
HAL Id: hal-00181834
https://hal.science/hal-00181834

Submitted on 24 Oct 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

C Based Hardware Design for Wireless Applications
Andres Takach, Bryan Bowyer, Thomas Bollaert

To cite this version:
Andres Takach, Bryan Bowyer, Thomas Bollaert. C Based Hardware Design for Wireless Applications.
DATE’05, Mar 2005, Munich, Germany. pp.124-129. �hal-00181834�

https://hal.science/hal-00181834
https://hal.archives-ouvertes.fr

C Based Hardware Design for Wireless Applications

Andres Takach Bryan Bowyer Thomas Bollaert

andres_takach@mentor.com bryan_bowyer@mentor.com thomas_bollaert@mentor.com

Mentor Graphics Mentor Graphics Mentor Graphics

Abstract
The algorithms used in wireless applications are
increasingly more sophisticated and consequently more
challenging to implement in hardware. Traditional design
flows require developing the micro architecture, coding
the RTL, and verifying the generated RTL against the
original functional C or MATLAB specification. This
paper describes a C-based design flow that is well suited
for the hardware implementation of DSP algorithms
commonly found in wireless applications. The C design
flow relies on guided synthesis to generate the RTL
directly from the untimed C algorithm.

The specifics of the C-based design flow are described
using a simple DSP filtering algorithm consisting of a
forward adaptive equalizer, a 64-QAM slicer and an
adaptive decision feedback equalizer. The example
illustrates some of the capabilities and advantages offered
by this flow.

1. Introduction

The growth in wireless communication has been fueled
by the application of modern DSP algorithms that enable
the adaptation to varying communication channel
characteristics and efficient usage of channel bandwidth.
Wireless communication are present in consumer
applications such as cell phones and local area networks
and span a wide range of data rate and channel
requirements.

The computational nature of DSP algorithms used in
wireless applications are well suited to such a design
methodology. Figure 1 shows how the proposed
methodology fits into existing flows. The main difference
compared to a traditional design flow is the replacement of
the manual transformation of the C into RTL with an
automated synthesis flow, where the designer guides
synthesis to generate the micro architecture to meet the
desired performance/area goals. The C synthesis product
used in this paper is Catapult C. Synthesis generates the
RTL with detailed knowledge of the delay of each

component to eliminate the guess work that is otherwise
unavoidable when the micro architecture and RTL are
generated manually. The advantages of an automated C-
based synthesis flow are reflected both in significantly
reduced design times as well as higher quality of designs,
because a variety of micro architecture can be rapidly
explored.

Figure 1: C-Based Design Flow

The typical design flow for implementing DSP
algorithms starts with writing the algorithm at a functional
level using languages such as MATLAB, C or a
combination of the two languages (C here is used to refer
to both C and C++). Due to its faster execution speed, C is
typically preferred over MATLAB for modules being
implemented in hardware. These modules are often the
most computationally intensive, making them the most
demanding to simulate.

In many cases, algorithms are initially written using
floating point arithmetic and are then numerically refined
to use finite-precision arithmetic. The refined algorithms
are bit-accurate specifications.

In general, the effort of moving from a bit-accurate
algorithmic functional description to a synthesizable
algorithmic C implementation model is relatively low. No
complexities of timing or concurrency or target
technology are encoded in these models. To verify the
refined C models are simulated against the original
MATLAB/C models.

For each C algorithmic model the designer explores
different architectures by directing how data will move in
an out of the block (interface synthesis), mapping arrays to

MATLAB/C
(floating-point)

MATLAB/C
(fixed-point)

uArchitecture
Design

RTL
Coding

Algorithmic
Synthesis

RTL Synthesis
and Verification

TRADITIONAL FLOW

C-BASED FLOW

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

memories, and deciding how much parallelism is required
to meet the throughput/latency goals. In traditional flows,
defining the architecture and generating the RTL from the
C model is done manually, a process that may required
several months to complete. In a C based synthesis flow,
the architecture definition and the generation of RTL is
often accomplished in a matter of days to weeks.

