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LASSO, ITERATIVE FEATURE SELECTION AND THE

CORRELATION SELECTOR: ORACLE INEQUALITIES AND

NUMERICAL PERFORMANCES

PIERRE ALQUIER

Abstract. We propose a general family of algorithms for regression estima-
tion with quadratic loss. Our algorithms are able to select relevant functions
into a large dictionary. We prove that a lot of algorithms that have already
been studied for this task (LASSO and Group LASSO, Dantzig selector, It-
erative Feature Selection, among others) belong to our family, and exhibit
another particular member of this family that we call Correlation Selector in
this paper. Using general properties of our family of algorithm we prove ora-
cle inequalities for IFS, for the LASSO and for the Correlation Selector, and
compare numerical performances of these estimators on a toy example.
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2 P. ALQUIER

1. Introduction

1.1. Setting of the problem. Let n ∈ N\{0}. Let P be a probability distribution
on

(

(X ×R)n , (B ⊗ BR)⊗n

)

and
(

(X1, Y1), ..., (Xn, Yn)

)

drawn from P .
For i ∈ {1, ..., n}, let pi denote the marginal distribution of Xi under P , and let

us put:

PX =
1

n

n
∑

i=1

pi.

We assume that PX is known to the statistician.
Moreover, we put:

P =
1

n

n
∑

i=1

δ(Xi,Yi).

The statistician chooses a dictionary of functions: (f1, ..., fm). For the sake of
simplicity we assume that it is such that for any j ∈ {1, ..., m} we have

PX

[

f2
j

]

= 1.

Definition 1.1. Let us put, for any α = (α1, ..., αm) ∈ Rm and (x, y) ∈ X ×R:

lα(x, y) =



y −

m
∑

j=1

αjfj(x)



 .

We define:

r(α) = P (lα) =
1

n

n
∑

i=1



Yi −

m
∑

j=1

αjfj(Xi)





2

and

R(α) = P [r (α)] .

We put:

α ∈ arg min
α∈Rm

R(α).

For any α, α′ ∈ Rm we put:

〈α, α′〉X = PX





m
∑

j=1

m
∑

k=1

αjα
′
kfjfk



 ,

and

‖α‖X =
√

〈α, α〉.

Finally, we put e1 = (1, 0, ..., 0) ∈ Rm, ..., em = (0, ..., 0, 1) ∈ Rm the canonical
basis of Rm.

Let us remark that for any α ∈ Rm we have

R(α) − R (α) = ‖α − α‖
2
X .
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Remark 1.1. We think of three cases of interest. If the pairs (Xi, Yi) are i. i. d.
we have p1 = ... = pn = PX and so PX is the marginal distribution of X . It is
assumed to be known to the statistician (restrictive hypothesis).

Another case of interest is when the values X1, ..., Xn are deterministic. In this
case,

PX =
1

n

n
∑

i=1

δXi

and so we obtain:

〈α, α′〉X =
1

n

n
∑

i=1





∑

j,k

αjαkfj(Xi)fk(Xi)



 .

In this case ‖.‖X is called the empirical norm (usually denoted ‖.‖n). This context
is the one adopted in papers like Bunea, Tsybakov and Wegkamp [5].

The last setting we think of is probably the most important in the view of
applications, it’s the so-called transductive setting introduced by Vapnik [15]. We
assume that there are deterministic pairs (xi, yi) for i ∈ {1, ..., (k+1)n}; we observe
all the xi but there is a cost for the observation of yi, so we drawn n different values
of i, uniformly on {1, ..., (k + 1)n}, and let (Xi, Yi) for i ∈ {1, ..., n} denote the
corresponding pairs. The idea is to guess the whole set of values (yi, i ∈ {1, ..., (k +
1)n}) from the restricted set (Yi, i ∈ {1, ..., n}). Note that this matches with our
context, with:

r(α) =
1

n

n
∑

i=1



Yi −

m
∑

j=1

αjfj(Xi)





2

,

R(α) =
1

(k + 1)n

(k+1)n
∑

i=1



yi −

m
∑

j=1

αjfj(xi)





2

,

and

PX =
1

(k + 1)n

(k+1)n
∑

i=1

δxi
.

