
HAL Id: hal-00181843
https://hal.science/hal-00181843

Submitted on 24 Oct 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

AutoMoDe - Model-Based Development of Automotive
Software

Dirk Ziegenbein, Peter Braun, Ulrich Freund, Andreas Bauer, Jan Romberg,
Bernhard Schatz

To cite this version:
Dirk Ziegenbein, Peter Braun, Ulrich Freund, Andreas Bauer, Jan Romberg, et al.. AutoMoDe -
Model-Based Development of Automotive Software. DATE’05, Mar 2005, Munich, Germany. pp.171-
177. �hal-00181843�

https://hal.science/hal-00181843
https://hal.archives-ouvertes.fr

Abstract

This paper describes first results from the AutoMoDe

(Automotive Model-Based Development) project. The

overall goal of the project is to develop an integrated

methodology for model-based development of automotive

control software, based on problem-specific design

notations with an explicit formal foundation. Based on the

existing AutoFOCUS framework [1], a tool prototype is

being developed in order to illustrate and validate the key

elements of our approach.

1 Introduction

Traditionally, the focus of automotive software

engineering is on the later and more detailed abstraction

levels, which deal strongly with implementation-related

issues. For lack of suitable notations, methodologies, and

integration between abstraction levels, more abstract

system descriptions typically take a back seat in the

design process. However, working at higher levels of

abstraction will be a key factor in tackling the prevalent

complexity issues in automotive software engineering:

• increasing functional complexity stemming from

software being the implementation technology of

choice for new innovative functionality as well as for

functionality being traditionally implemented in

mechanics etc.

• complex relations between design artifacts, such as

large number of variants in product families

• design chains spanning several technical disciplines

and organizations/companies

The impact of this complexity has led to the start of

several projects trying to define methods and tools to raise

the development of embedded automotive control

software to higher abstraction levels. For example, a

decade ago DaimlerChrysler started to tailor ROOM-

inspired concepts for body electronic systems in the

TITUS project [2]. In 1998, the French automotive

industry started the AEE project [3]. Both projects

resulted in a common European effort called EAST/EEA

[4] providing as one of the results an automotive

architecture description language (ADL) [5]. Currently,

the AUTOSAR development partnership [6] is up to ease

the development of automotive software mainly through

providing a standardized infrastructure and methodology.

As a result of these efforts, modeling means providing a

lot of feasible abstraction mechanisms are available.

Unfortunately, these modeling means cover only some

aspects of embedded automotive software design like

networks, control-algorithms, or software architecture,

while an accepted mature modeling framework is still

missing.

A major requirement for such a modeling framework is

the provision of several system abstractions tailored for

different stakeholders and different phases in the design

process. A methodology should provide support for easy

transitions between these abstraction levels. Such

transitions should be preferably tool-supported. Notations

and underlying models have to be well-integrated to

ensure consistency between different abstractions which is

crucial for a design process typically spanning several

companies.

In order to provide a modeling framework with tailored

abstraction levels, a well-defined operational model, and

formalized transformation steps, we propose the model-

based approach AutoMoDe - Automotive Model-based

Development.

The paper is organized as follows. Sec. 2 introduces the

AutoMoDe operational model with explicit data-flow and

discrete-time semantics. The different abstraction levels of

AutoMoDe and its graphical notations are presented in

Sec. 3. Sec. 4 introduces a classification of transformation

steps, intended to ease optimizing models and bridging

between system abstractions. Sec. 5 discusses experiences

made during a reengineering case study using the

AutoMoDe approach. Finally, Sec. 6 concludes the paper

and gives an outlook on future work.

AutoMoDe –Model-Based Development

of Automotive Software

Dirk Ziegenbein

Robert Bosch GmbH

Peter Braun

Validas AG

Ulrich Freund

ETAS Engineering Tools GmbH

Andreas Bauer, Jan Romberg, Bernhard Schätz

Institut für Informatik, TU München

Contact: dirk.ziegenbein@de.bosch.com

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

2 Operational Model

The operational model of AutoMoDe is an extended

version of the established model of the AutoFOCUS

framework [1], which features a message-based, discrete-

time communication scheme as its core semantic model.

Thus, each AutoMoDe model element can be understood

as a component or block exchanging messages with its

environment via logical channels with respect to a global,

discrete time-base. This computational model supports a

high degree of modularity (by making component

interfaces complete and explicit) as well as a reduced

degree of complexity (by abstracting from implementation

details such as detailed timing or communication

mechanisms):

• The message-based communication with explicit

data-flow enforces complete specification of a

component’s interface, and prohibits implicit

exchange of information, such as undocumented

access of global variables.

