of inputs, out-
puts, rules and membership.

1. Introduction

In this work, we study the implementation feasibility of
a Virtual Lambda Sensor (VLS) model by a TSK (Takagi,
Sugeno, Kang) singleton FIS (Fuzzy Inference System). The
VLS is a model able to forecast engine air-fuel ratio process-
ing the cylinder pressure signal of the gasoline engine. In
this work we study the implementation feasibility of an em-
ulator of the trade on-off Lambda sensor and of an emulator
of the trade linear Lambda sensor. The attribute on-off sug-
gests us that the Lambda sensor determines only whether
Lambda ratio is up or down the stoichiometric condition.

The target of our analysis is to develop the best solution,
that is the best model of VLS, according to restrictive oper-
ating constraints. All data and FIS parameters must be trans-
formed according to constraints on data representation (i.e.
10 bit parameter resolution). To validate the model we used
both Matlab simulations with hardware real constraints and
real-time experiments on a trade 125cc gasoline engine.

1.1. Virtual Lambda Sensor

In the last years, the engine manufacturers guideline is
to achieve further reductions in the quantities of polluting
gases emitted by the engine and a decrease in the engines
fuel consumptions without vehicle characteristics, that are
desirable to the driver, must be compromised. For these rea-

sons, an efficient engine control and a comprehensive mon-
itoring of the engine working parameters are required.

To maintain a strict control of the engines working pa-
rameters Engine Management Systems (EMS) are used. The
EMS implements control strategies which achieve the op-
timum trade-off between several contradictory objectives.
At the same time, in a spark-ignition engine, the EMS must
bring the engine in an operating range in which the three-
way catalytic converter can further reduce the harmful con-
tent of the exhaust gases. The EMS controls the amount of
fuel injected in the engine combustion chamber (fuel pulse
width), the point in the engine cycle the mixture air fuel is
ignited (ignition timing) and other parameters in advanced
engine designs, for example, the valve timings. The EMS de-
termines values for these parameters from measured quan-
tities such as speed, load torque, air mass flow rate, inlet-
manifold pressure, temperatures at various points and throt-
tle angle.

EMS is essentially composed by three components: en-
gine maps, controller and sensors, see figure 1.

In the figure 2 other sensors appear too. These additional
devices are able to monitor if the engine is working accord-
ing to the Systems Aims, such as fuel economy, high output
power and low emissions. So, they have an active part in the
real time update process of controlled variables and of en-
gine maps. For instance, in a spark-ignition engine a sen-
sor like this is the Lambda sensor. This device, mounted
in the exhaust stream, determines whether the Lambda ra-
tio (i.e. AFR/AFRs where AFR is the air/fuel ratio and
the subscript s is for stoichiometric condition) is above or
below unity from the amount of oxygen present. The EMS
uses this information to adjust the fuel pulse width and/or
the ignition timing to keep the Lambda ratio near to unity.
In this value range of Lambda ratio, the three way catalytic
converter, used in the current engines to reduce emissions
levels to within legislative limits, “works in optimal condi-
tions” (i.e. have the maximum percentage of conversion of
exhaust toxic gases into less toxic products).

The last target of engine manufacturers is to achieve
an enhanced engine control without additional sen-
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Figure 1. The block framework of a common
EMS.

Figure 2. The EMS block framework for spark
ignition engines.

sory devices, that is without other costs. In these con-
ditions, virtual-sensors techniques are much desirable.
Virtual-sensors allow to estimate quantities of inter-
est without real sensors dedicated to the measurements.
In this field, intelligent system models, such as neu-
ral networks, fuzzy systems and neuro-fuzzy systems, are
attractive because of their capabilities in pattern recogni-
tion and signal analysis problems [1].

