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Abstract 

The JPEG2000 standard defines the discrete wavelet 
transform (DWT) as a linear space-to-frequency transform 
of the image domain in an irreversible compression. This 
irreversible discrete wavelet transform is implemented by 
FIR filter using 9/7 Daubechies coefficients or a lifting 
scheme of factorizated coefficients from 9/7 Daubechies 
coefficients. 

This work investigates the tradeoffs between area, 
power and data throughput (or operating frequency) of 
several implementations of the Discrete Wavelet 
Transform using the lifting scheme in various pipeline 
designs. This paper shows the results of five different 
architectures synthesized and simulated in FPGAs. It 
concludes that the descriptions with pipelined operators 
provide the best area-power-operating frequency trade-off 
over non-pipelined operators descriptions. Those 
descriptions require around 40% more hardware to 
increase the maximum operating frequency up to 100% 
and reduce power consumption to less than 50%. Starting 
from behavioral HDL descriptions provide the best area-
power-operating frequency trade-off, improving hardware 
cost and maximum operating frequency around 30% in 
comparison to structural descriptions for the same power 
requirement. 

1. Introduction 

In images from real sceneries (photography), also 
called still tone images, adjacent pixels are almost always 
correlated, meaning that there are redundant data in the 
image coding [1]. Image storage and transmission is 
costly, and image compression is mandatory in embedded 
applications.  

The image compression techniques operate reducing or 
eliminating the data redundancies of still tone images [1]. 
Image compression techniques can compress with or 
without loss of data of original image. The lossy 
compression can achieve higher ratio than lossless 
compression. The image compressor uses a linear 
transform to change the image domain from space to 
frequency, removing the correlation between pixels. An 
image compression technique efficiency depends on the 
amount of energy the linear transform can concentrate in 

few bands. So, in a lossy image compressor, after the 
linear transform the large amount of coefficients that are 
close to zero are eliminated by the quantizer block, and the 
quantized coefficients are entropy-coded for achieving 
high compression ratio. The loss of information eliminated 
by the quantizer operation is moderately compensated by 
the interpolation nature of the human visual system. 

In the JPEG2000 standard [2] a lossy standard for 
image compression is defined using the discrete wavelet 
transform (DWT) for space-to-frequency transformation. 
This domain change achieves higher compression rates 
than DCT, since a large amount of coefficient images are 
close to zero. 

The DWT can be designed by a sub-band 
multiresolution [1]. This sub-band multiresolution is made 
by recursive use of 9/7 taps FIR filters with Daubechies 
coefficients. By a lifting factorization operation [3], a 
simpler approach can be used, reducing the hardware 
complexity. 

Several efficient architectures to implement a hardware 
one-dimensional discrete wavelet transform (1D-DWT) 
already exist. Implementations by filter banks are 
presented in [4], [5] and implementations by lifting 
scheme are presented in [6], [7]. 

To prototype the DWT to a FPGA, both behavioral or 
structural description can be used. A behavioral 
description can be mapped/synthesized through specific 
internal resources of FPGAs, which results in different net-
lists. So, to implement an Intellectual Property (IP) Core or 
an Application Specific Integrated Circuit (ASIC), the 
resulting net-list may just contain macro structures that are 
specific to the FPGA vendor device mapping tool. To 
avoid this dependence on macro blocks, a structural design 
is definitely the choice. 

In this work we implement five designs of a Discrete 
Wavelet Transform (DWT) by lifting scheme using 
behavioral and structural descriptions. We compare the 
tradeoffs between area cost, throughput (maximum 
frequency) and power requirement by synthesis and 
simulation in the Quartus II tools. All these 
implementations are synthesized to Altera APEX 20KE 
FPGA devices [8].  

The rest of the paper is organized as follows. Section 2 
explains the operation of the DWT. Section 3 describes the 
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design of the lifting DWT architectures. In section 4 the 
results about area cost and operating frequencies are 
presented. Finally, section 5 presents a summary 
discussion and concluding remarks. 

2. Discrete Wavelet Transform 
The wavelet transform is a linear transform that can 

operate in direct or inverse form. The wavelet transform 
approximates a function by representing it as a linear 
combination of two sets of coefficients g and h constructed 
from functions derived respectively by a scaling function 
φ(t) and a mother wavelet function

�
(t) [9]. 