• The discrete-time communication avoids the use of

timing assumptions below the chosen granularity of

observable discrete (abstract) clock ticks. Real-time

intervals of the implementation are therefore

abstracted by logical time intervals. Within these

logical time intervals, no assumptions on the ordering

of message arrivals or on duration and delays of

message transfers are made.

Note that this communication model does allow for both

periodic and sporadic communication as required for a

mixed modeling of time-triggered and event-triggered

behavior. As shown in Figure 1, each channel in the

abstract model either holds an explicit value or the “-”

(“tick”) value indicating the absence of a message. Thus,

by reacting explicitly depending on the presence (or

absence) of a message, modeling of event-triggered

behavior is naturally covered by the AutoMoDe

description techniques.

One enhancement of AutoMoDe in comparison to the

AutoFOCUS operational model is the explicit support of

multi-rate systems, i.e. systems featuring signals with

different frequencies. Each message flow in AutoMoDe is

associated with an abstract clock. For a given flow, the

flow’s clock indicates either the frequency of message

exchange (periodic case), or a condition describing the

event pattern (aperiodic case). Syntactically, a clock is

simply a Boolean expression evaluating to logical “true”

whenever a message is present on the clock’s flow.

Specific operators such as “delay” or “when” allow for

well-defined sampling within a model of different abstract

clocks, i.e. signal frequencies. This concept of sampled

clocks originates from the field of synchronous languages

[7].

t

20

t+2

23

t+1

-

DoorLockControl

T4S:LockStatus

CRSH:CrashStatus

FZG_V:Voltage

T1C:LockCommand

T4C:LockCommand

T3C:LockCommand

T2C:LockCommand

FZG_V

Figure 1. Message-Based, Time-Synchronous Communication

Figure 2. Explicit signal sampling using a “when”-operator.

In the example depicted in Fig. 2, a “when” operator is

used to sample the stream of signals a down by a factor of

two. This factor is denoted by the Boolean clock

expression “every(2, true)”. “every(n, true)” is a macro

operator which yields a “true” value each nth tick of the

base clock (always “true”), and a “false” value otherwise.

Consequently, a’ is updated every second tick of the base

clock.

Obviously, the combination of a globally clocked

operational model with distributed automotive E/E

architectures featuring event-triggered, not tightly

synchronized communication media such as the CAN bus

poses some research questions. In [8], a proposal is

presented on how to use event-triggered media for firm

real-time deployment of globally clocked models with

comparatively small implementation overhead. However,

this topic will be subject of further investigation.

3 Abstraction Levels and Notations

Of central importance for the model-based approach of

AutoMoDe are the different system abstractions visible to

the designers and their supported views on the system (see

Fig. 3) as they determine the usability of the approach.

While the system abstractions are specifically targeted to

certain tasks and stakeholders in the design process, the

information offered in these views are abstracted from the

coherent AutoMoDe meta-model of the system. Thus,

consistency between abstraction levels is guaranteed.

The chosen system abstraction levels are similar to those

defined in [5], but are adapted to match the model-based

AutoMoDe development process. In the following, these

whe

F

b

a

c

a’

d

A

every(2, true)

B

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

system abstraction levels and their respective AutoMoDe

notations are introduced.

3.1 Functional Analysis Architecture

The Functional Analysis Architecture (FAA) is the most

abstract layer considered in AutoMoDe. The FAA

provides a system-level abstraction representing the

vehicle functionalities to be implemented in either

hardware or software. The FAA addresses the integration

of separately developed vehicle functions on the

functional level, i.e. implementation details and

qualitative requirements are not considered. This allows

for a system representation relatively easy to understand

and targeted at function developers and customers.

An FAA-level description is typically complete with

respect to the considered functionalities, and the

functional dependencies between them. It is then possible

to identify functional dependencies and potential conflicts

between vehicle functions, and the validation of

functional concepts based on prototypical behavioral

descriptions. Means to achieve these goals include rules

as well as model simulation. Based on the functional

structure and dependencies, rules identify possible

conflicts (e.g. two vehicle functions access the same

actuator) and suggest suitable countermeasures to resolve

them (e.g. introduce a coordinating functionality). The

simulation additionally considers the prototypical

behavioral descriptions. These descriptions are not

optimized for efficient implementation and abstract from

details such as concrete data types.