1.2. Description of our Target FIS Constraints

We will consider a TSK singleton Fuzzy System,
with some limiting constraints, as the target system

to map our VLS. TSK is a fuzzy system proposed by
T. Tagaki, M. Sugeno and G.T. Kang [2, 3]. The out-
put of each rule is a linear combination of input vari-
ables plus a constant term, and the final output is the
weighted average of each rule’s output. In this paradigm
the rule set is made up of r rules having the follow-
ing form:

Rule i: If x1(t) is Mi1, x2(t) is Mi2,...., and xn(t) is Min,
then y = wi0 + wi1x1(t) + wi2x2(t)+.....+winxn(t).

where x1, x2, ...., xn are the antecedent variables and y
is the consequent variable. Moreover, Mi1,Mi2, .....,Min

are fuzzy sets defined over the definition domains of
x1, x2, ...., xn while wi0, wi1, ...., win are constant co-
efficients which describe the linear relationship defined
by the i − th rule set, i = 1, ...., r. A TSK single-
ton is a fuzzy system in which the consequents are simply
constants (crisp), wi0 with i = 1, ...., r. From a linguis-
tic point of view, this means we have the following simpli-
fied if-then rules:

Rule i: If x1(t) is Mi1, x2(t) is Mi2,...., and xn(t) is Min,
then y = wi0.

For a sake of simplicity, we described TSK fuzzy systems
with only one output but the system description can be
merely extended to systems with vectorial outputs.

Our constraints are to use up to 256 if-then rules with
up to 64 different serial inputs, 12 different outputs and 10
bit parameter resolution. TSK membership functions can be
both triangular and trapezoidal. These constrains was sug-
gested us by a neuro-fuzzy peripheral for MCU (micro con-
troller unit) that STMicroelectronics has been developing.

2. Description of STMicroelectronics Labora-
tory Equipment

The experimental tests have had an important role in
the Lambda prediction and in the definition of the Lambda
control strategy. Particularly they helped us to find the pa-
rameters of the pressure cycle used by the soft computing
Lambda prediction algorithms. Moreover they allowed us
to set the soft computing algorithms and to test the whole
Lambda control system (Lambda prediction + Lambda con-
trol). The experimental activity was performed on a 125cc
engine equipped with an AVL pressure sensor mounted on
the cylinder head and with a TAG linear oxygen sensor in
the exhaust system.

The STMicroelectronic test bench is also equipped with:

• Asynchronous Dynamometer AVL APA 102 (Power
120 kW)

• Test Bed and Instrumentation Automation Sys-
tem AVL PUMA 5.6.2
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• Fast Prototyping Control System dSPACE

• AVL Fuel Balance with Fuel Conditioner

• Indicating System AVL Indiset Advanced 631

• Air Flow Meter

• Exhaust Gas Analyzer AVL DIGas 4000

The injection and the ignition systems were controlled
by the Fast Prototyping Control System dSPACE . The
dSPACE system was set to work either in “map mode” (the
engine is controlled using the engine maps) that in “manual
mode” (for every engine condition it is possible to change
in real time all the control parameters). The dSPACE sys-
tem was also used to implement and to test in real time the
new Lambda control strategies.

3. Data Analysis

Our VLS models were tested on a data set meausured by
our laboratory on a real 125cc trade scooter engine. The

Figure 3. List of the possible inputs for the
VLS model.

choosing of the TSK model inputs from our data set (see
figure 3) was based on the the pressure cycle signal pro-
cessing according to several literature algorithms in which
Pratio are used as pressure signal features in order to fore-
cast Lambda values (i.e. P ratio is the pressure ratio defined
by P (angle)/P (−angle) where angle is a fixed crank an-
gle).

To make a pre-processing of the data set we used clus-
tering analysis. We analyzed the clustering process between
P ratio40 (a possible input of the VLS model) and λ ver-
sus the number of the pressure cycle instantaneous values
which we averaged on. Growing up this number, the cor-
relation between P ratio40 and λ highly grows. In the fig-
ure 4 we can see how this correlation corresponds to cluster
spherical shape. In this case, clusters cover only a bounded

Figure 4. Clustering between Λ and P ratio40.

range of variable domain such a way as a small input varia-
tion corresponds to a small output variation. The last condi-
tion is necessary in order to the model realization (i.e. build-
ing a mapping function) be a well-posed problem ([4], [5]
and [6]).