The two-dimensional wavelet transform is computed by 
recursive application of one-dimensional wavelet 
transform. In a 1D-DWT each octave computes two sub-
bands from one original band and each of this sub-bands 
has half the number of coefficients input without data loss. 
In a 2D-DWT each octave computes four sub-bands and 
each of these ones has a quarter number of coefficient 
input. Figure 1 shows the input and output of one octave of 
2D-DWT. 

LL HL

LH HH

Figure 1. One octave of 2D-DWT. 

The output coefficients from 1D-DWT are produced by 
application of two filters on data input samples, then 
producing two different output coefficient bands. A low-
pass filter using h(x) coefficients producing an output band 
representing low-frequency data and a high-pass filter 
using g(x) coefficients producing an output band 
representing high frequency data. 

The finite samples filtering present a problem of 
discontinuities its boundaries. So, the image boundary 
information could be lost if it were not treated properly. A 
simple method to eliminate this problem consists in 
mirroring the boundaries of the samples. The amount of 
samples mirroring depends on the depth of the low pass 
filter  

The implementation of an irreversible DWT can be 
done by using the Daubechies biorthogonal wavelet 
coefficients [9], consisting of FIR filter coefficients for a 
7-tap high-pass filter and a 9-tap low-pass filter, as shown 
in figure 2. 
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Figure 2. DWT by 9/7 taps Daubechies FIR filter. 

The basic architecture defined in figure 2 requires 16 
adders, 16 multipliers and 8 registers. This architecture has 
high area cost for a parallel implementation, thus several 
algorithms were developed to reduce this area cost.

The lifting DWT scheme presented in [3] has reduced 
computational complexity, so reducing the hardware cost 
to compute the DWT. This algorithm shown schematically 
in figure 3 was developed by a factorization of poliphase 
matrix from 9/7 Daubechies wavelet filter coefficients. 
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Figure 3. Lifting DWT. 

3. Design of the architecture 

The design of the 2D-DWT has three blocks: a 1D-
DWT, memory and memory control blocks, as 
schematically shown in figure 4. 

1D-DWT
Memoryinput

image
samples

Memory Control

output
transform

coefficients

Figure 4. 2D-DWT architecture. 

The input image samples are stored in memory, so the 
memory size needs to be as large as the image size. In the 
main step, the memory control addresses the coefficients 
of band to 1D-DWT and addresses the transformed 
coefficients back to the memory. After computation of all 
octaves, the transformed coefficients are transferred to 
next stage. 

Generic 1D-DWT architecture can be designed as a 
pipelined structure following the lifting scheme. This basic 
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design is shown in figure 5. It was implemented using five 
different approaches and synthesized to an Altera APEX 
20KE FPGA device. This basic architecture can be 
designed with 6 multipliers, 8 adders and around 14 
registers. 
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Figure 5. Lifting 1D-DWT architecture. 

The multiplier constants used in the lifting scheme 
result from a factorization of coefficients from 9/7 
Daubechies filter. The factorized coefficients in table 1 are 
represented as floating point values, integer ratios and 
fixed point binary in 2’s complement. 

Table 1. Lifting coefficients constants. 

Coefficient Floating Point 
value 

Integer 
rounded

Binary 
representation

alpha -1.586 134 342 -406/256 10.01101010 
beta -0.052 980 118 -14/256 11.11110010 

gamma 0.882 911 075 226/256 00.11100010 
delta 0.443 506 852 114/256 00.01110001 

-k -1.230 174 105 -314/256 10.11000101 
1/k 0.812 893 066 208/256 00.11010000 

3.1 DWT architecture described with behavioral 
integer generic multipliers 

The simplest approach of a Lifting 1D-DWT is 
described with integer generic multipliers. This 
architecture was described as an 8-stage integer pipeline 
with two data-flows. The first dataflow computes the even 
samples and the second dataflow computes the odd 
samples. The alpha and gamma multiplications are 
inserted in the flow, from even dataflow to odd dataflow, 
and beta and delta multiplications are inserted in the flow 
from odd dataflow to even dataflow, as shown in figure 3. 