Figure 3. AutoMoDe Abstraction Levels.

System Structure Diagrams

The dominating notation used on the FAA level is called

System Structure Diagram (SSD). SSDs are used for

describing high-level architectural decomposition of a

system, similar to UML 2.0 component diagrams. SSDs

consist of a network of typed components with statically

typed message-passing interfaces (ports). Explicit

connectors (channels) connect ports and indicate the

direction of message flow between components.

Components can be either recursively defined by other

SSDs, or by different notations for behavioral description

(Sec. 3.2). On the FAA level, it may be perfectly adequate

to leave the detailed behavior unspecified. For an example

SSD, see Fig. 4.

Figure 4. System Structure Diagram (SSD) on the FAA level.

The component boundaries introduced by SSDs have

semantic implications as well – each SSD-level channel

introduces a message delay. Because of AutoMoDe’s

global discrete-time semantics, such implicit introduction

of delays is done to facilitate later design transformations

such as deployment.

Note that SSDs are not unique to the FAA, but will be

used on other abstract system levels as well (see following

sections).

3.2 Functional Design Architecture

The AutoMoDe system abstraction Functional Design

Architecture (FDA) is a structurally as well as

behaviorally complete description of the software part in

terms of actual software components that can be

instantiated in later phases of the development process.

For coarse-grained decomposition of the design, again

SSDs are used.

In contrast to FAA-level functionalities, the FDA-level

software components are formed in order to satisfy

qualitative requirements such as portability, performance,

maintainability, reuse, etc. Thus, the FDA is targeted to

software architects as well as for individual components

to software developers.

On FDA level, the atomic SSD are required to have a

well-defined behavior which can be specified using the

following three AutoMoDe notations.

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

Data Flow Diagrams

Data Flow Diagrams (DFD) define an algorithmic

computation of a component. Graphically, DFDs are

similar to SSDs (see Fig. 5): DFDs are built from

individual blocks with dynamically typed ports connected

by channels. Blocks may be recursively defined by

another DFD; the behavior of atomic DFD blocks is then

given either through a Mode Transition Diagram (MTD),

a State Transition Diagram (STD), or directly through an

expression (function) in AutoMoDe’s base language. For

example, block ADD in Fig. X is defined by the function

ch1+ch2+ch3. With this mechanism, it is possible to

define adequate block libraries for discrete-time

computations.

The default semantics of DFD communication is

“instantaneous” in the sense of synchronous languages

[7]. In the AutoMoDe tool prototype, instantaneous

communication primitives are accompanied by a causality

check for detecting instantaneous loops. Note that

computations “happening at the same time” in the FAA.,

FDA- or LA-level models are perfectly valid abstractions

of sequential, time-consuming computations on the level

of the Operational Architecture (OA) if the abstract

model’s computations are observed with a delay, such as

the delays introduced by SSD composition. The duration

of the delay then defines the deadline for the sequential

computation in the OA.

Mode Transition Diagrams

In order to represent explicit system modes and alternate

behaviors w.r.t. modes, Mode Transition Diagrams

(MTDs) are used. MTDs consist of modes, and transitions

between modes (see Fig.6). Transitions are triggered by

certain combinations of messages arriving at the MTD’s

component. The behavior of the component within a

mode is then defined by a subordinate DFD or SSD

associated with the mode (comparable to the composition

of FSMs and concurrency models in *charts [9]). As

illustrated by the example in Sec. 5, MTDs provide a

valuable means of architectural decomposition

specifically suited for embedded control systems.

The usage of explicit operational modes for architecture-

level decomposition has also been brought forward by

other authors [e.g. 10]. In addition to the basic idea of

using explicit notations for operational modes, our

approach focuses on the use of mode representations

spanning several abstraction levels and on transformations

between different mode representations suited for

different abstraction levels.

State Transition Diagrams

State Transition Diagrams (STDs) are extended finite

state machines similar to the popular Statecharts notation,

but with some syntactic restrictions for excluding certain

semantic ambiguities allowed by some standard

Statecharts dialects [11].

3.3 Logical and Technical Architecture

The Logical and Technical Architecture (LA, TA) is the

most implementation-oriented abstraction level supported

by the AutoMoDe approach. The LA mainly groups and

instantiates FDA-level components to clusters. The TA

represents target platform components (ECUs, tasks,

buses, message frames) used to implement the system.