Simulation is used for individual blocks or to debug
designs, but in general is too slow to perform functional
verification of the system. The generated RTL can be used
to obtain an FPGA prototype of the RTL that is then used
for functional verification.

If the FPGA prototype of the RTL is not sufficiently
fast enough to allow “at-speed” emulation of the ASIC
block, a new FPGA design can be rapidly generated that
does match the speed of the ASIC design. Using such a
strategy, the designer can perform functional field testing
to validate the algorithm(s) used or validate the RTL for
other blocks of the design or other components of the
system.

The paper is organized as follows. Section 2 presents
an overview of algorithmic C synthesis and the
transformations that are essential in that process. Section 3
provides an introduction to important issues that need to
be taken into account when coding the C algorithm for
synthesis. Section 4 outlines the example DSP algorithm
and provides much of the C behavior for the design
including a templatized class for complex numbers based
on fixed-point arithmetic. Section takes the algorithm
through architectural exploration to generate RTL with
certain performance goals and presents the result for a
number of architectures. The paper closes with
conclusions that can be drawn from our work.

2. Algorithmic C synthesis

The synthesis flow starts with a purely algorithmic C
specification. The absence of explicit timing or
concurrency makes algorithmic specifications far more
compact and implementation independent than traditional
RTL or “behavioral” specifications written in languages
such as VHDL, Verilog or SystemC.

The hardware architecture is obtained by applying
architectural directives during synthesis. Architectural
directives provide a mechanism to specify high level
decisions on how the design communicates with the
outside world, how data is stored and how parallelism is
exploited to obtain the desired performance. For example,
in the algorithmic C, the input data is passed when the
function is called, and the “outputs” of the function are
available to the caller when the function returns. During
synthesis, the designer specifies through interface
synthesis directives how the data is transferred from and to

the design.
The main architectural transformations that are used to

generate a hardware architecture from an algorithmic C
specification include:
• interface synthesis
• variable/array mapping
• loop pipelining
• loop unrolling
• scheduling.

The transformations are described in more detail in the
following sections.

2.1 Interface synthesis

Interface synthesis converts the way the C function
communicates with the outside world. There are a number
of architectural transformations that take place that allow
writing the C specification in such a way that does not
require embedding features of the desired architecture in
the source. The transformations include:
• An optional start/done handshake protocol is added to

the design
• The individual C function arguments are mapped to a

variety of resources such as memories, buses, FIFOs,
handshaked registers etc.

• The data transfer bitwidth for any of the arguments is
specified

• Arrays accesses over an index may be converted into
accesses over time. For example, an array “uint10
x[1024]” may generate a port of width 10 bits that is
read over time throughout the execution of the
algorithm to access the different x[i]. The environment
then streams in the data in the required order, most
commonly in increasing or decreasing index order.

2.2 Variable/array mapping

Interface or local variables or arrays may be mapped to
memories or may be split into registers. Smaller arrays are
typically mapped to registers while larger arrays are
typically mapped to memories. The required read and
write bandwidth of the memory depends on the algorithm
and the performance requirements on the design.

2.3 Loop pipelining

Loop pipelining provides a way to increase the
throughput of a loop (or decreasing its overall latency) by
initiating the (i+1)th iteration of the loop before the ith

iteration has completed. Overlapping the execution of
subsequent iterations of a loop exploits parallelism across
loop iterations. The number of cycles between iterations of
the loop is called the initiation interval.

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

In many cases loop pipelining may improve the
resource utilization, thus increasing the performance/area
metric of the design.

2.4 Loop unrolling

Partial or full unrolling of a loop exposes parallelism
that exist across subsequent iterations of the loop. In some
cases, partial unrolling may also be used in a coordinated
way with memory mapping and interface synthesis to
increase the effective bandwidth for data transfer. For
example, unrolling may expose the possibility of
accessing of even and odd elements of an array as one
word when it is mapped to memory.