A more detailed description of used clustering analysis
was in [7]. Using this approach we found that the optimal
number of instantaneous input values, to average on, is 16.
We decided that our model must have three inputs chosen by
a clustering algorithm. With this algorithm we analyzed the
correlation between groups of three input variables, in our
measure set, and the Lambda values to be forecast. The in-
puts chosen with this technique were respectively the max-
imum pressure, the pressure ratio at 40 and at 50 degree.

4. VLS Development

After the analysis of experimental data and the choice of
the input variables, we developed our VLS models accord-
ing to the constraints on data representation. Indeed, we nor-
malized data values in the range [0, 1023], that is, we used
a data precision of 10 bits.

4.1. Workflow for VLS system development

The FIS system was made using pre-normalized inte-
ger data in [0, 1023], this binds the other FIS parameters
to stay in the same range. In this way, FIS performance
was evaluated directly on several input data combinations.
The formula used to calculate the normalized data values
in the range [0, 1023] is the usual one (xnorm = (x −
xmin)/(xmax − xmin).

We previously fixed xmax and xmin, in this way succes-
sive data sets can have the same pre-processing. Data val-
ues less than xmin are in underflow, similarly values greater
than xmax are in overflow. In this cases, they are respec-
tively set to 0 and 1023. Considering the above remarks, it

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05) 
1530-1591/05 $ 20.00 IEEE 



is needful formatting data in a suitable way according to the
problem to be resolved.

Figure 5. The conceptual scheme of a solving
process for two different problems.

In figure 5 we can observe two different procedures to
develop a FIS, modelling a system and fitting the constraints
of a given device. We followed some approaches, which are
complied to the above scheme, to solve both the problem
of simulation of a linear Lambda sensor and the problem
of simulation of an on-off Lambda sensor (i.e. classifica-
tion problem). The implemented architecture, see scheme
in the figure 6, allows us a rapid modelling process to cre-
ate FIS and evaluating output in the current problem. We di-

Figure 6. The conceptual scheme of data
flow.

vided the set of experimental data in the following sets:

• λ < 0.95 very rich

• λ >=0.95 and λ <= 1 rich

• λ >1 and λ <= 1.05 lean

• λ > 1.05 very lean

Finally, we composed data set for FIS training, check and
test at the same way. So we guaranteed that the FIS is trained
with the same number of data for each region of Lambda
values. Moreover, we can monitor model performance in
each of the four regions of Lambda values.

4.2. Model for a Virtual linear Lambda Sensor

In order to develop a FIS model for a virtual linear
Lambda sensor we used a technique proposed in [8], Mat-
lab ANFIS tool. It is very important to highlight that the AN-

FIS procedure is not completely compliant to our specifi-
cations, in fact the ANFIS tool, working with a data preci-
sion of 32 bits, does not allow us to fix the data resolu-
tion to 10 bits. In order to work with data normalized in
range [0, 1023], we changed some parts of the ANFIS inter-
face. Furthermore, the produced FIS was processed by an
ad hoc “parser” developed by us, because it has a rule cod-
ing not compliant to our system simulator and consequent
values not in range [0, 1023].

The input data set was divided in three different sets. The
1st is for the FIS training, the 2nd for the validation and the
3rd for the testing. The percentage error was obtained scal-
ing the absolute error by the maximum experimental data.
Final results are: mean error equal to 0.0288 and maximum
error equal to 0.1271.

4.3. Model for a Virtual On-Off Lambda Sensor

From a mathematics viewpoint, the virtual on-off
Lambda sensor design can be described as a classifi-
cation problem. This problem, apparently simpler, can
be approached in different ways. In this case a particu-
lar care must be taken in the choosing of a classifying
way. The way we used to do this is to consider a lin-
ear sensor with a decoder circuit in the output, see figure 7.

Figure 7. How to use a virtual linear sensor to
classify Lambda values.

In figure 8, we can see that there are 14 errors on 200
testing samples.

5. Experimental Results

In this section we will show our results in testing the
VLS, with a common fuzzy controller, on the real 125cc en-
gine.