The implementation of an integer multiplier has lower 
cost than floating point multiplication. In these designs, all 
multiplication constants are integer divisions generated by 
rounding of floating point lifting constants. The result 
adjustment is done later by an 8-bit right shift. This 
rounding technique introduces a small error in coefficients, 
but this error is not significant to the transform result since 
all output coefficients are later to be quantized. The integer 
value coefficients used in these architectures are shown in 
table 1. 

The error introduced by rounding can be measured by 
peak signal to noise ratio (PSNR) metric. The PSNR is 
calculated by quadratic differences between the original 

image pixels and the reconstructed image pixels, as 
showed in figure 6.  
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Figure 6. PSNR calculation. 

From results of PSNR calculated in a tile of “Lena” 
image shown in table 2, the errors introduced in the output 
transform coefficients by the use of Lifting scheme with 
either floating-point coefficients or integer-rounded 
coefficients is always around 0.1dB. Hence, we can ignore 
these errors introduced by the rounding technique. 

Table 2. Measurement of rounding error. 

Method PSNR 
(dB) 

FIR filter by floating point 9/7 
Daubechies coefficients 

37.497 

FIR filter by integer rounded 9/7 
Daubechies coefficients 

37.483 

Lifting scheme by floating point 
factorized coefficients 

37.094 

Lifting scheme by integer rounded 
factorized coefficients 

36.974 

The bit length of DWT internal registers depends on 
their relative position inside the DWT pipeline. 
• The registers located before alpha multiplication in 

the odd dataflow and before beta multiplication in the 
even dataflow store integers from -127 to 128 (signed 
8-bits). 

• The registers located after alpha multiplications and 
before gamma multiplication store integers from -530 
to 530 (signed 11-bits). 

• The registers located after beta multiplication and 
before delta multiplication store values from -184 to 
184 (signed 9-bits). 

• The registers located after gamma multiplication and 
before -k multiplication store values from -205 to 205 
(signed 9-bits). 

• The register located after delta multiplication and 
before division by k stores values from -366 to 366 
(signed 10-bits). 

• The register located at output data of the even 
dataflow (after division by k), corresponding to low 
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frequency of input image samples, stores values from 
-298 to 298 (signed 10-bits). 

• The register located at output data of the odd dataflow 
(after multiplication by -k), corresponding to high 
frequency of input image samples, stores values from 
-252 to 252 (signed 9-bits). We kept these 9 bits, even 
though a low magnitude value is expected for this data 
output due to the nature of the transform of still-tone 
images. 

3.2 DWT architecture described with behavioral 
shifted integer adders 

Generic multipliers usually have high area cost. 
Multiplication by constant can be performed by shifted 
additions when the number of bits in the multiplication is 
large.  

The decimal point showed in binary representation in 
Table 1 is for documenting the design of the control, as it 
is not considered in the hardware multiplier, which is fix-
point and is later adjusted by 8-bit right shift. 

By binary representation of multiplier constants 
presented in table 1, the multiplication by alpha needs 6 
adders, the first one to perform r0+r2, the next four ones to 
perform the sum between second, fourth, sixth, seventh 
and two complement of tenth shifted partial products of 
r0+r2. The last one performs the sum with r3. Figure 6 
shows how ordering the partial products are done to 
implement the multiplication by alpha. 

I8 I7 I6 I5 I4 I3 I2 I1 I0I8 I7 I6 I5 I4 I3 I2 I1 I0
I8 I7 I6 I5 I4 I3 I2 I1 I0I8 I7 I6 I5 I4 I3 I2 I1 I0

I8 I7 I6 I5 I4 I3 I2 I1 I0I8 I7 I6 I5 I4 I3 I2 I1 I0
I8 I7 I6 I5 I4 I3 I2 I1 I0I8 I7 I6 I5 I4 I3 I2 I1 I0

I8 I7 I6 I5 I4 I3 I2 I1 I0I8 I7 I6 I5 I4 I3 I2 I1 I0

r37 r36 r35 r34 r33 r32 r31 r30r37 r36 r35 r34 r33 r32 r31 r30

1 0, 0 1 1 0 1 0 1 01 0, 0 1 1 0 1 0 1 0alpha => 1

r3 => 0 0

8-bit shift

I8 I7 I6 I5 I4 I3 I2 I1 I0I8 I7 I6 I5 I4 I3 I2 I1 I0

r27 r26 r25 r24 r23 r22 r21 r20r27 r26 r25 r24 r23 r22 r21 r20

r07 r06 r05 r04 r03 r02 r01 r00r07 r06 r05 r04 r03 r02 r01 r00r0 =>

r2 =>

r0+r2 =>

Figure 7. Alpha multiplication by shifted adders. 

