N
N

N

HAL

open science

A Real-Time Streaming Memory Controller
Artur Burchard, Ewa Hekstra-Nowacka, Atul Chauhan

» To cite this version:

Artur Burchard, Ewa Hekstra-Nowacka, Atul Chauhan. A Real-Time Streaming Memory Controller.
DATE’05, Mar 2005, Munich, Germany. pp.20-25. hal-00181815

HAL Id: hal-00181815
https://hal.science/hal-00181815
Submitted on 24 Oct 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00181815
https://hal.archives-ouvertes.fr

A Real-Time Streaming Memory Controller

Artur Burchardl, Ewa Hekstra-Nowacka' and Atul Chauhan®
(1) Philips Research Laboratories, Eindhoven, The Netherlands
(2) Indian Institute of Technology, Delhi, India
artur.burchard@philips.com

Abstract

With ever more complex multimedia applications used
in mobile devices, the realization of high performance,
flexibility and programmability requirements depends
largely on the design of a system communication
infrastructure. This infrastructure, often a network, should
provide a large variety of services for the transportation
of streamed data. When an external memory is also used
for streaming communication purposes and, together with
the communication infrastructure, forms a part of the
streaming, additional support is needed for the memory in
order to guarantee the integrity of the communication
services provided by the network when data is accessing
the memory. This led us to a design of a streaming
memory controller (SMC) for off-chip (DDR-)SDRAM
memories that enables a shared memory implementation
of the streaming based on an off-chip network (PCI
Express). In this paper, we present the ideas that gave rise
to the SMC, the actual design of the SMC, as well as the
evaluation of the design.

1. Introduction

The complexity of advanced mobile devices is
increasing. The ever more demanding applications of such
devices and the complexity, flexibility and
programmability requirements have led to intensified data
exchange inside the devices. The devices implementing
such applications consist of several functions or
processing blocks, here referred to as ‘subsystems’. These
subsystems are typically implemented as separate ICs,
each having a different internal architecture that consists
of local processors, busses and memories, etc. At system
level, these subsystems communicate with each other via a
top-level interconnect that provides certain, often real-
time, services. As an example of subsystems in a mobile
phone architecture, we can refer to, among others, a base-
band processor, a display, a media processor or a storage
element. An example of the system level interconnects is a
PCI Express network that provides services like
isochronous data transport and flow control. Furthermore,

an example of data streaming could be when a media
processor reads out an MP3 encoded audio file stored
locally and the decoded stream is sent to the speakers.
When used to support multimedia applications, these
subsystems exchange most of the data in a streamed
manner. Such communication can be modelled as a
streaming application and described as a graph of
processes connected via FIFO buffers, often referred to as
Kahn process networks [1]. The Kahn process network
can be mapped on the system architecture [2], i.e. the
processes are mapped onto the subsystems, the FIFO

buffers are mapped onto the memories and the
communications are mapped onto the system-level
interconnect, as shown in Figure 1.
GO)—PT—(P2)—>T— |
-
&

Y S

Figure 1. Kahn process network mapped onto a
shared memory interconnect-centric architecture

Buffering is essential for the proper support of data
streaming between involved processes. It is natural to use
FIFO buffers for streaming, and this is in accordance with
the (bounded) Kahn process network model of streaming
application. As the number of multimedia applications
that can run simultaneously increases, there is also a
substantial increase in the number of processes, real-time
streams and the associated FIFOs.

There exist two extreme implementations of streaming
with respect to memory usage and FIFOs allocation. The
first uses physically distributed memory, where FIFO
buffers are allocated in a local memory of a subsystem.
The second wuses physically and logically unified
memory, where all FIFO buffers are allocated in a shared,
often off-chip memory, as in Figure 1. In many cases, the

YF]',F.

COMPUTER
SOCIETY

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

implementation combines elements from both of the styles
mentioned.

The FIFO buffers can be implemented in a shared
memory using an external DRAM memory technology.
SDRAM and DDR-SDRAM are the technologies that
deliver large capacity external memory at low cost, with a
very attractive cost-to-silicon area ratio.

Until now, controllers of external DRAM were
designed to work in bus-based architectures. Busses
provide limited services for data transport, simple medium
access control and best effort data transport only. In such
architectures, the unit that gains access to the bus
automatically gains access to the shared memory.
Moreover, the memory controllers used in such systems
are no more than access blocks optimised to perform
numerous low latency reads or writes, often tweaked for
processor random cache-like burst accesses. As a side
effect of the low-latency, high-bandwidth and high-speed
optimisations of the controllers, the power dissipation of
external DRAM is relatively high.