See our previous paper [1] for more details.

Definition 1.2. Let C be a closed, convex subset of Rd. We let ΠX
C (.) denote the

orthogonal projection on C with respect to the norm ‖.‖X.

1.2. Organization of the paper. The aim of this paper is to propose a method
to estimate the real regression function (say f) by selecting a few relevant functions
among all the functions in the dictionary.

Recently, a lot of algorithms have been proposed for that purpose, let’s cite
among others the LASSO by Tibshirani [13] and some variants or generalization
like LARS by Efron, Hastie, Johnstone and Tibshirani [10], the Dantzig selector
by Candes and Tao [6] and the Group LASSO by Yuan and Lin [16], or Iterative
Feature Selection in our paper [1]. This paper proposes a general algorithm that
contains LASSO, Dantzig selector and Iterative Feature Selection as a particular
case.

A paper by Bunea, Tsybakov and Wegkamp [5] gives sparsity oracle inequalities
for the LASSO, that is inequalities that bounds the risk of the LASSO estimators
in terms of the number of selected functions in the dictionary. This paper by Bunea
and al. is writen in a different context than ours: random design with unknown
distribution (in the case of a random design, our method require the knowledge
of the distribution of the design). Another paper, by Bickel, Ritov and Tsybakov
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[3] gives sparsity oracle inequalities for the LASSO and the Dantzig selector in the
case of the deterministic design. However, in both papers the main results require
the assumtion ‖fj‖∞ ≤ L for some given L that is not necessary in our paper, and
that prevents the use of popular basis of functions like wavelets. This is partly due
to the use of Hoeffding’s inequality.

Another particular case of our general algorithm leads to the definition of a
new estimator, really easy to compute, that will be named Correlation Selector in
this paper. Our paper uses a geometric point of view that allows to obtain simple
sparsity oracle inequalities for the obtained estimator, in both deterministic design
case and random design with known distribution. It also uses a (Bernstein’s type)
deviation inequality proved in a previous work [1] that is sharper than Hoeffding’s
inequality, and so get rid of the assumption of a (uniform) bound over the functions
of the dictionary. Another improvement is that our method is valid for some types
of data-dependant of dictionaries of function, for example the case where m = n
and

{f1(.), ..., fm(.)} = {K(X1, .), ..., K(Xn, .)}

where K is a function X 2 → R.
In Section 2, we give the general form for our algorithm under a particular as-

sumption (CRA, Definition 2.2) that says that we are able to build some confidence
region for the best value of α in some subspace of Rm.

In Section 3, we show why Iterative Feature Selection, LASSO, Dantzig Selector
among others are particular cases of our algorithm. We exhibit another particular
case of interest (called the Correlation Selector in this paper). Moreover, when we
can we try to prove some oracle inequalities for the obtained estimator.

Section 4 is dedicated to simulations: we compare ordinary least square (OLS),
LASSO, Iterative Feature Selection and the Correlation Selector on a toy example.
Simulations shows that both particular cases of our family of estimators (LASSO
and Iterative Feature Selection) generally outperforms the OLS estimate. Moreover,
LASSO performs generally better than Iterative Feature Selection, however, this
is not always true: this fact leads to the conclusion that a data-driven choice of a
particular algorithm in our general family could lead to optimal results.

After a conclusion, Section 6 is dedicated to some proofs.

2. General projection algorithms

2.1. Additional notations and hypothesis. We choose M ∈ N and S1 ⊂
{1, ..., m}, ... , SM ⊂ {1, ..., m}. We put, for every S ⊂ {1, ..., m}:

MS =
{

α ∈ Rm, ℓ /∈ S ⇒ αℓ = 0
}

.

So every MSj
is a submodel of the original model Rm.

Definition 2.1. We put, for every S ⊂ {1, ..., m}:

αS = arg min
α∈MS

R(α).

Remark that for every S ⊂ {1, ..., m},

αS = ΠX
MS

(α).

Moreover let us put:
α̂S = arg min

α∈MS

r(α).

