
HAL Id: hal-00181814
https://hal.science/hal-00181814

Submitted on 24 Oct 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Hardware-Friendly Wavelet Entropy Codec for
Scalable Video

Hendrik Eeckhaut, Harald Devos, Benjamin Schrauwen, Mark Christiaens,
Dirk Stroobandt

To cite this version:
Hendrik Eeckhaut, Harald Devos, Benjamin Schrauwen, Mark Christiaens, Dirk Stroobandt. A
Hardware-Friendly Wavelet Entropy Codec for Scalable Video. DATE’05, Mar 2005, Munich, Ger-
many. pp.14-19. �hal-00181814�

https://hal.science/hal-00181814
https://hal.archives-ouvertes.fr


A Hardware-Friendly Wavelet Entropy Codec for Scalable Video

Hendrik Eeckhaut, Harald Devos, Benjamin Schrauwen, Mark Christiaens, Dirk Stroobandt
ELIS-PARIS, Ghent University

St. Pietersnieuwstraat 41, 9000 Gent, Belgium
{heeckhau,hdevos,bschrauw,mchristi,dstr}@elis.ugent.be

Abstract

In the RESUME project we explore the use of reconfig-
urable hardware for the design of portable multimedia sys-
tems by developing a scalable wavelet-based video codec.
A scalable video codec provides the ability to produce a
smaller video stream with reduced frame rate, resolution
or image quality starting from the original encoded video
stream with almost no additional computation. This is im-
portant for portable devices that have different Quality of
Service (QoS) requirements and power restrictions. Con-
ventional video codecs do not possess this property; re-
duced quality is obtained through the arduous process of de-
coding the encoded video stream and recoding it at a lower
quality. Producing such a smaller stream has therefore a
very high computational cost.

In this article we present the results of our investigation
into the hardware implementation of such a scalable video
codec. In particular we found that the implementation of
the entropy codec is a significant bottleneck. We present an
alternative, hardware-friendly algorithm for entropy cod-
ing with superior data locality (both temporal and spatial),
with a smaller memory footprint and superior compression
while maintaining all required scalability properties.

1. Introduction

“Scalable video” is encoded in such a way that it al-
lows to easily change the Quality of Service (QoS) i.e.
the frame rate, resolution, color depth and image quality
of the decoded video, without having to change the video
stream used by the decoder (except for skipping unneces-
sary blocks of data without decoding) or without having to
decode the whole video stream if only a part of it is re-
quired.

Such a scalable video codec has advantages for both the
server (the provider of the content) and the clients. On the
one hand the server scales well since it has to produce only
one video stream that can be broadcast to all clients, irre-

�����

����� �� 	�

���


��

�

Figure 1. High-level overview of the video en-
coder

spective of their QoS requirements. On the other hand the
client can easily adapt the decoding parameters to its needs.
A home cinema system can decode the stream at full qual-
ity, while a small portable client can decode the stream at
low resolution and frame rate without needing the process-
ing power of the larger clients. This way the decoder can
optimize the use of the display, required processing power,
required memory, . . .

The internal structure of one implementation of a scal-
able encoder is shown in Figure 1 and was described in [1,
4, 5, 6, 7]. It consists of the following parts:

ME: “Motion Estimation” exploits the temporal redun-
dancy in the video stream by looking for similarities
between adjacent frames. To obtain temporal scalabil-
ity (i.e. adjustable framerate of the video), motion is
estimated in a hierarchical way as illustrated in Fig-
ure 2. This dyadic temporal decomposition enables de-
coding of the video stream at different bitrates. The
decoder can choose up to which (temporal) level the
stream is decoded. Each extra level doubles the frame
rate.

An intermediate frame is predicted from its refer-
ence frames by dividing it into macroblocks and com-
paring each macroblock to macroblocks in the refer-
ence frames. The relative position of the macroblocks
in the reference frames with respect to the intermedi-
ate frame is stored as motion vectors. The difference
between the predicted and the original frame is called
an “error frame”.