5.1. Testing of the Virtual Lambda Sensor: Results

The Virtual Lambda Sensor was tested by Simulink on
experimental data acquired in laboratory and by dSPACE in
real-time application on the 125cc mono-cylinder gasoline
engine.
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Figure 8. The classification error obtained us-
ing the classifier model.

Mean Er-
ror in lin-
ear fore-
cast

Max Er-
ror in lin-
ear fore-
cast

Mean Er-
ror in ON-
OFF fore-
cast

Max set-
tling time
at 4600
rpm

1.18 % 4.5% 5% 250 ms

Table 1. Experimental test results for the VLS
on real engine

The obtained results are collected in the tables 1 and 2:
Our on-off Virtual Lambda Sensor is able to forecast

without error the lean mixture condition for Lambda value
grater than 1.03 and the rich mixture condition for Lambda
value less than 0.97. The virtual sensor shows a classifi-
cation error of 7% for 0.97 ≤ λ ≤ 0.99 and of 9% for
1.01 ≤ λ ≤ 1.03 (see next table for a summary of these re-
sults). This means that all errors are committed at the stoi-
chiometric condition (λ = 1) with a bit polarization in the
lean mixture condition zone.

Class. Er-
ror for
λ ≤ 0.97

Class. Er-
ror for
0.97 ≤
λ ≤ 0.99

Class. Er-
ror for
1.01 ≤
λ ≤ 1.03

Class. Er-
ror for
l.ambda >
1.03

0% 7% 9% 0%

Table 2. More detailed analysis of error distri-
bution for the on-off VLS

rich mixture lean mixture
mean 45.74 37.41

variance 3.43 4.42

Table 3. Statistic analysis of pressure signals
used as inputs for the VLS

The above described phenomenon is due to two kind of fac-
tors:

• non uniformity of measured data

• greater variability of pressure cycle in the lean mixture
condition

By our analysis we can state that the mean value of Pmax
in lean condition is lesser than rich condition while the vari-
ance is greater. This last consideration means that in lean
condition the signal is more instable. The table 3 shows the
numerical results related to this analysis.

5.2. Testing of the Complete Control System: Re-
sults

The Lambda Control System is a closed loop control sys-
tem based on soft computing models. It is composed by a
Virtual Lambda Sensor and by a Lambda Controller.

We tested real-time the system on the 125cc engine. At
first, we tested the Lambda control system in the same en-
gine conditions used to train our soft computing models
(4600 rpm, WOT (Wide Open Trottle) condition, 28 Cel-
sius degree of the intake fold). The figure 9 describes the
trend of Lambda values, measured by the laboratory real
Lambda sensor on the real engine, when our control system
was activated. As we can see, engine is maintained close to
the stoichiometric condition with an error within 1%.
Finally, we tested our control system in several transient
conditions. After few seconds, the control system is able
to bring the engine in stoichiometric conditions with an er-
ror within 1%. The figure 10 shows the result of one of these
tests on the real engine in transient conditions.

6. Conclusions and Forecast Objective

In this work, we showed how is possible to use a system
with precision constraints to realize either linear or on-off
Virtual Lambda Sensor. The results are encouraging even if
some optimizations are possible in different directions.

The first future improvement could be to find an exper-
imental data statistical analysis technique in order to iden-
tify the optimal data distribution to obtain a FIS with a max-
imum forecasting capability. Another future improvement
could be to develop a classifier with more classes in order to
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Figure 9. Trend of real Lambda values after
that we activated the control system; steady
state with 4600 rpm, WOT condition.

Figure 10. Trend of real Lambda values af-
ter that we activated the SST control system;
transient condition at 4600 rpm and WOT con-
dition.

obtain a more detailed information on Lambda values fore-
casting. A last step regards the implementation of several
FIS, with a minimum overlap, in order to optimize the fore-
cast capability of our system. This technique, used in soft-
ware engineering and for safety critical systems [9], could
allow us to yield systems more robust and with low sensi-
bility to noisy input data.
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