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Abstract

This paper explores methods for hardware acceleration
of Hidden Markov Model (HMM) decoding for the detec-
tion of persons in still images. Our architecture exploits the
inherent structure of the HMM trellis to optimise a Viterbi
decoder for extracting the state sequence from observation
features. Further performance enhancement is obtained by
computing the HMM trellis states in parallel. The result-
ing hardware decoder architecture is mapped onto a field
programmable gate array (FPGA). The performance and
resource usage of our design is investigated for different
levels of parallelism. Performance advantages over soft-
ware are evaluated. We show how this work contributes to
a real-time system for person-tracking in video-sequences.

1. Introduction

Use of the Hidden Markov Model for recognition has
been gaining in popularity. The foremost application has
been in speech recognition, with research going back nearly
20 years. In the computer vision domain, much activity has
been seen recently, with the HMM being used for character
recognition in deformed text [5], template matching [2] and
face recognition [7]. The strength of the Hidden Markov
Model is in its ability to cope with deformity to the image
being recognised. This recognition ability of the HMM has
been taken advantage of in a proposed person-tracking sys-
tem that serves as the background for this work.

Unfortunately one of the main difficulties with the use
of the Hidden Markov Model is its computational complex-
ity. Implementation in hardware seems an ideal solution
to this problem, in order to allow faster processing. While
much work has been done with the Hidden Markov Model
for speech recognition, as far as we are aware this paper is
the first to explore a hardware architecture and implemen-

tation of the Hidden Markov Model specifically for vision
systems.

It is important to note that the HMM as used in these
systems uses offline learning. That is, the model is taught,
until accurate parameters are obtained. These parameters
are then used in recognition systems such as ours. The
recognition system does not adapt to its input over time, al-
though the reconfigurable nature of FPGAs means that we
can change our system parameters by writing a completely
new design to the chip.

Much of the work in this paper is inspired by a software
design of a person-tracking system proposed by Rigoll et
al. [10, 9, 3, 4] The focus of this paper is on the acceleration
of the state decoding part of the system, as it is the most
complex and suited to hardware. If the decoding could be
accelerated sufficiently, the system could become feasible
for real-time processing.

The specific contributions of this paper are: (a) exploita-
tion of the inherent structure of the HMM trellis to simplify
and parallelise Viterbi decoding; (b) mapping of the Viterbi
decoding stage into reconfigurable hardware, and (c) the
evaluation of its performance and resource usage for dif-
ferent levels of parallelism.

2. The Hidden Markov Model

The Hidden Markov Model is essentially an extension
of a standard Markov-process state machine. The idea is
that there exists a process which goes through a number of
states. These states are not directly observable, but some
other observation can be made that is statistically linked to
the state of the process. By knowing the sequence of obser-
vations and the properties of the process, the state sequence
can be deduced.

This is the “state decoding” problem of HMMs. The in-
formation available is as follows: A = {ai j} where ai j =
Pr(q j at t|qi at t − 1), the state-transition probabilities;

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05) 
1530-1591/05 $ 20.00 IEEE 



B = {b j(O)} where b j(O) = Pr(O at t|q j at t), the observa-
tion probabilities and π = {πi} where πi are the initial state
probabilities and qi are the states. [8]

Some important notes are that there is only one ob-
servation and state-transition per timestep, and the state-
transition and observation probabilities do not change over
time.

Recognition using HMMs relies on the Viterbi algorithm
to extract the state sequence from a series of observations.
The Viterbi algorithm has been widely researched and effi-
cient implementations in the field of block-convolution de-
coding and speech-recognition have been proposed. [1, 12]

The state-decoding problem consists of solving the re-
cursive equations in 1 and 2. δt( j) computes the probability
of being in state j in timestep t, while ψt( j) gives the most
likely predecessor of state j at time t.

δt( j) = max
0≤i≤N

[δt−1(i) ·ai j] ·b j(Ot) (1)

ψt( j) = argmax
0≤i≤N

[δt−1(i) ·ai j] (2)

The state sequence is obtained when δ and ψ are com-
puted for the last timestep. The state with the greatest value
of δ is taken to be the final state. The value of ψ for that
state is then used to find the predecessor and the backtrack-
ing process continues recursively until a full state sequence
has been obtained.