The LA/TA abstraction level is targeted to system

architects and provides all means necessary to defining

the deployment of SW components to the target platform.

A cluster can be thought of as a “smallest deployable

unit”. Consequently, several clusters may be mapped to a

given operating system task, but a given cluster will not

be split across several tasks.

Cluster Communication Diagrams

The notation used for top-level definition of the LA

structure is called Cluster Communication Diagrams

(CCD). An example is depicted in Fig. 7. Like SSD

components, clusters have statically typed interfaces –

moreover, signal frequencies are made explicit on the LA

level. In contrast to SSDs and DFDs, Clusters may not be

defined recursively by other CCDs (but hierarchical DFD

descriptions are perfectly adequate for defining the

internal behavior of clusters). The graphical

representation of CCDs is similar to DFDs.

When transitioning from an SSD representation on the

FDA level to a LA-level CCD, some of the topmost SSD

hierarchies may be dissolved in favor of a flat CCD

representation. In order to represent high-level MTDs as a

network of clusters on the LA level, the AutoMoDe tool

prototype features an algorithm to transform an MTD into

a semantically equivalent, partitionable data-flow model.

Figure 5. An AutoMoDe DFD representing a longitudinal

momentum controller.

Figure 6. An AutoMoDe MTD specifying engine operation modes.

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

The type system at the LA level is extended by

implementation types which capture the platform-related

constraints associated with implementation. That means,

abstract data types such as int are typically mapped to

implementation, e.g. int16 or int32. Similarly, a

floating-point message on the FDA level may be mapped

to a fixed-point or integer message on the LA level.

For CCDs, well-definedness conditions can be specified

that may depend on the characteristics of a given

Technical Architecture. As an example, consider an

OSEK-conformant operating system as a target platform,

with inter-task communication between tasks using data

integrity mechanisms [12] and fixed-priority, preemptive

scheduling. In this framework, communication from

“slower-rate” clusters to a “faster-rate” cluster

necessitates the introduction of at least one delay operator

in the direction of data flow. On the other hand,

communication in the opposite direction (“fast-rate” to

“slow-rate” cluster communication) does not require

introduction of delays in the CCD. Consequently, CCD

well-definedness conditions may be adapted to the

specific target architecture considered for implementation.

3.4 Operational Architecture

The result of the deployment of SW clusters to the target

architecture is the starting point of the Operational

Architecture (OA). However, this abstraction level is not

part of the AutoMoDe tool prototype as there is already

commercial tool support for this level of abstraction, e.g.

ASCET-SD [13]. Thus, based on the deployment

decisions, the AutoMoDe tool prototype will generate

ASCET-SD projects for each ECU of the target

architecture.

All signals between clusters deployed to different ECUs

will be mapped to a communication network, e.g. CAN,

possibly considering an existing communication matrix.

In all generated ASCET-SD projects, additional

communication components have to be added which can

be configured according to the generated or supplemented

communication matrix.

4 Transformations

Besides adequate modeling means, the core of the

AutoMoDe approach is the investigation of and tool

support for model transformations. Three different types

of transformation steps are considered.

As stated above, automotive control software is rarely

developed from scratch. Reengineering is seen as the step

to extract the relevant information from a system

description on the implementation level in order to

describe the system on a more abstract level (FAA or

FDA). Two classes of reengineering steps are considered.

While “white-box” reengineering considers complete

software implementations (e.g. ASCET-SD models) of

functions (see case study in Sec. 5), “black-box”

reengineering transforms E/E architecture representations

like communication-matrices, which capture dependencies

between functions, to partial FAA level representations.

This “black-box” reengineering approach is currently

being validated with a body-electronics case study.

Refactoring is mainly seen as a structural transformation

on the same abstraction level. An example is the

integration of an independently designed control

algorithm into an FAA-level functional network. The

algorithm has to be restructured considerably because e.g.

other functions access the same actuator such that the

structural hierarchy of the control algorithm has to be

adapted. Other refactoring steps will replace an MTD by

several DFDs having explicit mode-ports, or change the

structural hierarchy in order to facilitate more efficient

implementation.

Refinement is the transformation from higher to lower

abstraction levels. Examples for refinement

transformations include the transformation of physical

signals to implementation signals (i.e. the choice of

encoding and data type), clustering of DFDs according to

their clocks neglecting their functional coherency and last

but not least the mapping of CCDs to ECUs and tasks.