2.5 Scheduling

Scheduling is the focal point of architectural
exploration. It transforms the sequential specification into
a architecture with a well defined cycle-by-cycle behavior.
It takes into account required synthesis directives such as
the clock period and the target technologies. In addition, it
takes into account cycle and resource constraints that are
either explicitly provided by the user or implied by
interface synthesis directives, variable/array mapping
directives and loop pipelining/unrolling directives.
Scheduling selects among combinational, sequential and
pipelined components that implement the operations in the
algorithm.

3. Coding C for synthesis

In general, it is best to start from simpler and more
compact code. It is also important to understand the
hardware implications of different C/C++ constructs. For
instance, memory allocation/deallocation (malloc, free,
new, delete) is not supported. In this Section we highlight
some general guidelines for coding C for synthesis.

The function for the design is designated as the top-
level design using a pragma. Arguments of the function
are used by interface synthesis to generate the appropriate
ports. Arguments such as “int *x”, or “int x[10]” or “int
&x” are treated as in, out, or inout depending on whether
the object pointed at is only read, only written or, both
read and written. Non pointer arguments such as “int x”
are treated as input ports and read at the start of the
execution of the algorithm.

3.1 Bit-accurate datatypes

Hardware designers are accustomed to bit-accurate
datatypes in hardware design languages such as VHDL
and Verilog. The C language defines a number of integral
types and floating-point types. While floating-point types

are useful for simulating DSP algorithms, they are
impractical for most hardware implementations. Catapult
C supports the native C integer types as well as bit-
accurate integer and fixed-point types. Native C integer
types provide signed and unsigned datatypes of bitwidths
1 (bool), 8 (char), 16 (short), 32 (int), 64 (long long). Bit
masking, shifting or C bitfields may be used to model and
synthesize bitwidths from 1 to 64 with the native C integer
types.

Catapult C supports several C++ templatized classes
that encapsulate bit-accurate behavior for integer and
fixed-point types:
• Limited precision integer types: SystemC’s sc_int/

sc_uint [4] and Catapult C’s mc_bitvector. They are
limited to 64-bits and are relatively fast to simulate.

• Arbitrary-length integer types: it supports arbitrary
bitwidths making the semantics far cleaner as operations
return full (integer) precision:
• SystemC’s sc_bigint/sc_biguint: much slower
simulation than limited-precision integer types.
• Catapult C’s mc_int [3]: 3x to 100x faster simulation
than SystemC integer types. It also has cleaner synthesis
semantics than SystemC’s integer types.

• Arbitrary-length fixed-point type: sc_fixed/sc_ufixed.
They model fixed point datatypes with a variety of
quantization and overflow modes. Slower than
sc_bigint/sc_biguint.

3.2 Coding bitwidths

Specifying the actual bitwidth is mostly required for
interface variables. It is often possible to take an algorithm
written with C built-in integral types and only constrain
the bitwidths of some variables at selected places:
• at the interface: if a 17 bit signed integer is required, we

need to use int17 (part of mc_int) or sc_int<17> or
sc_bigint<17> (SystemC datatypes).

• force a certain precision where synthesis is not able to
reduce the bitwidth thorough its dataflow analysis. For
example: the casting to int17 in the expression “a =
(int17) (a + b*c)” would allow the reduction of variable
“a” from a 32 bit integer (assume “a” was declared int)
to a 17 bit integer.
Automatic bit reduction minimizes the changes

required to generate optimized RTL from an existing C
algorithm. It also makes writing of parameterized designs
easier and less error prone. A typical example is a loop
with a constant bound that depends on template
parameters or constants that come from a “#define”
statement in the source. The example C code is shown in
Figure 2 where the minimum bitwidth required for loop
variable i depends on the template parameter N.

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

Figure 2: Example where minimum bitwidth of i
depends on template constant

It is important to roughly know what bitwidths are
expected as synthesis may not always be able to perform
the level of analysis of an experienced designer. Such
situations are normally found by examining the bill-of-
materials report, the critical-path report, or by careful
examination of the schedule (Gantt chart) as operations
with long delays stand out. Cross probing from the reports
or the Gantt chart to the source provides a quick
mechanism to find out which expression or variable was
not reduced in bitwidth.