2.1. 2-Dimensional Representation

The state sequences discussed so far have all been one
dimensional. However, for application of this theory to im-
ages and visual data, some way must be found to extend the
model to be applicable in two dimensions. A fully con-
nected model would have very computationally-intensive
training and recognition algorithms, and so is avoided. An-
other method is to let the states in a one-dimensional HMM
be themselves HMMs. This is called the embedded Hidden
Markov Model. [5] The structure can be simplified further
by flattening which gives a state-representation as shown in
Figure 1.

It is important to note that this is not a true 2-dimensional
representation, since transitions from column-to-column are
not possible. This is called the Pseudo 2-Dimensional Hid-
den Markov Model. The state representation above is the
one used in our system.

2.2. Application Considerations

The above simplifications mean that in our considera-
tion of a design for decoding of the HMM state sequence,
it is worth thinking from scratch. Much of the work on the

Figure 1. State representation of the HMM

optimisation of the Viterbi algorithm for HMM decoding
is specific to the domain of speech recognition, and deals
with more complex state sequences. The same can be said
of work done on the Viterbi decoder for convolutional de-
coding. Specifically, in convolutional codes, the number of
states is typically smaller, but the transitions are much more
complex.

2.3. Log Domain Representation

In computing the state-sequence, a multiplication is
needed for each predecessor, and one more for multiply-
ing by the observation probability, as seen in (1). Given
the recursive nature of the equation, and these values be-
ing probabilities, dynamic range is an issue that must be
tackled. One way of overcoming this issue is to perform
these calculations in the log-domain. This reduces multipli-
cations to additions and allows the wide dynamic range to
be represented with fewer bits. Furthermore, since we are
concerned with relative rather than exact values, the loss of
precision is not of much importance.

Given that the log of a probability is always negative, we
negate the result to do away with the need for dealing with
signed arithmetic. [6] Therefore the max becomes a min. In
the log domain, we now compute:

δt( j) = min
0≤i≤N−1

[δt−1(i)+ai j]+b j(Ot) (3)

ψt( j) = argmin
0≤i≤N

[δt−1(i)+ai j] (4)

2.4. Trellis Structure

We have presented the general form of the Viterbi algo-
rithm for deduction of a state-sequence from a series of ob-
servations. For each timestep, we must compute the proba-
bility of being in each state as defined in the equations. This
calculation depends upon the probabilities of each of the
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states from the previous timestep and the observation prob-
ability for each state in the current timestep. Thus for a sys-
tem with N states, and an observation sequence T timesteps
long, the number of multiplications is (N2 + 1) ·T . In our
case, the number of states is 24 and the typical number of
observations per image is in the region of 3000. It is clear
that if the state-sequence is computed using the standard
equations, it will be too computationally intensive for real-
time processing at 30 frames/sec.

Looking at Figure 1, one can see that the state transitions
in our system are not fully connected. The state transition
trellis is shown in Figure 2. It is clear in fact that each state
only has 2 predecessors. Taking advantage of this would
simplify our calculation immensely, reducing the number
of multiplications to (2N + 1) · T . That is a reduction in
computation of around 90%.

Figure 2. Extract from the state-transition trel-
lis

It is also clear that the state transition sequence follows
a fixed pattern. The general case is that 2 possible prede-
cessors for each node N in timestep T are the nodes N − 1
and N from timestep T − 1. However, in the case of states
1,7,13 and 19 the predecessors are nodes N − 1 and N + 5
from the previous timestep. Hence, we can design an effi-
cient node-calculation unit that has 2 inputs, one of which
depends on which state we are computing the result for.

2.5. Inherent Parallelism

Another property that suggests hardware would be much
more suited to HMM decoding than software is the inher-
ent parallelism in the Trellis. In a normal software imple-
mentation, each node within a timestep is calculated in turn,
before moving onto the next timestep. This means that the

system can only cope with an observation rate that allows
it to compute all nodes in the inter-observation time. In our
case this means 24 calculation-times must complete before
the arrival of the next observation.

From the trellis diagram, it is clear that nodes in one
timestep only depend upon values in the previous timestep.
This means that more than one node can be calculated in
parallel. In fact, given sufficient resources, all nodes in one
timestep could be calculated in parallel. This allows for a
higher observation-rate in line with our aim of realtime pro-
cessing.

We will investigate in the next section, the effects of dif-
ferent levels of parallelism on speed and area of our imple-
mentation.