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05) 
1530-1591/05 $ 20.00 IEEE 



MVEE: “Motion Vector Entropy Encoder” is responsible
for entropy encoding the motion vectors.

DWT: The “Discrete Wavelet Transform” takes a reference
or error frame and separates the low-pass and high-
pass components of the 2D image as illustrated in Fig-
ure 3. Each LL-subband is a low resolution version
of the original frame. The inverse wavelet transform
(IDWT) in the decoder can stop at an arbitrary level,
resulting in resolution scalability.

WEE: The “Wavelet Entropy Encoder” is responsible for
entropy encoding the wavelet transformed frames. The
frames are encoded bitplane by bitplane (from most
significant to least significant), yielding progressive
accuracy of the wavelet coefficients (Figure 4). The
WEE itself consists of two main parts: the “Model Se-
lector ” (MS) and the “Arithmetic Encoder” (AE). The
MS provides the AE with continuous guidance about
what type of data is to be encoded by selecting an ap-
propriate model for the symbol (a bit) that has to be en-
coded next. It exploits the correlation between neigh-
boring coefficients in different contexts. Finally the AE
performs the actual compression of the symbolstream.

P: The “Packetizer” packs all encoded parts of the video
together in one bit stream representing the compressed
video.

Scalability in color depth is obtained by encoding lumi-
nance and chrominance information in three different chan-
nels in the YUV 4:2:0 format. Omitting the chrominance
channels yields a grayscale version of the sequence, allo-
cating more bits to these channels increases the color depth.
Motion estimation is computed from luminance information
only, but is also applied to the chrominance channels. In the
other parts of the algorithm the channels are processed to-
tally independent.

By inverting the operations of Figure 1 we obtain a scal-
able video decoder consisting of a Depacketizer (DP), a
Motion Vector Entropy Decoder (MVED), a Wavelet En-
tropy Decoder (WED), an Inverse Discrete Wavelet
Transform (IDWT) and Motion Compensation (MC). The
wavelet entropy decoder described in [1, 4, 5, 6, 7] is our fo-
cus in this paper. Since our final goal is to achieve real-time
performance we need hardware acceleration. We tar-
get an FPGA implementation to effectively support scala-
bility.

After profiling the software implementation of this de-
coder (Figure 5) we came to the conclusion that the real-
time performance is severely limited by the Wavelet En-
tropy Decoder (WED). The reason for this is that the WED
encodes each frame one symbol (a bit) at a time. To get a
feel for the orders of magnitude: the WED must decode ap-
proximately 30.106 symbols/second for a CIF video (res-
olution: 352 × 288) playing at a framerate of 30 Hz. We

�
�

�
�

�
�

�
�

�
��

�
�

�
�

�
��

�
��

�
�

�
	

�



�
�

�
�

�
��

�
�	

�
�


Figure 2. Framerate scalability. Motion es-
timation processes one Group of Pictures
(GOP) consisting of 16 consecutive frames.
The arrows illustrate which frames are used
as a first approximation of the intermediate
frames at lower compositional levels. R1 is
the reference frame of this GOP, R2 is the ref-
erence frame of the next GOP and the Hi are
the intermediate frames.

��
� ��

�

��
�
��

�

��
�

��
�

��
�

Figure 3. Resolution scalability. Numbers in
subscript reflect the resolution layers.

found that the algorithms described in [1, 4, 5, 6, 7] have
a bad spatial and temporal locality and require data struc-
tures that are too large for an efficient hardware implemen-
tation. In this paper we present an alternative algorithm that
is tailored to a hardware implementation.

2. A Hardware-Friendly Wavelet Entropy De-
coder

We have designed a WED with the following properties
in mind:

• In the first place a WED should support the scalability
of the codec; this is both resolution and quality scala-
bility. As mentioned in the Introduction, quality scal-
ability is obtained by encoding the wavelet image bit-
plane by bitplane. Resolution scalability requires that
data from the different resolution layers is encoded in-

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05) 
1530-1591/05 $ 20.00 IEEE 



Figure 4. Quality scalability: decoding more
bitplanes gives a more accurate wavelet
transformed frame.