5 Case Study

The above concepts (see Sec. 2 – 4) have been applied to

an extensive automotive case study of a four-stroke

gasoline engine control algorithm. This case study was

provided in terms of a detailed ASCET-SD model and has

been reengineered in significant parts using a first

AutoMoDe tool prototype along with the according

notations and underlying semantics.

Compared to ASCET, AutoMoDe provides a richer set of

control flow primitives. As it turns out, the AutoMoDe

notion of modes and MTDs is able to capture and

encapsulate implicit operation modes of the original

ASCET model. More so, implicit modes of ASCET

processes can be made explicit to the developer by using

MTDs, rather than control flow operators such as If-Then-

Else (see Fig. 8).

Figure 7. An AutoMoDe CCD representing a simplified engine

controller.

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

Figure 8: AutoMoDe component with an embedded MTD which consists

of two states: “FuelEnabled” and “CrankingOverrun”.

For example, a component “ThrottleRateOfChange”

determines the change rate of the throttle valve position

not only depending on its current and the desired position,

but also depending on very specific states of the entire

engine. More traditional approaches would suggest to use

conditional operators such as If-Then-Else to either

respond with a constant factor or to trigger a more

complex algorithmic computation for a more detailed

determination of the change rate. Modeling

“ThrottleRateOfChange” with modes, however, divides

the component in two states which are being modeled and

viewed separately, depending on the respective engine

state (see Fig. 8).

The introduction and use of modes in an AutoMoDe

models increases the consistency of the model by making

orthogonal modes explicit. This became strikingly

apparent in the case study where in the original model a

centralized software component emits a large number of

flags which altogether represent the global state of the

engine. Due to the high complexity of this central

component, it is unclear which disjunctive states or modes

exist at all, let alone isolate the model parts which are

active in a certain mode.

In contrast, MTDs offer a conceptually clear way to

represent state explicitly, rather than relying on implicit

control-flow dependencies. Moreover, the different modes

in MTDs can be used in order to determine a global mode

transition system which is then correct by construction.

The reengineered model being constructed in this case

study will be used to evaluate refactoring and refinement

steps in future.

6 Conclusion

The AutoMoDe approach combines the advantages of

having a thorough and consistent operational model with

the existence of well-defined system abstractions

specifically targeted to typical tasks in automotive

software development.

In order to support the typically costly and error-prone

tasks of bridging between abstraction levels or optimizing

system models, identified transformation steps will be

formalized and supported by the AutoMoDe tool

prototype.

7 References

[1] F. Huber, B. Schätz, G. Einert, Consistent Graphical

Specification of Distributed Systems, FME '97.

[2] J. Eisenmann et al., Entwurf und Implementierung

von Fahrzeugsteuerungsfunktionen auf Basis der

TITUS Client-Server Architektur; VDI Berichte

(1374), 1997, (in German).

[3] J. Migge et al., Embedded Electronic Architecture,

3rd. OSEK/VDX Workshop, Bad Homburg, 2000.

[4] ITEA EAST/EEA project, http://www.east-eea.net/.

[5] U. Freund et al., The EAST-ADL: A Joint Effort of

the European Automotive Industry to Structure

Distributed Automotive Embedded Control Software,

2nd Workshop on ERTS, Toulouse 2004.

[6] AUTOSAR Partnership, http://www.autosar.org/.

[7] Another look at real-time programming, Special

Section, Proceedings of the IEEE, 79(9), Sept 1991.

[8] J. Romberg et al., Loose Synchronization of Event-

Triggered Networks for Distribution of Synchronous

Programs. EMSOFT 2004, Pisa, Italy, Sept 2004.

[9] A. Girault et al., A Study of Hierarchical FSMs with

Multiple Concurrency Models, TR UCB/ERL

M97/57, UC Berkeley, 1997.

[10]P. Binns, S. Vestal, Formalizing Software Archi-

tectures for Embedded Systems, EMSOFT 2001.

[11]M.v.d.Beeck, A Comparison of Statecharts Variants,

Symposium on Formal Techniques in Real-Time and

Fault-Tolerant Systems (FTRTFT), 1994.

[12]S. Poledna, Th. Mocken, J. Scheimann, Th. Beck,

ERCOS: An Operating System for Automotive

Applications, SAE International Congress, 1995.

[13]ETAS Engineering Tools GmbH, ASCET User

Manual Version 5.0, 2004.

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