3. Results

The basic idea of our design is to implement a ”decoder
node”, that goes through each state to compute the δ and
ψ values for the current timestep. The node is a simplified
solver for (3) and (4), taking into account the simplifica-
tions mentioned in Section 2.4. A primitive example of the
design is shown in Figure 3. The results from the calcu-
lations in the previous timestep are fed into the unit. For
calculation of the result for state N, the only possible pre-
decessors are states N − 1, N and N + 5. These are fed as
inputs along with the appropriate state transition probabil-
ities and the observation probability for the current state.
A select signal goes high when we are computing the re-
sults for states 1,7,13 and 19. This causes the values for
state N +5 from the previous timestep to be used instead of
state N. The comparator chooses the minimum of the two
values and stores the most-likely predecessor. The observa-
tion probability is then added to give the final result for this
timestep.

Figure 3. The efficient node design
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3.1. Unit Context

It is important to consider where this unit fits in to the
rest of our system. As proposed by Rigoll et al [10, 9, 3, 4],
the Hidden Markov Model in our system is used to identify
the presence of a person. First comes the person-detection
phase: through background subtraction, the moving object
is extracted. A bounding-box is formed with the addition
of some margin on each side. This image segment is then
processed with a block based on the Discrete Cosine Trans-
form, using an overlapping sliding window, to extract fea-
tures. These are presented to the pre-trained HMM block
as observations, and the block decides whether or not a per-
son is present, by taking into account the number of person
states in the extracted sequence.

Once the presence of a person has been established, the
system enters the person tracking phase. Segmentation is
performed based on the states; the centre of gravity (COG)
is then passed to a Kalman Filter that predicts the position
in the next frame. A new bounding box is formed around
the predicted COG and passed to the HMM block to check
the presence of a person again. If the person is still present,
the parameters of the bounding box are again passed to the
Kalman filter to make the next prediction and so on. If the
person is no longer present, the system switches back to the
person-detection phase. This is summarised in the system
overview shown in Figure 4.

Note that while in the person-detection phase, the cam-
era must be stationary for successful segmentation. How-
ever, once the system enters the tracking phase, panning
and zooming are allowed. This is one of the strengths of
this system as compared to many other tracking algorithms.

3.2. Implementation Considerations

For the purposes of this paper, we are only concerned
with the extraction of the state-sequence from the observa-
tion values. As such, we have not considered the perfor-
mance of this specific structure for the HMM as compared
to others, nor trained the HMM ourselves. We have used
model parameters supplied from some precursory work on
the same system. [11]

Since we are concentrating on this processing unit, we
have also pre-computed the transition probability values
in the log-domain, and have assumed that the observation
probabilities are in the log domain too. There is already
much work in function approximation on FPGAs and so we
can safely assume that a log-unit will be feasible in a full
implementation. Despite the presence of hard-coded mul-
tipliers on the target device, we chose to stick with the log
domain since it allows us to ignore problems with dynamic
range which might force us to use floating-point.

The design was developed and implemented using the

Person-Detection Phase

Background Subtraction

Moving Object Extraction & Scaling

Bounding Box to HMM

Person

Present?

No

Person-Tracking Phase

Yes

Pass Segment Parameters to Kalman

New  COG, height and width to HMM

Person
Present?

Yes

No

Figure 4. The Person-Tracking System

Handel-C compiler. This enabled us to test different levels
of parallelism in a short amount of time with minimal ex-
tra effort. The targeted device was a Xilinx Virtex-II 6000
FPGA, on a Celoxica RC300 board, the target of our system
implementation.

3.3. Dataflow considerations

In an implementation as complex as the Viterbi algo-
rithm, organisation of data is paramount to an efficient de-
sign. Despite our design being much simpler than a general
Viterbi decoder, there were a number of challenges in or-
ganising the delivery of data around the system.

The first important data is results from the previous
timestep, δt−1( j). This is simply an array of 24 values that
is copied from the current results, once each time the current
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timestep completes. The next data item is the observation
probability. This is again an array of 24 values that changes
each timestep. The required value is simply referenced by
the number of the state currently being computed. The final
and more complex type of data is the transition probabili-
ties that are constant throughout. At first these were stored
as a 24x24 array, and referenced by the values of N for this
timestep and the previous, but this was too complex. In-
stead a much simpler approach was developed where each
processing node has access to an array of tuples that con-
tains the transition probabilities for the two predecessors,
ignoring position, with predecessor selection was at a higher
level. Hence the node itself is only the shaded region of Fig-
ure 3.