��������	
��� ��������	��� �������	���

�

��

��

��

��

���

���

���

���

�
��
�
�
��
�
�
��
��
�
�	
�


Figure 5. Execution times for decoding three
reference sequences (9.6s each) of the three
major parts of the video codec. From bottom
to top: Wavelet Entropy Decoding (WED), In-
verse Discrete Wavelet Transform (IDWT) and
Motion Compensation (MC)

dependently in the video stream. This enables us to
only decode those resolution layers that are required
to achieve the desired resolution.

• The algorithm should also be economical with mem-
ory. The working set should be as small as possible to
avoid memory accesses to become a bottleneck.

• A high degree of parallelism is necessary if we want a
really fast hardware (FPGA) implementation.

• A related issue is simplicity so as to encourage an ele-
gant implementation.

• Finally a competitive compression rate should be
achieved.

2.1. The Algorithm

We propose a new algorithm as shown in Figure 6. All
subbands of the wavelet transformed channel are encoded
(and decoded) totally independently. So it is possible to pro-
cess all subbands of the wavelet transformed color channel
of the frame in parallel. The subbands are processed bitlayer
per bitlayer from top to bottom. The top is the bitplane that
contains the most significant bit of the largest absolute value
of all coefficients and the bottom is the bitplane contain-
ing the least significant bits. The bitlayers are processed in
scanline order. This greatly benefits the memory accesses,
since this is the order in which the data is stored in mem-
ory. It also enables us to stream data and use burst mode fea-
tures of slower memories. All data from one subband is pro-
cessed sequentially since all bits are now encoded based on
information of previously encoded bits.

The first subband, the LL-subband of resolution layer 0,
of reference frames is treated slightly differently because
it contains, in contrast with all other subbands, only posi-
tive coefficients. This is a consequence of the use of the 9/7
biorthogonal filter pair in the wavelet transform. To avoid
encoding the (allways positive) signs and to give this sub-
band similar properties as the other subbands, the mean
value of this LL-band is subtracted of all coefficients. En-
coding this value first, gives the additional advantage of a
good and compact approximation of all pixels when decod-
ing at very low bitrates.

As can be seen from the code in Figure 6 symbols are
encoded with different models (the second argument of the
encode routine) depending on their context. To improve
memory accesses this context is kept very small. A model
contains information about the expected value of the incom-
ing symbol and is used to encode this symbol as efficiently
as possible in the Arithmetic Coder (AC).

There are four types of models:

• The data models are used to encode data such as
the number of the starting bitplane and the mean value
of the LL-subband.

• The sign models assist in the prediction of the
signs of the wavelet coefficients.

• The significance models are used to predict
the most significant bit of each wavelet coefficient. A
coefficient is called significant as soon as we encounter
its most significant bit. This group of models is sub-
divided further into two classes: the highest bitplane
models and the remaining bitplane models. The selec-
tion of highest bitplane models depends on the signifi-
cance of the surrounding pixels that have already been
encoded (Figure 7). The selection of the remaining bit-
plane models is based on the significance of all sur-

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05) 
1530-1591/05 $ 20.00 IEEE 



encode_frame:
for all subbands:

load_subbandmodel
if (LL-subband of reference frame)

encode (mean of frame, data model)
subtract mean from resolution level

encode (number top bitplane, data model)
for all bitplanes

encode_bitplane

encode_bitplane:
for all bits //scanline order

if coefficient was not significant yet
if starting bitplane

encode (bit, toplayer model)
else

encode (bit, significance model)
if bit becomes significant

encode (sign, sign model)
update bitmaps

else //was allready significant
encode (bit, refinement model)

Figure 6. Entropy encoding of one wavelet
encoded frame.

rounding pixels since all pixels are already encoded up
till at least the previous bitplane.

