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Abstract

We present a hardware architecture for a single-chip ac-
celeration of an efficient hierarchical collision detection al-
gorithm as well as simulation results for collision queries
using this architecture. The architecture consists of two
main stages, one for traversing simultaneously a hierar-
chy of discretely oriented polytopes, and one for intersect-
ing triangles. Within each stage, the architecture is deeply
pipelined and parallelized. For the first stage, we compare
and evaluate different traversal schemes for bounding vol-
ume hierarchies.

A simulation in VHDL shows that a hardware implemen-
tation can offer a speed-up over a software implementation
by orders of magnitude. Thus, real-time collision detection
of complex objects at rates required by force-feedback and
physically-based simulations can be achieved.

1. Introduction

Collision detection is a fundamental task in areas like
animation systems, virtual reality, games, physically-based
simulation, automatic path finding, virtual assembly simu-
lation, and medical training and planning systems.

In many of these systems, collision avoidance is the ul-
timate goal. Most approaches today are reactive, i.e., they
first place objects at a new trial position, then they check
for collisions, and then compute new forces or positions,
based on physical laws, so as to remove any collisions.

This approach poses very high demands on collision de-
tection, because it must perform many collision checks per
simulation cycle. A particularly demanding application is
force-feedback, where updates of about 1000Hz must be
done in order to achieve stable force computations. Since
collision detection is such a fundamental task, it is highly
desirable to have hardware acceleration available just like
3D graphics accelerators. Using specialized hardware, the
system’s CPU can be freed from computing collisions.

In this paper we present a new efficient architecture for
hierarchical collision detection of two rigid objects using
high-end ASIC technology.

We also present simulation results concerning its speed
and size, which show that an implementation in dedicated

hardware can speed up applications by at least an order of
magnitude.

2. Related Work

Considerable work has been done on hierarchical colli-
sion detection in software [2,3,6,9,10]. Some of the bound-
ing volumes (BVs) utilized are spheres, axis-aligned bound-
ing boxes (AABB), oriented bounding boxes (OBB), and
discretely oriented polytopes (DOP).

The first publications of work on dedicated hardware for
collision detection was presented in [11, 12]. They focused
on a space-efficient implementation of the algorithms, while
we aim at maximum performance in this paper. In addi-
tion, they presented only a functional simulation, while we
present a full VHDL implementation.

All other hardware-related research so far has tried to uti-
lize existing graphics accelerator boards (GPU) [1,4,5,7,8].
While earlier approaches, such as [8], can basically handle
only convex objects, later algorithms, such as [1, 7], have
extended these to more general cases such as unions of con-
vex objects or closed objects. The general class of “poly-
gon soups” can be handled by [4], but they use a hybrid ap-
proach where the graphics hardware only identified poten-
tially colliding sets.

All of the approaches using graphics hardware have the
disadvantage that they either compete with the rendering
process for the same hardware resource, or an additional
graphics board must be spent for collision detection. The
former slows down the overall frame rate considerably,
while the latter would be a tremendous waste, since most
of the resources of the hardware would not be utilized at
all. Furthermore, most of these approaches work in image
space, which reduces precision significantly.

3. The Algorithm

3.1. Hierarchical Collision Detection and Bound-
ing Volumes

In this paper we concentrate on hierarchical collision
detection. This avoids checking every triangle of an ob-
ject A for collision with all triangles of object B by hi-
erarchically grouping triangles (or other graphical primi-
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Figure 1. Our DOP overlap test gains its speed by trans-
forming DOP Q into O’s reference frame F(O). The tight-
ness loss is shown in dark grey. Obviously, each d′ is
determined by exactly three original d’s.

tives). This yields a so-called bounding volume hierarchy
(BVH), where each leave corresponds to one triangle and
inner nodes correspond to groups of triangles. In order to
achieve a feasible hardware design, we use a binary tree
here, but n-ary trees could be considered as well. Each node
of the tree stores a bounding volume (BV) that encloses all
triangles in its group. Note that only leaves explicitely store
any triangles.

In this work, we use k-DOPs as BVs because they were
proven to yield very fast collision queries by extensive
benchmarking in software [10], and are likely to perform
well in hardware.

If two objects are checked for intersection, both hierar-
chies are traversed starting at both roots. If their BVs inter-
sect, then the next level of BVs is checked. Since two ob-
jects will usually intersect only locally in a very small num-
ber of primitives, this yields a significant speed-up in the av-
erage case. In practical cases, the complexity is in O(logn)
(n = number of primitives) because only a small diagonal
“slice” of constant width down the BVH needs to be vis-
ited.