The multiplication by beta needed 8 adders, but one 
adder result can be re-used, reducing this stage to 7 adders. 
The multiplication by gamma needs 5 adders and the 
multiplication by delta needs 5 adders. 

The -k equivalent constant has 5 high bits and this stage 
needed a simple multiplication, so 4 adders can perform 
the multiplication by -k. The 1/k equivalent has 3 high 
bits, so 2 adders can perform the multiplication by 1/k. 

Hence, this design promotes only integer sums, 
reducing the area cost thus increasing the maximum 
operating frequency. 

After all sums of each stage, the generated value is a 
real number, to generate the integer value on output stage a 
truncation promoted by an 8-bit right shift occur, as shown 
in figure 7. 

3.3 DWT architecture described with behavioral 
pipeline of shifted integer adders 

The architecture of lifting DWT can be naturally 
pipelined, but the add/shift stages represent the worst delay 
path between registers. Pipelining these stages increases 
the data throughput (operating frequency). 
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Figure 8. Arithmetic stage structure of alpha 
multiplication. 

The original arithmetic stage structure to perform the 
multiplication by alpha is shown in figure 8(a). The 
pipelining of this stage is straightforward - as the insertion 
of some registers inside the logic shows in figure 8(b). 
There is just one sum operation at each pipeline stage.  

Hence, pipelining increases the area cost of the 
architecture, but reduces the worst delay path between 
registers, increasing the throughput rate of the DWT. The 
computation of each stage will be faster than architectures 
presented in section 3.1 and 3.2 and the power 
consumption should be reduced, allowing the trade-offs 
we explore later. 

3.4 DWT architecture described with structural 
shifted integer adders 

A behavioral implementation is the simplest choice to 
improve a design to synthesize this architecture in a FPGA 
device, by using specific megacore functions to implement 
the multipliers and adders. But should it be required to 
synthesize this architecture in an ASIC, all structures must 
be defined structurally. 
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This implementation approach is similar to description 
in section 3.2 although the adders are structurally 
described. Except the alpha multiplications, the other 
multiplication blocks need to compute with signed 
operators, so the left bits from most significant bit (MSB) 
of an operator are replicated in the MSB. 

All adders are implemented using Full Adder as basic 
blocks. The register adders are implemented by an n-bit set 
of full adder blocks. The length of each adder depends on 
the length of its inputs and length of the partial product 
shifted.  

3.5 DWT architecture described with 
structural pipeline of shifted integer adders 

This approach implementation has similarities with 
architecture described in section 3.3 and the structural 
description of adders described in section 3.4. 

This architecture has 21 pipeline stages, as the design 
described in section 3.3, although the stages of sum and 
multiplications are designed with structural full adder. As 
the architecture of section 3.3, each complete sum 
operation is done at just one pipeline stage. With this 
improvement, the architecture achieves higher operating 
frequency at reduced power consumption. 

The structural implementation of adders require more 
area cost than behavioral implementation, so it is expected 
that this implementation has higher area cost, although its 
throughput is higher than other architectures without 
pipelined arithmetic stages. 

The main advantage of this architecture description is 
being independent of the prototyping hardware, i.e. this 
architecture can be prototyped onto any FPGA device or to 
an ASIC. 

4 Implementation Results 

Here we present all implementation results of 1D-DWT 
architectures presented in section 3. All VHDL 
descriptions we developed were compiled and simulated in 
an APEX20KE FPGA device from Altera. Table 3 shows 
the results of area cost, maximum data throughput 
(maximum operating frequency), number of pipeline 
stages and power consumption estimated at a given 
reference frequency (15MHz), set by the slowest 
architecture. 

Table 3. Implementation results. 