Integer are often used to implement fixed-point
arithmetic by using explicit calls to functions that perform
rounding and saturation. Using integer to model fixed-
point requires careful attention to the position of the
implicit fixed-point.

SystemC provides signed and unsigned fixed-point
datatypes that provide all the arithmetic operators and
rounding/saturation functionality. For example, and
sc_fixed<8,3,SC_RND,SC_SAT> is a fixed point number
of the form bbb.bbbbb (8 bits of width, 3 bits integer) and
with quantization mode set to SC_RND and overflow
mode set to SC_SAT. The default modes (as when the
sc_fixed is declared as sc_fixed<8,3>) is SC_TRN (simple
truncation) and SC_WRAP (no saturation).

4. Case study: 64-QAM decoder

Multilevel quadrature amplitude modulation (M-QAM)
[1][2] is used in many digital communication applications
such as modems to efficiently and reliably use the
communication channel. The digital signal is coded in
levels, both in-phase and quadrature components leading
to a two-dimensional constellation. The number of
constellation points represent the number of values that
may be coded in a symbol. For our design, we have an 8x8
constellation resulting in 64 codes or six bits of
information per symbol.

In most communication applications the channel
properties are not known in advance and in fact vary with
time. Adaptive filtering is used to equalize the channel
properties and to correct for inter symbol interference

(ISI). The typical arrangement is shown in Figure 3. The
feed-forward equalizer (FFE) performs channel
equalization, while the decision feedback equalizer (DFE)
corrects for the ISI from the N previously received
symbols. The error signal is used to update the coefficients
of the adaptive filters. We used the sign-LMS (least mean
squared) adaptive algorithm for our example.

The input signal is complex, representing the in-phase
and quadrature components of the received signal. All
filters operate with complex data and have complex
coefficients.

Figure 3: Block diagram for Equalized QAM decoder

For simplicity, we have not implemented details of how
the training sequence is generated or blind adaptation is
performed. Also we have not considered timing recovery
within our design.

The FFE is T/2 spaced (taking two new inputs every
symbol period) and has eight taps. The DFE is T spaced
and has 16 taps. The filter coefficients are complex and
have 10 bits of precision.

4.1 Coding of the algorithm

The algorithm is written based on the block diagram
shown in Figure 3. The first version of such an algorithm
is typically written using floating point arithmetic. Once
the algorithm is validated, the algorithm can be refined to
use fixed-point datatypes. The coding of the algorithm
using fixed-point datatypes is shown in Figure 4. The
algorithm is written so that the various bitwidths can
easily be set by changing the definition of a few constants.
Written the algorithm in a parametrized manner simplifies
precision exploration and facilitates future reuse of the
algorithm.

The process of minimizing the precision of the
arithmetic requires knowledge of communication theory
and DSP hardware design [5] as well as empirical
(simulation based) analysis and validation. For the QAM-
decoder, quantization of each computation is a source of
noise that contributes to the overall mean-squared error at
the input of the QAM slicer. The maximum mean-squared
error that can be tolerated depends on the required bit-

template<int N>
int f(int *x) {

int a = 0;
for(int i=0; i < N; i++){

a += x[i];
}
return a;

}

64-QAM
Slicer

Feed Forward
Equalizer

Decision Feedback
Equalizer

+

+

-
+

+ -
e(n)

y(n)x(n)

e(n)

e(n)

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

error rate. In addition to quantization noise, errors due to
overflow need to be taken into account. The focus here,
however, is in the hardware generation from a numerically
refined algorithm.

The algorithm was written using a datatype that
encapsulates complex arithmetic. The use of such a
datatype helps to make the algorithm specification more
compact and easier to understand but otherwise does not
affect the synthesis process presented here.

The complex datatype is named sc_complex as it uses
the sc_fixed datatype to represent the real and imaginary
components. The sc_complex class was written by the
authors (not part of the SystemC datatypes) and is not
shown here due to space constraints. It is templatized
much the same way as the sc_fixed datatype is.

Every call to the function qam_decoder takes two new
inputs and computes a new 6-bit output. The arrays that
store the tap values and the coefficients are declared static
so that the values are preserved between calls to the
function.