3.2. k-DOPs

As motivated above, we use k-DOPs as BVs. A k-DOP
consists of k distances d j along pairwise linearly indepen-
dent vectors B j. Each of these vectors forms the normal of a
halfspace. These vectors are chosen such that they form k/2
pairs, each of which defines a so-called slab [10]. The in-
tersection of these slabs forms the BV:

D =
\

j=1,...,k

Hj, Hj : B jx−d j ≤ 0 (1)

The orientation matrix B is fixed and equal for all objects.
This yields a very space-efficient description for every k-
DOP: only the k numbers d j need to be stored. To avoid
rounding errors we use single-precision floating-point num-
bers.

d

d i e i

e

0
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Figure 2. Two objects overlap, iff their projections inter-
sect on every axis.

Each object O has its own reference frame (RF) F(O)
that describes its rotation RO and translation TO with respect
to world coordinates. When an object moves, only RO and
TO have to be updated. So checking two DOPs for intersec-
tion requires transformation of one of them into the RF of
the other.

Assume O and Q to be two objects. Let DQ(Q) denote
the minimum DOP which bounds Q with respect to the ori-
entation matrix B in Q’s own reference frame F(Q). Since
calculating DO(Q) is prohibitively expensive, we calculate
DO(DQ(Q)), which is the minimum DOP in F(O) bound-
ing DQ(Q). Naturally, this incurs a loss of the BVs tightness
to the underlying geometric structure.

Assume M to be the rotation and o the translation which
transforms F(Q) into F(O). Then, we need to find distances
d′

i which bound M ·DQ(Q)+o minimally.
Applying M and o to (1) yields

h j : b jx−d j +b jo ≤ 0, where b j = B jM−1 (2)

Assume DO(DQ(Q)) is the intersection of

Hi : Bix−d′
i ≤ 0, i = 1, . . . ,k (3)

Then, each d′
i corresponds to exactly one vertex of DQ(Q)

and therefore to three d j (see Fig. 1). These correspon-
dences are the same for all nodes in an object’s DOP hi-
erarchy. So they can be determined at startup.

Let jl , 0 ≤ l ≤ 2, be the indices corresponding to di.
Then, 

b j0
b j1
b j2


x−


d j0

d j1
d j2


+


b j0

b j1
b j2


o = 0 (4)

bix−d′
i = 0 (5)

Equating (4) and (5) yields

d′
i = Ci j1d j1 +Ci j2d j2 +Ci j3d j3 + ci (6)

where C and c are chosen to be Ci j := Bi

(b j0
b j1
b j2

)−1
and

ci := bio. Both are the same for all nodes in an object’s DOP
hierarchy; thus, they can be calculated at startup.

Checking DO(DQ(Q)) and DO(O) for intersec-
tion amounts to projecting them on the k axes given by
B. They overlap if and only if there is no axis on which
they are non-intersecting. Since there are always two an-
tiparallel axes, we need to take that into account (see
Fig. 2).
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If e denotes the k-vector describing DO(O), then this test
can be expressed as

overlap ⇔� ∃i ∈ [1,
k
2
] : ei+ k

2
> −d′

i ∨d′
i+ k

2
> −ei (7)

3.3. Triangle Intersection

Once the BVH traversal reaches two leaves, we need to
test the enclosed triangles for intersection. Here, we utilize
the same algorithm that was already proposed in [11]. It
transforms both triangles so that one of them becomes the
“unit” triangle. That way, the checks to be performed on the
other triangle become very simple and standardized.

For sake of reference, we just give one of the criteria for
a non-intersection of one edge:

a < 0 ∨ b < 0 ∨ a+b > rz (8)

where

a = PxQz −QxPz

b = PyQz −QyPz
(9)

with PQ being an edge of the triangle, and r = Q−P. The
other criterion is very similar.

4. The Architecture

To achieve maximum possible speed we assume to be
using high-end hardware components: our target ASIC
technology is a NEC UX5 CB-130 in 0.095µm-copper-
technology. With a maximum of 61 gates in a row it can
establish up to 800 MHz clockrate, which is our target fre-
quency for the simulations (Sect. 5). Furthermore, we
assume DDR2 memory modules.

As BVs we chose to use 24-DOPs because extensive
software benchmarking has shown 24 axes to be a good
compromise of tightness and effort.