Definition 2.2. We say that the confidence region assumption (CRA) is satisfied
if for ε ∈ [0, 1] we have a bound r(Sj , ε) ∈ R such that

P
[

∀j ∈ {1, ..., M},
∥

∥αSj
− α̂Sj

∥

∥

2

X
≤ r(Sj , ε)

]

≥ 1 − ε.
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Definition 2.3. We define, for any ε > 0 and j ∈ {1, ..., M}, the random set

CR(j, ε) =
{

α ∈ Rm,
∥

∥

∥ΠX
MSj

(α) − α̂Sj

∥

∥

∥

2

X
≤ r(Sj , ε)

}

.

We remark that the hypothesis implies that

P
[

∀j ∈ {1, ..., M}, α ∈ CR(j, ε)
]

≥ 1 − ε.

In our previous work [1] we examined different hypothesis on the probability P
such that this hypothesis is satisfied. For example, using inequalities by Catoni [7]
and Panchenko [11] we proved the following results (for models of dimension 1, that
will be the most used in the sequel of this paper).

Lemma 2.1. Let us assume that P = P1 ⊗ ... ⊗ Pn. Let us assume that Yi =
f(Xi) + εi with P (εi|Xi) = 0,

sup
i∈{1,...,n}

Pi

(

ε2
i |Xi

)

≤ σ2

for some known σ and that ‖f‖∞ ≤ L for some known L > 0. If we take Sj = {j}
for any j ∈ {1, ..., m}, assumption CRA is satisfied, with

r({j}, ε) =
4
(

1 + log 2m
ε

)

n

[

1

n

n
∑

i=1

f2
j (Xi)Y

2
i + L2 + σ2

]

.

Remark 2.1. It is also shown in [1] that we are allowed to take

{f1, ..., fm} = {K(X1, .), ..., K(Xn, .)}

for some function X 2 → R, this being also true in the random design case, but we
have to take

r({j}, ε) =
4
(

1 + log 4m
ε

)

n

[

1

n

n
∑

i=1

f2
j (Xi)Y

2
i + L2 + σ2

]

.

Lemma 2.2. Let us assume that P = P1 ⊗ ... ⊗ Pn and that X1, ..., Xn are
deterministic. Let us assume that there is a K > 0 such that Pi(|Yi| ≤ K) = 1 for
any i. If we take Sj = {j} for any j ∈ {1, ..., m}, assumption CRA is satisfied with

r({j}, ε) =
8K2

(

1 + log 2m
ε

)

n
.

A bound in the transductive case is also given in [1].

2.2. General description of the algorithm. We propose the following iterative
algorithm. Let us choose a confidence level ε > 0 and a distance on X , say δ(., .).

• Step 0. Choose α̂0 = (0, ..., 0) ∈ Rm. Choose ε ∈ [0, 1].

• General Step (k). Choose N(k) ≤ M and indices (j
(k)
1 , ..., j

(k)
N ) ∈ {1, ..., M}N(k)

and put:

α̂k ∈ arg min
α∈
⋂N(k)

ℓ=1 CR(j
(k)
ℓ

,ε)

δ
(

α, α̂k−1
)

.

This algorithm is motivated by the following result.

Theorem 2.3. When the CRA assumption is satisfied we have:

P
[

∀k ∈ N, δ
(

α̂k, α
)

≤ δ
(

α̂k−1, α
)

≤ ... ≤ δ
(

α̂0, α
)]

≥ 1 − ε.

Moreover, if δ(x, x′) = ‖x − x′‖X then

α̂k = ΠX
⋂N(k)

ℓ=1 CR(j
(k)
ℓ

,ε)

(

α̂k−1
)
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and we have the following:

P



∀k ∈ N, R(α̂k) ≤ R(α̂0) −
k
∑

j=1

∥

∥α̂j − α̂j−1
∥

∥

2

X



 ≥ 1 − ε.

Proof. Let us assume that

∀j ∈ {1, ..., M},
∥

∥αSj
− α̂Sj

∥

∥

X
≤ r(Sj , ε).