In our novel design of a memory subsystem, we
address both: a vast variety of communications services
(like bandwidth reservation, synchronisation) and real-
time streaming accesses to the memory. Because of this
approach, we are able to optimise power consumption and
enable it to be traded for speed and access latency.

Since we are considering a network that provides a
variety of transport services (e.g. bandwidth reservation,
guaranteed delivery or flow control of data) as the system
interconnect, it is necessary to ensure that the access to the
shared external DRAM is transparent for the network with
respect to these services. As a result, the memory
subsystem provides the same services as the network (e.g.
bandwidth guarantees). Therefore, to support data
streaming and to comply with the network services, a
specific DRAM memory, which does not support the
services on its own, has to be equipped with a streaming
memory controller (SMC) that ensures that the shared
memory subsystem implements the necessary network
services. Additionally, because we are considering mobile
architectures, SMC needs to minimize the power
consumption for memory access.

It should be mentioned that the SMC decouples the
shared memory from the interconnect network, i.e. the
memory is not aware of the interconnect, and in turn the
interconnect network is not aware of the memory
specifics, which are hidden by the memory controller.

In this paper we discuss a design and implementation
of the SMC that implements network services and that
uses (DDR-)SDRAM for implementation of the FIFO
buffering. With this design, we enable experimentation
with implementation options of the above concepts and
gain greater insight into the associated costs in terms of
power consumption and silicon area. We also intend to
evaluate the arbitration algorithms and communication

protocols, proposed by ourselves, for the streaming
memory controller with respect to real-time performance
as well as complexity and cost. We do not intend to
provide optimum solutions, but instead we use the
proposed heuristics to learn more about which aspects of
memory access are essential for improving performance
and cost figures.

The long-term goal is to design an SMC for a mobile
device architecture that uses a network supporting real-
time data communication. Such networks are currently
addressed in MIPI standardization [3]. As an intermediate
step we used PCI Express [5] as an interconnect
technology and we have designed an SMC that integrates
external DRAM into a streaming supported by a PCI
Express network.

PCI Express is a well-founded advanced general-
purpose I/O technology that targets the PC world. It
provides a variety of services as well as mechanisms for
isochronous data transfers. We chose it for
experimentation purposes, and we do not claim that this
choice of interconnect is ideal for mobile and portable
devices. Nevertheless, this is a first step towards a mobile
solution.

The paper is organized as follows. In Section 2 we
explain the design problem in more detail. In Sections 3
and 4 we discuss the requirements for the streaming
memory controller that are imposed by the PCI Express
and (DDR-)SDRAM interfaces. In Section 5 we elaborate
on implementation issues of the system design. In Section
6 we present selected aspects of performance, cost and
trade-off analysis. The conclusions are given in Section 7
to complete the paper.

2. Problem statement

PCI Express provides network services, e.g.
guaranteed real-time data transport, through exclusive
resource/bandwidth reservation in the devices that are
traversed by the real-time streams. When an external
DRAM supported by a standard controller is connected to
the PCI Express fabric, without having any intelligent
memory controller in between, bandwidth and delay
guarantees — typically provided by the PCI Express — will
not be fulfilled by the memory since it does not give any
guarantees and acts as a ‘slave’ to incoming traffic.

The design of a standard memory controller focuses
on delivering the highest possible bandwidth at the lowest
possible latency. Such an approach is suitable for
processor data and instruction (cache) access and not for
isochronous traffic. To be able to provide the predictable
behaviour of the PCI Express network extended with the
external DRAM, a streaming memory controller is
needed which guarantees a predictable behaviour of the
external memory for streaming. In addition, we aim to
design the memory controller not only for guaranteeing

YF]',F.

COMPUTER
SOCIETY

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

throughput and latency, but also for reducing power
consumption while accessing this DRAM.

The SMC depicted in Figure 2 has two interfaces: one
towards the PCI Express fabric, and one towards the
DRAM. The PCI Express interface of the SMC must
perform the traffic shaping on the data retrieved from the
SDRAM to comply with the traffic rules of the PCI
Express. On the other interface of the SMC, the access to
the DRAM has a burst-like character, since this mode of
accessing data stored in DRAM offers the greatest
advantage with respect to power consumption. The SMC
itself must provide intelligent arbitration of access to the
DRAM among different streams such that throughput and
latency of access are guaranteed. In addition, the SMC
also provides functionality for smart FIFO buffer
management.