4.1. Design of the DOP Intersection Test

Our DOP intersection test is the combination of criterion
(7) with (6), which amounts to the function

d̃′
i = dkCi0 +dmCi1 +dnCi2 + ci + ei+ k

2
(10)

This can be implemented as the following three-staged
macro-pipeline, which we call DOPTRF unit (because it
computes basically one row of the DOP transformation, i.e.,
Equation 6, plus part of the test, i.e., Equation 7):
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Figure 3. Architecture for DOP intersection testing.

The macro-pipeline stages were refined furthermore re-
sulting in a pipeline of 15 stages and therefore an initializa-
tion delay of 15 clock cycles.

We use 24 DOPTRF units in parallel, and their results
are NOR-reduced to check the criterion. To fill the pipeline
we use a 756-bit wide bus from the DDR2-RAM. A hyper-
multiplexer (D KLMSEL) routes the correct inputs of the
DOP to the DOPTRF units, which will then be transformed
into the reference frame of the other DOP (see Fig. 3). A
D CNTR unit controls which DOP pair will be processed
next (see Section 4.3).

4.2. Design of the Triangle Intersection Test

Using homogeneous coordinates, the affine transforma-
tions needed for the triangle intersection test (see Sec-
tion 3.3) can be represented as 3×4 matrices.

The T CHECK unit that performs the intersection test
gets as input one triangle V i

A = [xiyizi1] ,1 ≤ i ≤ 2, the pre-
computed matrix MB := [mi j], and MAB :=

[
bi j

]
that trans-

forms O’s reference frame into Q’s.

Calculating Ṽ i
A = MB ×MAB ×V i

A is done in the first two
of 5 macro pipeline stages. These will be detailed in the fol-
lowing.
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Figure 4. Architecture for Triangle Intersection

1st macro stage: The calculation of Mb =
[
b′i j

]
= MB×MAB

is split into three substages (marked with different brack-
ets):

b′i j = {[(bi1m1 j)+(bi2m2 j)]+(bi3m3 j)} (11)
b′i4 = {[(bi1m14)+(bi2m24)]+ [(bi3m34)+(bi4)]} (12)
i, j = 1, . . . ,3

The forth row of the resulting matrix is always [001]. These
substages are further divided into microstages to gain max-
imum clock frequency. With this refinement, the first macro
stage consumes 36 multiplication and 24 addition floating
point units and takes 15 clock cycles delay to produce the
first result.

2nd macro stage: Calculating Ṽ i
A = Mb ×V i

A works very
similarly. The resulting substages are:

Ṽ i = {[(b′i1V i
x)+(b′i2V i

y)]+ [(b′i3V i
z )+(b′i4)]} (13)

Dividing this into microstages yields 27 multiplications, 27
additions, and another 15 clock cycles delay.

3rd macro stage: Before checking the edges of T̃A for inter-
section with the unit triangle, we need to calculate a and b
according to Eq. 9 for all three edges. Therefore, we need to
calculate PxQz, QxPz, PyQz, and QyPz first. Additionally, we
calculate rz. This takes 12 multiplications, 3 additions, and
8 clock cycles. Calculating a and b from these terms takes
another 6 additions and 4 clock cycles.

4th macro stage: For all three edges we now need to cal-
culate a + b− rz. After division into microstages this con-
sumes 6 additions and 8 cycles.

Figure 5. For benchmarking and testing, a number of
different test objects with several polygon complexities
were used.

5th macro stage: Here, we check the signs of a,b, and a +
b− rz for all edges. This needs one clock cycle.

Overall pipeline: Putting all stages together, we get a
pipeline with 52 clock cycles delay.

To fill the pipeline with data we need to buffer the trian-
gle addresses, look them up in the DDR2 RAM which con-
tains vertex data and the transformation matrices, and divide
the data into two sets (because all edges of TA have to be
checked against TB and vice versa). The whole TRI UNIT
is presented in Fig. 4.

4.3. Control

When the two object hierarchies are traversed symmetri-
cally, each intersecting DOP pair results in 4 child pairs to
be checked for intersection. However, other ways of travers-
ing both BVHs can be more efficient. So far, we have com-
pared those two possibilities that allow a small control unit
and reduce the number of necessary memory accesses and
transformations.

Traversing two BV hierarchies simultaneously and sym-
metrically basically amounts to traversing a 4-ary tree of
BV pairs.

Let us denote the BVs in one tree by A, B, C, etc., and
the BVs in the other tree by 1, 2, 3, etc.