This is true with probability at least 1 − ε according to assumption CRA. In this
case we have seen that

α ∈

N(k)
⋂

ℓ=1

CR(j
(k)
ℓ , ε)

that is a closed convex region, and so, by definition, δ
(

α̂k, α
)

≤ δ
(

α̂k−1, α
)

for any
k ∈ N. If δ is the distance associated with the norm ‖.‖X , let us choose k ∈ N,

R(α̂k) − R(α) =
∥

∥α̂k − α
∥

∥

2

X
=
∥

∥

∥ΠX
⋂N(k)

ℓ=1 CR(j
(k)
ℓ

,ε)

(

α̂k−1
)

− α
∥

∥

∥

2

X

≤
∥

∥α̂k−1 − α
∥

∥

2

X
−
∥

∥

∥ΠX
⋂N(k)

ℓ=1 CR(j
(k)
ℓ

,ε)

(

α̂k−1
)

− α̂k−1
∥

∥

∥

2

X

= R(α̂k−1) − R(α) −
∥

∥α̂k − α̂k−1
∥

∥

2

X
.

A recurrence ends the proof. �

We choose as our estimator α̂ = α̂k for some step k ∈ N; the choice of the
stopping step k will depend of the particular choices of the projections and is
detailed in what follows.

3. Particular cases and oracle inequalities

We study some particular cases depending on the choice of the distance δ(., .)
and on the sets we are to project on.

Roughly, Iterative Feature Selection (at least as introduced in [1]) and LASSO
corresponds to the choice δ(x, x′) = ‖x− x′‖X , and are studied first, together with
their grouped variables generalizations.

Dantzig selector corresponds to the choice δ(x, x′) = ‖x − x′‖1 the ℓ1 distance,
is is studied in a second time, and can also be generalized to grouped variables
selection.

Finally, the new Correlation Selector corresponds to a new choice for δ.
We just give an additionnal notation.

Definition 3.1. Let us put, for any j ∈ {1, ..., m}:

α̃j =
1

n

n
∑

i=1

Yifj(Xi).

3.1. The LASSO. We first look at the case where Sj = {j} for any j ∈ {1, ..., m}
(and so M = m). In this case, we only use submodels of dimension 1.

Here, we use only one step where we project 0 onto the intersection of all the
confidence regions and so we obtain:

α̂LASSO = α̂1 = ΠX
⋂

m
ℓ=1 CR(ℓ,ε) (0) .

Note that we have:

α̂Sj
= α̂{j} = (0, ..., 0, α̃j , 0, ..., 0)
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with the α̃j in j-th position (see Definition 3.1), and that:

CR(j, ε) =

{

α = (α1, ..., αm) ∈ Rm, α̃j − r({j}, ε) ≤ 〈α, ej〉X ≤ α̃j + r({j}, ε)

}

.

The optimization program to obtain α̂LASSO is given by:






arg minα=(α1,...,αm)∈Rm ‖α‖2
X

s. t. α ∈
⋂m

ℓ=1 CR(ℓ, ε)

and so:

(3.1)







arg minα∈Rm ‖α‖2
X

s. t. ∀j ∈ {1, ..., m},
∣

∣〈α, ej〉X − α̃j

∣

∣ ≤
√

r({j}, ε)

Proposition 3.1. Every solution of the program

(3.2) arg min
α∈Rm







‖α‖2
X − 2

m
∑

j=1

αjα̃j + 2

m
∑

j=1

√

r({j}, ε) |αj |







satisfies Program 3.1. In the case of a deterministic design, Program 3.2 is equiv-
alent to:

arg min
α∈Rm







r(α) + 2

m
∑

j=1

√

r({j}, ε) |αj |







.

The proof is given in the end of the paper, in the section dedicated to proofs
(more precisely Subsection 6.1 page 14).

Note that, if r({j}, ε) does not depend on j, this is exactly the formulation of the
original LASSO algorithm as introduced by Tibshirani [13]. An explicit algorithm
to obtain the projection is given by Efron, Hastie, Johnstone and Tibshirani [10].

However, in the cases where r({j}, ε) is not constant, the difference with the
LASSO algorithm is the following: coordinates that are more difficult to estimate
(because the confidence interval is larger) are more penalized.