Figure 2. Concept of accessing external DRAM from
the PCI Express fabric through a Streaming Memory
Controller

3. PCI Express interface

The features of PCI Express [4] [5] that we have taken
into consideration in our SMC design are: isochronous
data transport support, flow control and specific
addressing scheme.

The isochronous support is based primarily on
segregation of isochronous and non-isochronous traffic by
means of Virtual Channels (VCs). Consequently, network
resources like bandwidth and buffers are reserved
explicitly in the switch fabric for specific streams. This
guarantees no interference between streams in different
VCs. Additionally, the isochronous traffic in the switch
fabric is regulated by admission control and service
discipline, i.e. scheduling.

The flow control that is credit based guarantees that no
data is lost in the network due to buffer overflows. The
network node is allowed to transmit the network packet
through a network link to the other network node only
when the receiving node has enough space to receive the
data. Every VC has a dedicated flow control
infrastructure. A synchronisation between the source and
destination can therefore be realised separately for every
VC through chained PCI Express flow control.

The PCI Express addressing scheme uses 32 or 64 bit
memory addresses. In our design, we do not want to use
explicit memory addresses. Instead, we aim to use device
and function IDs, i.e. stream IDs, to differentiate between
streams. The SMC itself will generate/convert stream IDs
into actual memory addresses. In our prototype design we

decided to simplify the addressing scheme even further
and to use VC ID as a stream identifier. Since PCI
Express allows up to eight VCs, we therefore decided to
use half of them for identifying incoming streams and the
other half for identifying outgoing streams from the
external memory. The maximum number of streams that
can access the memory through our SMC is therefore
limited to eight. Note that such a limitation is caused by
PCI Express because it allows for arbitration between
streams in different VCs but not between those inside the
same VC. However, such a limitation is only specific to
PCI Express based systems, it is not fundamental to the
concepts presented.

In summary, the PCI Express interface of SMC
consists of a full PCI Express interface, equipped
additionally with some logic that is required for address
translation and stream identification.

4. (DDR-) SDRAM interface

For our SMC design we used the Micron’s 128-Mbit
DDR-SDRAM [6]. We decided to use this technology
because it provides desirable power consumption and
timing behaviour. However, our design is parameterised
and SMC can be configured to work with single rate
memory as well. Since the DDR-SDRAM behaves in a
similar way to SDRAM, except for the timing of the data
lines, we explain the basics using SDRAM concepts.

The basic operations of the SDRAM, the logical
architecture of which is depicted in Figure 3, are for the
state when the memory clock is enabled, i.e. the memory
is in one of the power-up modes. When the clock is
disabled, the memory is in a low-power state (stand-by
mode).

Activate/ Precharge (195 mW)

Read (351 mW) Write (403 mW)
Figure 3. Logical SDRAM model

Typical commands applied to a memory are activate,
pre-charge, read/write and refresh. The activate
command ensures that a bank and row address are
selected and that the data row (often referred to as a page)
is transferred to the sense amplifiers. The data remains in
the sense amplifiers until the pre-charge command
restores the data to the appropriate cells in the array.
When data is available in the sense amplifiers, the
memory is said to be in the active state. During such a
state reads and writes can take place. After the pre-
charge command, the memory is said to be in the pre-
charge state where all data is stored in a cell array.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

Another interesting aspect of the memory operation is a
refresh. The memory cells of the SDRAM store data using
small capacitors and these must be recharged regularly to
guarantee the integrity of data. When powered up, the
SDRAM memory is instructed by the controller to
perform a refresh. When powered down, SDRAM is in
self-refresh mode (i.e. no clock is enabled) and the
memory performs a refresh on its own. This state
consumes very little power. It takes about 200 clock
cycles to get the memory out of the self-refresh mode into
a state in which data can be asserted for read or write,
specifically in the case of DDR-SDRAM.