• The refinement models actually consist of only
one model, used to estimate the value of all refine-
ment bits. Refinement bits are the bits following the
most significant bit. These are the remaining bits we
come across when processing lower bitplanes than the
bitplane where the wavelet coefficient became signif-
icant. These bits have the characteristics of noise and
are therefore hard to predict.

The Model Selector (see Figure 8) is responsible for se-
lecting the models. Models are selected based on informa-
tion regarding previously encoded bits. Model selection is
used to exploit statistical characteristics (e.g. the fact that
pixels become significant in clusters) by encoding symbols
with a similar distribution using the same arithmetic coder.

For optimal compression, storing all information about
previously processed data would be ideal but since this ex-
cludes an efficient hardware implementation only the most
relevant information is stored. Our algorithm limits this in-
formation to the sign and the significance of each coef-
ficient. This information can easily be organized as two
bitmaps with dimensions equal to the subband’s.

From these bitmaps the number of horizontal, vertical
and diagonal significant (or negative) neighbors of the cur-
rent coefficient are counted to determine the model for the
arithmetic coder (Figure 7). In total there are 64 models:

�

�

� �

�

� �

�

�

�

�

Figure 7. Illustration of the use of the
bitmaps: neighborhood of the top bitplane
(left) and of the remaining bitplanes (right).
‘C’ is the current bit.

• 1 data model.

• 27 sign models: To determine the sign model in the
horizontal, vertical or diagonal direction, the number
of negative neighbors is subtracted from the number of
positive neighbors. Non-significant neighbors are not
counted. Depending on the sign of this subtraction, the
sign in each direction is more likely to be positive (+),
negative (−) or none of both (?). Each sign model is a
combination of the result in the three directions.

• 8 highest bitlayer significance models: one for
each possible combination of the significance of three
already visited neighbors. (Figure 7)

• 27 remaining bitlayers significance models:
one for each combination of 0, 1 or 2 significant hor-
izontal neighbors; 0, 1 or 2 significant vertical neigh-
bors; and 0, 1 or more significant diagonal neigh-
bors.

• 1 refinement model.

To determine the models at the borders of the subband,
the bitmaps are extended with a symmetric expansion.

2.2. Arithmetic Coder

For the arithmetic coder we opted for a modified version
of the CABAC arithmetic entropy encoder used in the AVC
codec [2]. This is a low-complexity adaptive, binary arith-
metic coder with a probability estimation algorithm that is
well suited for an efficient hardware implementation.

We made a few changes to this arithmetic coder to fit
it better in our wavelet entropy encoder. Since all memo-
ries on an FPGA are 9 bit wide, we augmented the 7 bit
state per model (i.e. the current estimated probability of the
model) to 9 bit. This increased the accuracy for probabil-
ity estimation and as a consequence the compression per-
formance. We also perfected the transition rule table for up-

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05) 
1530-1591/05 $ 20.00 IEEE 



�����������	
�� �
	���	
�������
��

��� ���

��� ���

���� ����

��� ���

��� ���

��� ���

������������	
��� �

����	
��� �

�������	
��

Figure 8. The model selector selects a model
based on information of neighbors, stored
in sign- and significance bitmaps. Once the
model is determined, the arithmetic encoder
encodes the bit with the selected model.

dating the probability estimation, but this falls outside the
scope of this paper. The fact that only a 9 bit state per model
needs to be stored, means that we only require 576 bits. The
cost for a large number of models is in other words very lim-
ited.

2.3. Warm up of models

Arithmetic coders perform very good if they are able
to accurately estimate the probability of the incoming bit-
stream. This is achieved by guiding the arithmetic coder
with models, that in the ideal case stand for a certain
fixed probability, resulting in near optimal compression. But
since we are using a high number of models, how can the
arithmetic coder estimate the probability of the models that
are rarely used? We tackled this problem by estimating the
probabilities beforehand, by observing the real probabili-
ties for a set of reference video sequences. By initializing
each model with these precalculated values we reach the ac-
tual probability much sooner than if we initialized the model
conservatively at 0.5.