Moreover, note that the program 3.2 gives a form different of the usual LASSO
program for the cases where we do not use the empirical norm.

3.2. Generalization: the Group LASSO. Here we choose general subsets S1,
..., SM ⊂ {1, ..., N}.

As in the LASSO algorithm we only use one step where we project 0 onto the
intersection of all the confidence regions,

α̂GLASSO = α̂1 = ΠX
⋂

M
ℓ=1 CR(ℓ,ε)

(0) .

The optimization program to obtain α̂GLASSO is given by










argminα=(α1,...,αm)∈Rm ‖α‖2
X

s. t. ∀j ∈ {1, ..., M},
∥

∥

∥ΠMX
Sj

(α) − α̂j

∥

∥

∥

X
≤
√

r(Sj , ε).

In the case of the empirical norm, this program is equivalent to the following:

arg min
α∈Rm







r(α) +

M
∑

j=1

√

r(Sj , ε)
∥

∥ΠMj
α
∥

∥

X







,

that is a generalization of the Group LASSO algorithm defined by Yuan and Lin
[16] in the case of orthogonal basis functions and extended by Chesneau and Hebiri
[8] to the general case.
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3.3. Iterative Feature Selection. As in the Group LASSO case, we choose gen-
eral subsets S1, ..., Sm ⊂ {1, ..., N}.

Moreover, instead of taking the intersection of every confidence region, we project
on each of them iteratively. So the algorithm is the following:

α̂0 = (0, ..., 0)

and at each step k we choose a j(k) ∈ {1, ..., m} and

α̂k = ΠX
CR(j(k),ε)

(

α̂k−1
)

.

We choose a stoping step k̂ and put

α̂IFS = α̂k̂.

In the case where, as in the LASSO, we actually have Sj = {j} for any j, this
is exactly the Iterative Feature Selection algorithm that was introduced in Alquier
[1], with the choice of j(k):

j(k) = argmax
j

∥

∥

∥α̂k−1 − ΠX
CR(j,ε)

(

α̂k−1
)

∥

∥

∥

X
,

and the suggestion to take as a stoping step

k̂ = inf
{

k ∈ N∗,
∥

∥α̂k − α̂k−1
∥

∥

X
≤ κ

}

for some small κ > 0. In [1] is also given the explicit computation of every step of
this algorithm.

3.4. The Dantzig selector, and generalization to Group Dantzig selector.

The Dantzig selector is based on a change of distance δ. We choose

δ(α, α′) = ‖α − α′‖1 =

m
∑

j=1

|αj − α′
j |.

As is the LASSO case, we take Sj = {j} and we make only one projection onto
the intersection of every confidence region:

α̂DANTZIG ∈ arg min
α∈
⋂

m
ℓ=1 CR(j,ε)

‖α‖1

and so α̂DANTZIG is the solution of the program:






argminα=(α1,...,αm)∈Rm

∑m
j=1 |αj |

s. t. ∀j ∈ {1, ..., m},
∣

∣〈α, ej〉X − α̃j

∣

∣ ≤
√

r({j}, ε).

In the case where r({j}, ε) does not depend on j, this program is exactly the one
proposed by Candes and Tao [6] to introduce the Dantzig selector.

Note that here again we can propose several changes in the algorithm: taking
general Sj we obtain a Group Dantzig selector. Moreover, we can as in Iterative
Feature Selection project successively onto the various confidence regions instead
of projecting once onto their intersection.

3.5. Oracle Inequalities for LASSO and Iterative Feature Selection.

Theorem 3.2. Let us assume that the CRA assumption is satified. Let us assume
that we took S1 = {1}, S2 = {1, 2}, ..., Sm = {1, 2, ..., m}, that we use the Iterative
Feature Selection estimator with stopping step m:

α̂IFS = ΠX
CR(m,ε)...Π

X
CR(1,ε)0.
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Then we have:
(3.3)

P

{

R (α̂IFS) ≤ R (α) + inf
1≤j≤m

[

R
(

α{1,...,j}

)

− R (α) + 4r({1, ..., j}, ε)
]

}

≥ 1 − ε.