Architecture
Area 
cost 

(LEs)

Maximum 
Operating 
frequency 

(MHz) 

Power 
@15MHz 

(mW) 

Pipeline 
stages 

Design 1 781 16.6 310 8 
Design 2 480 44.0 248 8 
Design 3 766 157 105 21 
Design 4 701 54.4 232 8 
Design 5 1002 105 91.4 21 

The design 1 is a behavioral implementation with 
integer multipliers. This is the simplest architecture to 
implement in VHDL. The architecture synthesized from 
the behavioral description incurred the highest power 
consumption simulates at 15MHz for comparison. 

The smallest area cost architecture is the design 2, 
consisting a behavioral description using integer-shifted 
adders, as showed in figure 7. This reduced area cost is 
due to the fact that the synthesis utilizes fast carry chain 
propagation and the number of pipeline stages is limited to 
8. So an 8-bit adder is mapped onto just 8 Logic Elements 
(LEs). In simulation of a tile of “Lena” at 40MHz, this 
architecture consumes 626mW, in other words, the 2.7 
times increase in operating frequency over the first 
architecture provides a 2 times increase in its power 
consumption. 

The design 3 is a behavioral implementation with 
pipelined integer shifted adders, resulting in a 21-stage 
pipeline. This is an architecture that has about 1.6 times 
the area cost of design 2 and has a maximum operating 
frequency that is 3 times larger. When running at 128MHz, 
this architecture consumes 808mW, representing 1.3 times 
the power consumption of the second architecture when 
this operates at less than one-third of the frequency 
(40MHz). So, the architecture of design 3 definitely shows 
a better area-power compromise per MHz than the second 
architecture. 

The design 4 is a structural implementation with shifted 
integer adders. This architecture does not use the fast carry 
chain propagation, so an 8-bit adder requires 16 Logic 
Elements (LEs). It is expected the design 4 would have 2 
times the area cost and same maximum operating 
frequency as design 2. But the result is the design 4 has 1.5 
times the area cost and higher maximum frequency than 
design 2. The simulations at higher operation frequencies 
show that these two architectures maintain equivalent 
power consumption at same frequencies. 

The design 5 is a structural implementation with 
pipelined shifted integer adders and it is an improvement 
of design 4. It presented the lowest power consumption of 
all 5 designs at the same frequency. As in design 3, design 
5 has higher area cost, although it has higher maximum 
operating frequency. One could have expected both 
designs 3 and 5 to have about the same maximum 
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frequency, which was not the case. This difference is 
because design 3 behavioral description can use the 
resources of fast carry chain propagation in the FPGA 
structure. The simulations show that this architecture has 
15% less power consumption than design 3 at same 
operating frequency, requiring 476mW at 95MHz. 

The architectures presented in [5], which is closest to 
ours, is implemented by filter banks using 785LEs at 
maximum operating frequency of 85.5 MHz. Comparing 
with our designs, the design 2 has half of area cost and its 
maximum operating frequency is nearly half, so they stand 
in different trade-off points. The design 3 we developed 
using deeper pipeline has the same area cost and its 
maximum operating frequency is double that of [5]. In this 
case, our architecture presents considerably larger 
throughput with the same area and possibly higher power. 
Power could not be compared against the work in the 
literature. 

5. Conclusions 

As presented in the results of table 2, the 
implementation of a lifting 1D-DWT using integer 
rounded factorized coefficients can be done without 
significant loss in image quality (less than 1dB of 
degradation in PSNR). 

The implementation of a 1D-DWT architecture 
synthesized to a FPGA presents better results when using 
an initial behavioral description that takes advantage of the 
structural resources of FPGAs, such as the fast carry chain 
propagation. 

The designs with pipelined operators (design 3 and 
design 5) have, in both cases - behavioral or structural -
shown a better tradeoff between area cost and the 
throughput resulting from higher operating frequency. 
Moreover, the designs with pipelined operators reduced 
power consumption around 40%, at the expense of circa 
40-60% more LEs (dependent on the type of description - 
40% for the purely structural description and 60% for the 
behavioral description). 

The structural HDL descriptions have worse trade-off 
area cost per maximum operating frequency than 
behavioral descriptions. The structural description presents 
around 30% more hardware and 30% less for the 
maximum operating frequency than behavioral description 
at same power requirement. This is because the technology 
mapping with commercial FPGA tools is optimized to map 
onto specific cores embedded in the particular FPGA 
family. To map the prototype to an 1D-DWT ASIC, the 
structural description is certainly a better starting point. 
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