The timing and power management of the memory is
essential for the proper design of the SMC, which must
provide specific bandwidth, latency and power guarantees.
Our analysis and calculations show that to read a full page
(equal to 1Kbyte) from an activated SDRAM it takes
about 2560 clock cycles (~19.2 us) for the burst length of
1 read, 768 clock cycles (~5.8 us) for the burst length of 8
reads, and only 516 clock cycles (~3.9 us) for the full-
page burst. These figures are based on the specific 128-
Mbit DDR-SDRAM with a clock period of 7.5 ns [6].

From these calculations it is clear that it is fastest and
most efficient in terms of power consumption to access
SDRAM in page bursts. Hence, we designed our SMC to
use page burst access. However, other burst lengths can be
configured. The results of power dissipation for different
bursts for the SMC design can be seen in Figure 6a.

5. System design

The proposed SMC architecture, depicted in Figure 4,
consists of the following blocks: Stream Access, FIFO
Manager, Arbiter and SRAM Memory.

Address Generation for
Each Stream, Access
Pointers, Control

Provides Stream ID,
Access Type and Data

Figure 4. Proposed SMC architecture

The Stream Access provides a stream ID, an access
type and the actual data for each stream. For each packet
received from the PCI Express interface, based on its VC
number, the Stream Access forwards the data to an
appropriate input buffer, implemented in local shared
SRAM memory. For data retrieved from the (DDR-)
SDRAM’s FIFOs and placed in the output buffer in the
local SRAM, it generates a destination address and passes
the data to the PCI Express interface. The Arbiter decides

which stream can access the (DDR-)SDRAM. The
SRAM memory implements the input/output buffering,
i.e. for pre-fetching and write-back purposes. The FIFO
manager, which is at the heart of SMC, implements FIFO
functionality for the memory through address generation
for streams, access pointers update and additional
controls. In Figure 5 the logical view of the proposed
SMC architecture is shown.

Stream 1

Stream 4

Stream 2 Stream 3

Figure 5. The logical view of the SMC architecture

The arbitration of the memory access between
different real-time streams is essential for guaranteeing
throughput and bounded access delay. Assume that
whenever data is written to or read from the memory, a
full page is either written or read. We call the time
needed to access one page (slightly different for read and
write operations) a ‘time slot’. Let us also define a
service cycle that consists of a fixed number of time slots.
The access sequence repeats and resets every time a new
service cycle is started.

The arbitration algorithm between the streams we have
proposed is credit based. For each stream a number of
credits (time slots) is reserved, the same for every service
cycle. The number of credits reflects the bandwidth
requirements of the stream. Each time an access is
granted to the stream the number of credits available for
this stream decreases. The credit count per stream is
updated every time the arbitration occurs. Furthermore,
credits are reset at the end of the service cycle to
guarantee periodicity of the arbitration process. The
credit counts can also be refreshed only (e.g. all
decreased by the lowest value of all counts) to provide
arbitration history of previous service cycles, if adaptive
arbitration over a longer time is needed. In extreme case,
a single infinitely long service cycle can be used.

When multiple streams want to access the memory in
the same time slot, the credit count is used as an
arbitration criterion. The stream that has used the least of
its credits (relatively, measured as a ratio between the
used and reserved credits per current service cycle) gets
the access. The denied request is buffered and scheduled
(or arbitrated with another incoming request) for the next
time slot. If the credit ratios happen to be the same for
two requesting streams, the one that requires lower access

YF]',F.

COMPUTER
SOCIETY

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

latency gets the access first (e.g. read over write).

In this way, every stream (if requesting) will — in the
worst case — get the reserved number of accesses to the
memory per service cycle, regardless of the order of the
incoming requests or the behaviour of the other streams.
This guarantees that the bandwidth requirement for every
stream is met.

Let us show the example of our credit-based arbitration
algorithm. Let us define a time slot equal to a page access
(1KB) to SDRAM that, as calculated before, is equal to
3.9 us. Moreover, let us assume the service cycle has 60
time slots, so it is equal to 234 us. Hence, there will be
4273 service cycles per second, what results in the total
memory bandwidth of about 2 Gbit/s (4237*60*1KB). Let
us also assume there are 3 streams each with 350, 700 and
1050 Mbit/s, respectively, of bandwidth requirements.
Therefore, the reserved credit count per service cycle of
the first stream will be 350/2100 times 60 slots, which is
equal to 10 slots. Streams 2 and 3 will have 20 and 30
reserved credits, respectively. Table 1 shows the stream
schedule (row Sdl) that is a result of the arbitration. It also
shows credit (bandwidth) utilisation levels that determine
the arbitration result (rows Cg;, Csy, Cs; . measured as a
ratio between the used and reserved credits per current
service cycle) for each time slot (row Slo?).