2.4. Subband models

There are a lot of different types of subbands which all
have distinct statistical properties. In the first place there
are large differences between the LL, HL, LH and HH sub-
bands. In addition, models will be different for subbands of
different resolution layers. If we also take the difference be-
tween the color channels and the position in the temporal
frame hierarchy into account, we distinguish 480 different
types of subband models (for 4 resolution levels). Each type
has its own private 64 arithmetic models. Since all we have

to do when coding a certain subband is swap in the appro-
priate subband model that initializes the 64 arithmetic coder
states, no real efforts were made to reduce this high number
of different subband models; this cost is negligible.

3. Memory Use

In Section 2 we stated that the codec had to be really eco-
nomical with memory since bandwidth is often a bottleneck
for multimedia applications. Randomly accessing large data
structures on an FPGA is not recommended since memory
resources are limited and external memories might not be
fast enough. Since the decoder has to be at least real time,
it is very important that the working set, the data structures
that are accessed very frequently, are small enough to fit in
small/fast on-chip memory.

To have a better idea of memory consumption we map
the data structures to the available on-chip memory blocks
of the Altera Stratix and the Xilinx Virtex II Pro of Xil-
inx. This on-chip memory is dual-port and has a latency of
1 clock cycle. A typical Altera Stratix (EP1S25) has 224
M512 (64 × 9 bit) blocks , 138 M4K (512 × 9 bit) blocks
and two MRAM (64K × 9 bit) blocks. Similarly a typi-
cal Xilinx Virtex II Pro (XC2VP30) has 136 Select-RAM
(2K × 9 bit) blocks.

Implementing the above WED algorithm in a Stratix
EP1S25 or Virtex XC2VP30 requires the following mem-
ory blocks.

For the AD we require:

• A lookup table for determining the next state to jump
to after processing a symbol. There are 512 such states
but the table is symmetric so we are dealing with
a table of size 512/2.log2(512/2) bits = 256 bytes.
This will typically fit in one M4K or one Select-RAM
block.

• A lookup table containing the current state of 64 mod-
els. One such state requires 9 bits. This is very conve-
nient since almost every FPGA has on-chip RAM that
can be addressed 9 bits at a time. This will fit in one
M-512 block or one Select-RAM block.

• A lookup table used to look up the new size of the
range being coded (see [3]). This lookup table con-
sists of 256 entries (for each of the symmetrical states).
Each entry contains a value for 4 quantization levels
that needs 16 bits resulting in a total size of this table
of 2048 bytes. Depending on the chosen FPGA compo-
nent this will require 4 M4K blocks or 1 Select-RAM
block.

• A small buffer to store a part of the bit stream that is
being decoded will be necessary. One M4K block or
one Select-RAM block should suffice.

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05) 
1530-1591/05 $ 20.00 IEEE 



The MS has larger, but still very modest, requirements:

• The sign bitmap for the subband under reconstruction.
For a CIF image this data structure is at most 25344
bits. To implement this we need 6 M4K blocks or 2
Select-RAM blocks.

• An identical data structure is necessary for storing the
significance bitmap.

• We need a data structure to store the decoded image.
The WED algorithm is constructed so that it recon-
structs images one bitplane at a time and in Z-order.
This means we can stream out one bitplane at a time
requiring only a small buffer.

In total we find that one WED will require approximately
20 M4K blocks (14.5% of the M4K blocks of an EP1S25)
or 9 Select-RAM blocks (6.6% of the XC2VP30).

An alternative layout for the Stratix platform is to use
M-RAM blocks together with M4K blocks. We can fit the
whole significance and sign bitmaps into one M-RAM
block. The remaining data structures stay in the M4K
blocks. We would need two buffers for the bitmaps as
they are being streamed from the M-RAM block. Assum-
ing that we can fit the bitmaps of additional WEDs into the
same M-RAM block, we would be using only 8.6% of one
M-RAM block of an EP1S25 per subband decoder. The re-
maining 10 M4K blocks form only 7.25% of the M4K
blocks.