Using a FIFO for determining the next DOP pair to be
tested for intersection results in a plain breadth-first search
on the collision tree. The processed DOP-sequence is
A1 - B2 B3 C2 C3 - D4 D5 E4 E5 - D6 D7 E6 E7 - F4 F5
G4 G5 - F6 F7 G6 G7

This can easily be optimized so that between testing two
nodes of the same depth only one DOP needs to be fetched
from memory. The resulting sequence is
A1 - B2 B3 C3 C2 - D4 D5 E5 E4 - E6 E7 D7 D6 - F6 F7
G7 G6 - G4 G5 F5 F4
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Figure 6. Top: Comparing LIFO and FIFO controlled in-
tersection testing shows that finding all intersecting
primitives takes equally long. Bottom: Our comparison
shows that LIFO control is far superior to FIFO control
when finding the first intersecting primitive.

Using a LIFO the sequence depends on the length of
the pipeline. If we assume the pipeline to be of length one
(for simplicity of presentation) we receive a plain depth first
search.
A1 - B2 - D4 D5 E5 E4 - B3 - E6 E7 D7 D6 - C2 - G4 G5
F5 F4 - C3 - F6 F7 G7 G6

If we push and pop nodes pairwise, we can easily reduce
the number of necessary memory accesses as we did before.

Note that our DOP transformation pipeline has 15 stages.
Thus, the traversal is not plain depth-first in the strictest
sense. Instead, it proceeds along several paths in a depth-
first manner.

5. Simulation Results

For benchmarking our architecture we used three differ-
ent objects each of which in several polygon complexities
(see Fig. 5). For each of them, two copies are placed at
different distances from each other and with different ro-
tations. For each constellation, the collision detection query
time is determined.
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Figure 7. Although our hardware architecture imple-
ments a traversal scheme (LIFO’) that is not quite a
LIFO, it uses still only very few memory, compared to
a FIFO.

Comparing the performance of LIFO and FIFO control,
we see that finding all intersecting primitives takes equally
long (see Fig. 6a).

Since using a LIFO corresponds to depth-first search on
the collision tree, finding the first collision is usually much
faster than using a FIFO. Our simulation results verify this
(see Fig. 6b).

Another disadvantage of using a breadth-first search is
the size needed for the memory structure. In the worst case,
when all nodes need to be checked for intersection we must
store them all in the FIFO before any leaves are checked
and the queue size reduces.

With a strict depth-first traversal, the LIFO would need
to be only as large as the depth of the BVH. However, as
explained in Section 4.3, our traversal is not strictly depth-
first. Fortunately, memory usage of the LIFO in our design
seems to behave just as well (see Fig. 7).

Fig. 8 shows that our collision detection architecture,
when implemented on a NEC CMOS ASIC (CB-130 UX5,
800 MHz), is up to 1000 times faster than the software im-
plementation in determining all intersecting triangles of two
objects. The software times were obtained on a 1GHz Pen-
tium 3.

As mentioned above, a recent trend in computer graph-
ics is to implement computationally intensive algorithms on
the GPU. However, according to [5] it seems that an imple-
mentation on the GPU cannot gain a significant speed-up
over a pure CPU-based implementation. This is probably
because the GPU is a streaming architecture.

6. Conclusion and Future Work

In this paper, we have presented, to our knowledge, the
first simulation in VHDL of a hardware architecture for col-
lision detection.
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Figure 8. Comparison of software with hardware imple-
mentation at various distances and polygon complexi-
ties. Our collision detection architecture is up to 1000
times faster in determining all intersecting triangles of
two objects than the software implementation running
on a 1GHz Pentium 3.

We showed that hardware acceleration can be an effec-
tive way to speed up hierarchical collision detection. Us-
ing several pipelining and parallelization techniques, we
achieved a speed-up of factor 1000 in VHDL simulations
compared to a software implementation.

We also showed that, for simultaneous traversal of
BVHs, a LIFO-controlled pipeline is far more space effi-
cient than a FIFO-controlled one, without loss of process-
ing speed.

Since the present paper is one of the first to look at hard-
ware acceleration of collision detection, we believe there
are many avenues for further research.

An important concern is the reduction of the bandwidth
in order to make the bus from chip to memory smaller. Cur-
rently, we are investigating discretization and compression
of the BVs. Furthermore, we will evaluate different kinds of
primitives and BVs.

Another important issue is collision detection of de-
formable objects. It remains an open problem exactly which
algorithms and data structures are best suited for hardware
implementation.

Since we use a pipelined dataflow architecture, advanced
pipelining techniques like speculative execution could be
applied to reduce the number of pipeline stalls.
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