Slot | 1 2 3 4 5 6 | 7 8 9 10 11

Cs1 {01101 [01[01]01]01]02[02]02]02]02

Cs2 | O |0.05/005|005]| 01]01]{01[0.15] 0.1 [0.1 | 0.2

Css | O 0 [0.03[0.06[0.06|/01|01]| 0.1 0.13]0.16|0.16

Sdl S1 32 33 53 SZ 33 S1 sz sJ SJ SZ

Table 1. Example of the Credit-Based Arbitration

Whereas the reserved bandwidth is always guaranteed
for each stream, the reserved but unused slots can be
reused by other streams if necessary. This also enables
flexible allocation of the bandwidth. While maintaining all
guarantees, it enables flexible handling of the unavoidable
fluctuations in the network.

Another requirement that must be met to ensure that
the above scheme works is that there must be sufficient
buffering of the incoming requests, or a mechanism for
stalling the requesting streams if other streams are granted
the access. The stalling mechanism is implemented using
PCI Express flow control, which enables the delay of any
stream, separately for each VC. The minimum buffering
required can therefore be equal to the size of the data
accessed from the memory during one time slot, i.e. page.
It is therefore not necessary to increase the access
buffering. However, access latency will be reduced
because such buffers then behave as pre-fetch or write-
back buffers.

The proposed arbitration algorithm is fully
parameterised. Most of the aspects of the arbitration can
be programmed. For example, the particular arbitration
strategy can be chosen at the configuration time, the

granularity of memory access (a time slot) can be
changed from a page to a burst of another length and,
finally, the number of time slots per service cycle can be
configured as well.

We have used two types of heuristics for arbitration:
time-based and event-based. In the time-based arbitration,
every service cycle consists of a fixed number of time
slots that are aligned (in time) to each other. Thus, all
time slots start at the predefined time and therefore
granted access starts at the predetermined moments of
time, namely at the beginning of each slot, regardless of
when the actual request was issued. In contrast, in the
event-based arbitration the time slot starts only when a
stream has issued a request and the granted access is
served immediately. The service cycle however, for this
arbitration takes the same time and is equivalent to a time
window that corresponds to the time the fixed number of
time slots of time-based arbitration takes.

The differences between the arbitrations mentioned
are: the event-based arbitration is more relaxed with
respect to power and provides better response latency for
requests, whilst the time-based arbitration has simpler
control, implementation and lower jitter. Nevertheless,
both policies exhibit exactly the same behaviour when the
number of requests is equal to or exceeds the total
number of available time slots per service cycle.

6. Design evaluation

The SMC proposed in the previous section has been
designed in VHDL and synthesized successfully. For the
SMC’s logic we have used internal Philips CMOSI12
(0.12 pm) technology library PcCMOSI12corelib
(standard V,). For SRAM we have used internal Philips
high-speed high-density single port SRAM technology
library C12xSRAM (standard V(). For simulation and
verification, we have assumed 128 Mbits Micron’s DDR-
SDRAM memory [6].

The DDR-SDRAM memory used in the design
operates at a clock frequency of 133MHz. As it accesses
the data twice every clock cycle, the SRAM operates at
double frequency (266MHz) to be synchronised with the
DDR-SDRAM and to provide the same bandwidth. All
internal blocks of SMC (FIFO manager, arbiter and
SRAM) work at 266 MHz, and all these blocks use the
same clock to be synchronised with each other.

In our design we have used two SRAM cells, each
with a 16-bit wide data bus and an area of 0.103 mm’.
Each cell has 16 Kbytes. Hence, the total size of buffer
space becomes 32 Kbytes (32 pages). The buffer space
can be divided between streams based on latency
requirements and on the actual data rate of each stream.
In our experiments we assumed four pages per stream,
although for small and medium data rates this is far too
much. The total silicon area is 0.208 mmz, of which 284

YF]',F.

COMPUTER
SOCIETY

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

um? is for the arbiter, 1055 um® for the FIFO manager and
0.206 mm® for the SRAM. With regard to the power
consumption of the SMC, the SRAM consumes 8§ mW
operating at 266 MHz. The power dissipation of the logic
can be ignored. As can be seen from the above figures, the
SRAM dominates the silicon and power consumption of
the SMC design. The power consumption of the DDR-
SDRAM [6] controlled by the SMC in a given playback
application (two uncompressed audio streams
synchronised in the memory) is shown in figure 6a.