The various loop were given labels (part of C/C++) to
facilitate the discussion on what loops will be transformed
when doing architectural exploration. The design has a
total of six loops (two for filter computation, two for
adaptation, two for shifting the tap values). The “#define”s
for the constants FFE_W, DFE_W, FFE_C_W, DFE_C_W
are not shown but are all set to 10.

The loop nfe (dfe is similar) is a simple loop that
implements an FIR filter. The coefficients of the nfe filter
are updated in the loop ffe_adapt using the current error
“e” and the last nffe “x” samples (inputs to the nfe filter).
The ffe_shift loop shifts the “x” samples two places to
make room for the two new input samples that are
provided in the next invocation of qam_decoder.

5. Results

The target design is a 5 MBaud (30 Mbps) design using
a 100MHz clock using an specific ASIC technology. In
addition, we want to explore other designs to show how C
synthesis may be used to rapidly generate various
architectures.

The QAM_decoder function generates one output
(symbol) for every invocation of the function. In order to
meet the throughput requirements, the algorithm should
take 20 or fewer cycles to compute a new output. An
inspection of the algorithm reveals that a sequential
execution of the six loops alone would take
8+16+8+16+3+15 = 66 cycles, roughly three times slower

than our goal.
In order to get a quick overview of the design, we run

synthesis with the default architectural constraints (loop
merging enabled, no loop unrolling/pipelining). The result
is a design with a latency of 35 cycles. It turns out that

#pragma design top
void qam_decoder(sc_complex<X_W,0> x_in[2],

uint6 *data) {
const int nffe = 8;
const int ndfe = 16;
const sc_fixed<FFE_C_W,0> mu_ffe =

(sc_fixed<FFE_W+2,2>)1 >> 8;; // pow(2, -8)
const sc_fixed<DFE_C_W,0> mu_dfe =

(sc_fixed<DFE_W+2,2>)1 >> 8;; // pow(2, -8)

// coeffs for forward and decision equalizers
static sc_complex<FFE_C_W,0> ffe_c[nffe];
static sc_complex<DFE_C_W,0> dfe_c[ndfe];
static sc_complex<X_W,0> x[nffe];
static sc_complex<4,0> SV[ndfe];
static sc_complex<FFE_W,0> e;

x[0] = x_in[0]; x[1] = x_in[1];

sc_complex<FFE_W+1,1> yffe = 0;
nfe: for(int k=0; k < nffe; k++)

yffe += x[k]*ffe_c[k];// forward equalizer
sc_complex<DFE_W+1,1> ydfe = 0;
dfe: for(int k=0; k < ndfe; k++)

ydfe += SV[k]*dfe_c[k];// decision feedback equalizer

sc_complex<FFE_W+1,1> y = yffe - ydfe;// equalizer output

// 64-QAM slicer
sc_fixed<4,0> offset = 0; offset[0] = 1; // pow(2,-4)
sc_fixed<3,0> r = (sc_fixed<FFE_W,0,

SC_RND_ZERO,SC_SAT>) (y.r() - offset);
sc_fixed<3,0> i = (sc_fixed<FFE_W,0,

SC_RND_ZERO,SC_SAT>) (y.i() - offset);
SV[0] = sc_complex<3,0>(r,i) +

sc_complex<4,0>(offset, offset);
sc_complex<FFE_W,0> e = SV[0] - y;
sc_fixed<6,6> data_f = r*64 + i*8;
*data = data_f.to_int();

// Sign-LMS Adaptation for FFE and DFE
ffe_adapt: for (int k=0; k < nffe; k++)

ffe_c[k] += mu_ffe*e*x[k].sign_conj();
dfe_adapt: for (int k=0; k < ndfe; k++)

dfe_c[k] -= mu_dfe*e*SV[k].sign_conj();

ffe_shift: for(int k=nffe-4; k >= 0; k-=2) {
x[k+3] = x[k+1];
x[k+2] = x[k];

}
dfe_shift: for(int k=ndfe-2; k >= 0; k--)

SV[k+1] = SV[k];
}

Figure 4: C++ code for QAM decoder algorithm

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

synthesis merged loops dfe into loop ffe and merged loops
dfe_adapt, ffe_shift and dfe_shift into loop ffe_adapt.
Each loop takes 16 cycles to complete resulting in a
latency of 3+16+16 cycles (three cycles for behavior
between loops). With loop merging disabled, the design
would take a latency of 3+8+16+8+16+3+15 = 69 cycles.