In implementing the parallelised versions, some other
savings could be made. Consider first, that each hardware
node only needs access to the transition elements for the
states that it will calculate. More importantly, if one of the
parallel nodes will not be computing any of states 1,7,13 or
19, then there is a saving since there is no need to select be-
tween two inputs as in the case of those nodes. This explains
why the area requirement does not increase in proportion to
the number of nodes, as all nodes above 4 are simpler in
their circuitry.

Furthermore, as the level of parallelism increases, the
control circuitry becomes more simple, so much so, that in
the fully-parallel implementation, there is almost no control
circuitry whatsoever. This is clear in the results.

3.4. Single-node Implementation

For this implementation a single calculation was imple-
mented. In each timestep, control circuitry uses the node to
calculate the results for each state, choosing the correct pre-
decessors. The result are then shifted into a shift-register.
Once all results had been computed for one timestep, the re-
sults are copied, in parallel, to the register holding previous
results, ready for calculation of results in the next timestep.

This design takes 24 clock cycles to complete the state
calculations for each timestep. The fastest clock rate
achievable with the circuit is 36MHz.

3.5. Multi-node Implementations

Implementations were completed for 4, 8, 12 and 24
nodes in parallel. These designs take 6, 3, 2 and 1 clock
cycle(s), to complete the calculations for one timestep, re-
spectively.

In each case, the appropriate number of nodes is instan-
tiated in parallel. Surrounding logic decides which data
to pass to which node. Each node only needs access to
whichever data it will process in the case of the transition

Nodes Slices Cycle-time Cycles/Res M Res/s
1 972 27.033ns 24 1.5
4 2083 34.467ns 6 4.8
8 2271 30.570ns 3 10.9
12 1593 22.112ns 2 22.6
24 1425 14.953ns 1 66.9

Table 1. Implementation Results

probabilities only the necessary tuples were attached to each
node.

The implementation for 24 nodes is much simpler than
the others. The reason is that in the case of the 24 paral-
lel nodes, each is hard-wired to the appropriate predecessor
registers and transition values, and so there is no control cir-
cuitry as such. Since five of the transition probabilities are
zero in our case, this removes one of the adders from those
nodes. The 12-node version only has binary selections since
it only runs for two clock-cycles. Hence there is a massive
saving on the multiplexing of signals that causes it to be
more area efficient that the 8-node implementation.

The implementations brought to our attention an interest-
ing fact: that in the case of our design, the control circuitry
was a significant part of the area. This is because a 1-bit
adder uses the same amount of resources as a 2-way 1-bit
select. Since in our designs the predecessor data is multi-
plexed into each node, this becomes significant. This is why
there is a significant drop in area usage in the graphs from 8
to 12 nodes.

3.6. Implementation Results

Implementation results are summarised in Table 1 and
Figures 5,6 and 7. From the graphs, it is clear that the 24-
node implementation is most desirable. It is both faster than
all other designs and smaller than all except the single-node
implementation. However of importance too is the num-
ber of cycles needed for a complete result. This swings the
result even more in favour of the 24-node implementation
as seen in the throughput figures in the table. For refer-
ence a full Viterbi decoder in MATLAB, running on a Pen-
tium 4, 2.4GHz machine, with the same data managed only
1000 results per second. We estimate that we require a rate
of greater than 200,000 for a realtime implementation with
30fps video for the given state representation.

4. Conclusions

We have shown how, through taking into account the
structure of the state representation for our HMM, it is pos-
sible to significantly simplify the computation of the state
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sequence. The number of computations is reduced from
(N2 + 1) ·T to (2N + 1) ·T . We also explored the different
levels of parallelism, and found that increasing the num-
ber of nodes not only drastically increases performance, but
also has a positive impact on area usage. This is due to the
control circuitry becoming simpler as more nodes are im-
plemented in parallel.

4.1. Further Work

We will be investigating the HMM structure itself and
deciding whether indeed this is the best state representation
to have. Considering the increase in evaluation rate, we are
less constrained in our selection now.

We are also investigating the logarithm block to precede
the state decoding. We will investigate what effect inclu-
sion of the logarithm will have on the speed of the differ-
ent designs presented. It is envisaged that the more parallel
designs will require a lot of computation for the logarithms,
since they must be supplied in parallel too. This could mean
selection of a design becomes less trivial.
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