For design verification, a test bench provides the
stimulus to the design using test vectors. The test bench
pumps data into the SMC from the test vector file and
monitors and checks the output ports of the SMC and the
internal registers of the SMC to verify the functionality
and timing of the design.

By playing with the design and changing its parameters
(e.g. buffer and burst sizes, arbitration strategies), it is
possible to experiment and obtain results for trade-offs in
the design of a real-time streaming memory controller for
off-chip memories. Examples of such trade-offs, which
can be visualised by exercising the design, are relations
between burst sizes and input/output buffer sizes versus a
worst-case delay for data access, external memory power
dissipation and latency within SMC.

As an example, in Figure 6 we present the power
dissipation of an external DDR-SDRAM [6] versus the
burst size of the access for a 10 Mbit/s data read from this
memory, and worst-case delay versus buffer size in
network packets.

A
149!-‘ 10094

Latency
(Clock cycles)

100 16 Mbit/s

8 Mbit/s

77T

Buffer
Size/Packet

Burst Size \

n 1 T
>
Page 1Page +1 +2 +4

T | T t
1 2 4 8

Figure 6. The trade-offs: a. Power versus Buffer
Size b. Worst-case delay versus Buffer size

7. Conclusion

We described our design of the novel real-time
streaming memory controller that supports off-chip
network services and real-time guarantees for accessing
external DRAM in a streaming manner. The SMC
architecture, the logic view and the design was proposed
and discussed. Moreover, we addressed some elements of
the heuristics that we have used for implementing real-
time stream arbitration.

The SMC has been designed to allow external DRAM to
be accessed from within a PCI Express network. This

SMC has been designed in VHDL, synthesized and
verified. The complexity figures in terms of consumed
silicon and power are available. In addition, a design
space can be explored for a particular application and
certain trade-offs can be visualised by exercising the
design with different parameters and arbitration policies.
This all enables us to analyse the concept of a streaming
memory controller and to understand the problems and
issues in its design. We will use this knowledge in the
design of a specific SMC for mobile interconnect.

We have not fully optimised the design but the lessons
we learned can help in further optimisation of the design
presented. Let us mention a few of those important
lessons. We have realized an SMC that gives bandwidth
guarantees for SDRAM access in a low-power way. The
arbitration algorithms, though they always guarantee
bandwidth, are still flexible enough to cope with network
fluctuations and jitter. PCI Express has a limitation of 8
VC, therefore up to 8 streams that can be arbitrated
independently. There are certain important trade-offs for
SMC design, such as buffer size (cost) versus power and
access delay. The increase of the I/O buffers relaxes the
arbitration, lowers the access latency and reduces the
cumulated bandwidth required from the SDRAM.

On top of this, we still need to validate the proposed
event-based arbitration scheme. In addition, there is a
need for an easy way to determine the optimum
parameters for the arbitration, including buffer sizes, so
that parameters can be chosen that fulfil the guarantees
for a certain application (a certain stream set). Actual
performance for particular applications will be verified in
the future by simulations. It can be realised by hooking
up the SMC to models of the PCI Express network and
actual DRAM and measuring the execution of actual
application.

8. References

[1] G. Kahn. The Semantics of a Simple Language for Parallel
Programming. In J L. Rosenfeld, editor, Information
Processing 74: Proc. IFIP Congress 74, North-Holland,
pages 471-475, August 1974.

[2] E.A. de Kock et al., “YAPI: Application modelling for
signal processing systems”. In Proc. of the 37th. Design
Automation Conference, Los Angeles, CA, June 2000,
pages 402—405. IEEE, 2000.

[3] Mobile Industry
WWW.mipi.org

[4] J. Ajanovic and Hong Jiang, “Multimedia and Quality of
Service Support in PCI Express Architecture”, White Paper,
Intel Corporation, September 19, 2002

[S] “PCI Express Base Specification, Revision 1.0”, PCI-SIG,
July 2002, www.pcisig.org

[6] Micron’s 128-Mbit DDRRAM specifications,
http://download.micron.com/pdf/datasheets/dram/ddr/128M
bDDRx4x8x16.pdf

Processor Interface Alliance:

YF]',F.

COMPUTER
SOCIETY

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