The latency of the design is improved by exposing
additional parallelism. We found that loops of 8 and 16
iterations that were merged could be reduced in latency by
partially unrolling the loops with 16 iterations (dfe,

dfe_adapt, dfe_shift) to take eight iterations each
(UNROLL=2). The resulting latency is 3+8+8 = 19 cycles,
meets the performance design goals.

It is easy to exploit additional parallelism to further
improve the latency of the design. For instance, setting
unroll=2 for dfe and unroll=4 for dfe_adapt and dfe_shift
reduces the latency to 3+8+4 = 15 (6.67 MBaud or 40
Mbps). Table 1 summarizes exploration results for our
design. The area number is normalized with respect to the
second design. The first six columns show the loops in the

algorithm and the architectural options that were selected
where “M” denotes that loop merging is enabled and “U”
denotes the loop unrolling number.

The architectural exploration above was performed in a
matter of minutes without changing the source description.
We have also successfully targeted FPGA technologies. It
is often possible to prototype the design at-speed with an
FPGA. Such a prototype can be used to validate the
algorithm itself (including the quantization decisions) as
well as facilitate the hardware emulation of the whole
system.

An architectural choice not shown in the above
exploration is loop pipelining. Although it is possible to
perform loop pipelining with this approach, for this
algorithm and the given performance goals, loop
pipelining does not provide as much benefit as loop
unrolling. The main reason is that the loop body is simple
enough that each iteration of the loop can be executed in a
single cycle. Loop unrolling and loop pipelining can often
be used in conjunction to effectively exploit parallelism in
an algorithm.

6. Conclusions

A C-based design methodology was presented and used
to generate RTL for a DSP algorithm commonly used in
wireless designs. We showed the feasibility of the design
methodology and provided a general overview of
architectural C synthesis capabilities, C coding for
synthesis and architectural exploration based on the
Catapult C synthesis tool. A single C source was used to
rapidly generate a set of ASIC designs with a wide range
of data rate numbers. In addition, the C-based design

methodology enables FPGA prototyping flows to facilitate
verification of the generated RTL as well as real-time
functional verification of the algorithm.

7. Acknowledgements

Authors would like to acknowledge and thank the work
of the Catapult-C high-level synthesis team at Mentor
Graphics without which this paper would not have been
possible.

8. References

[1] Emmanuel C. Ifeachor and Barrie W. Jervis, “Digital Signal
Processing - A Practical Approach,” Copyright 1993, Addi-
son-Wesley Publishing Company.

[2] Jean-Francois Frigon and Babak Daneshrad, “Field measure-
ments of high speed QAM wireless transmission using equal-
ization and real-time beamforming,” Global
Telecommunications Conference, pp. 2102-2106, Globecom
1999.

[3] Andres Takach, Simon Waters and Peter Gutberlet, “Fast bit-
accurate C++ datatypes for functional system verification
and synthesis”, to appear in proceedings of Forum of Design
Languages 2004.

[4] SystemC 2.0.1 Language Reference Manual

[5] Richard A. Roberts and Clifford T. Mullis. “Digital Signal
Processing” Chapter 9: “Finite Length Register Effects in
Fixed Point Digital Filters”. Addison-Wesley. Copyright
1987.

Table 1: Comparison of architectures generated from C synthesis

Architectural Loop Constraints
Latency

(ns)
Data Rate

(Mbps) Area
ffe dfe ffe_adapt dfe_adapt ffe_shift dfe_shift

M M M M M M 350 17.1 1.17

none none none none none none 690 8.6 1.00

M M, U=2 M M, U=2 M M, U=2 190 31.5 1.61

M M, U=2 M, U=2 M, U=4 M M, U=4 150 40 1.88

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