4. Results

In Figure 9, the average PSNR for decoding 289 frames
from the mobile sequence (CIF, 30 frames/s, full resolution)
is plotted for both the QTL approach of [5, 6] and the new
WED. The PSNR of each frame is calculated as follows. If
Yi,j , Ui,j and Vi,j and Y ′

i,j , U ′
i,j and V ′

i,j are resp. the lumi-
nance and the two chrominance channels of the original and
reconstructed frame of h × w pixels, then the PSNR is de-
fined as follows:

10 log10

2552 3
2hw

∑
(Y − Y ′)2 +

∑
(U − U ′)2 +

∑
(V − V ′)2

(1)
Both approaches used the same motion estimation and
wavelet transform results, only the entropy encoding and bi-
trate allocation algorithm were different. Figure 9 clearly il-
lustrates that the new WEE is very competitive with QTL,
which is considered state of the art [4].

5. Conclusions

We presented a balanced algorithm for scalable wavelet
entropy coding with superior data locality, both temporal
and spatial, a small memory footprint, streaming capabil-
ity, a high degree of parallelism and excellent compression.

� ���� ���� ���� ����� ����� ����� ����� �����

��

��

��

��

��

��

��

��

�	
��
�����
�����
��������������
 ����!"

#$$

%&'

��(��(
�)*��+ ,

�
�
�
�
�)
-
.
,

Figure 9. Average PSNR of QTL and WEE.

6. Acknowledgements

This research is supported by I.W.T. grant 020174,
F.W.O. grant G.0021.03 and by GOA project 12.51B.02 of
Ghent University. Harald Devos is supported by the fund
for scientific research Flanders (F.W.O.).

References

[1] H. Devos, H. Eeckhaut, M. Christiaens, F. Verdicchio,
D. Stroobandt, and P. Schelkens. Performance requirements
for reconfigurable hardware for a scalable wavelet video de-
coder. In CD-ROM Proceedings of the ProRISC / IEEE
Benelux Workshop on Circuits, Systems and Signal Process-
ing. STW, Utrecht, November 2003.

[2] D. Marpe, H. Schwarz, G. Blättermann, G. Heising, and
T. Wiegand. Context-based adaptive binary arithmetic cod-
ing in JVT/H.26L. Proc. IEEE International Conference on
Image Processing (ICIP’02), 2:513–516, September 2002.

[3] D. Marpe, H. Schwarz, and T. Wiegand. Context-based adap-
tive binary arithmetic coding in the H.264/AVC video com-
pression standard. IEEE Transactions on Circuits and Sys-
tems for Video Technology, 13(7):620–636, July 2003.

[4] A. Munteanu. Wavelet Image Coding and Multiscale Edge
Detection - Algorithms and Applications. PhD thesis, Vrije
Universiteit Brussel, 2003.

[5] A. Munteanu, J. Cornelis, G. Van der Auwera, and P. Cristea.
Wavelet image compression - the quadtree coding ap-
proach. IEEE Transactions on Information Technology in
Biomedicine, 3(3):176–185, September 1999.

[6] P. Schelkens, A. Munteanu, J. Barbarien, M. Galca, X. Giro-
Nieto, and J. Cornelis. Wavelet coding of volumetric med-
ical datasets. IEEE Transactions on Medical Imaging, Spe-
cial Issue on “Wavelets in Medical Imaging”, 22(3):441–458,
March 2003.

[7] D. Stroobandt, H. Eeckhaut, H. Devos, M. Christiaens,
F. Verdicchio, and P. Schelkens. Reconfigurable hardware for
a scalable wavelet video decoder and its performance require-
ments. Computer Systems: Architectures, Modeling, and Sim-
ulation, 3133:203–212, July 2004.

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05) 
1530-1591/05 $ 20.00 IEEE 