The proof is given in Subsection 6.2 page 15.

Remark 3.1. This result is interesting in the case where the functions f1, ..., fm

and P are such that there is a β > 0 and a constant C > 0 such that for any
j ∈ {1, ..., m}, we have:

∥

∥α{1,...,j} − α
∥

∥

X
≤ Cj−β .

This is a regularity assumption with an order on the family of functions, such an
assumption is satisfied by functions in a Sobolev space, see Tsybakov [14] and the
references therein for example. In this case, if we assume moreover that there is a
k > 0 such that:

r({1, ..., j}, ε) ≤
jk log m

ε

n
then we have:
(3.4)

P

{

R (α̂) ≤ R (α) + (2β + 1)C
1

2β+1

(

2k log m
ε

βn

)
2β

2β+1

+

(

4k log m
ε

n

)

}

≥ 1 − ε

(see also Subsection 6.2 for the proof).

Theorem 3.3. Let us assume that the CRA assumption is satisfied. Let us assume
that the functions f1, ..., fm are orthogonal with respect to 〈., .〉X . Let us assume
that we choose Sj = {j} for any j ∈ {1, ..., m}, and

α̂IFS = ΠX
CR(m,ε)...Π

X
CR(1,ε)0.

Then

α̂LASSO = α̂IFS = α̂DANTZIG =
m
∑

j=1

sgn (α̃j)
(

|α̃j | −
√

r(j, ε)
)

+
ej

that is a soft-thresholded estimator, and

P

{

R (α̂LASSO) ≤ R (α) + inf
S⊂{1,...,m}



R (αS) − R (α) + 4
∑

j∈S

r({j}, ε)





}

≥ 1 − ε.

For the proof, see Subsection 6.3 page 16.

Remark 3.2. We say that the general regularity assumption with order β > 0 and
constant C > 0 if, for any j ∈ {1, ..., m}, we have:

inf
S ⊂ {1, ..., m}

|S| ≤ j

‖αS − α‖X ≤ Cj−β .

This is the kind of regularity satisfied by functions in weak Besov spaces, see Cohen
[9] and the references therein, with fj being wavelets. If the general regularity
assumption is satisfied with regularity β > 0 and constant C > 0 and if there is a
k > 0 such that

r({j}, ε) ≤
k log m

ε

n
,

then we have:

P

{

R (α̂) ≤ R (α) + (2β + 1)C
1

2β+1

(

2k log m
ε

βn

)
2β

2β+1

+

(

4k log m
ε

n

)

}

≥ 1 − ε.
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3.6. A new estimator: the Correlation Selector. The idea of the Correlation
Selector is to use the following norm:

‖α‖csel =
m
∑

j=1

〈ej, α〉
2
X .

As is the LASSO case, we take Sj = {j} and we make only one projection onto
the intersection of every confidence region:

α̂csel ∈ arg min
α∈
⋂

m
ℓ=1 CR(j,ε)

‖α‖csel

and so α̂csel is a solution of the program:






argminα=(α1,...,αm)∈Rm

∑m
j=1 〈ej, α〉

2
X

s. t. ∀j ∈ {1, ..., m},
∣

∣〈α, ej〉X − α̃j

∣

∣ ≤
√

r({j}, ε).

This program can be solved for every uj = 〈ej , α〉X individually: each of them is
solution of







arg minu |u|2

s. t. ∀j ∈ {1, ..., m}, |u − α̃j | ≤
√

r({j}, ε).

As a consequence,

uj = 〈ej , α̂csel〉 = sgn (α̃j)
(

|α̃j | −
√

r(j, ε)
)

+

that does not depend on p. Note that uj is a thresholded estimation of the correla-
tion between Y and fj(X), this is what suggested the name ”Correlation Selector”.
Let us put U the column vector that contains the uj for j ∈ {1, ..., m} and M the
matrix (〈ei, ej〉X)i,j , then α̂csel is just a solution of Mα̂csel = U .

Remark 3.3. Note that the Correlation Selector has no reason to be sparse, however,
the vector Mα̂csel is sparse.

Finally we mention that here again, we can define some variants using grouped
variables or iterative projections.

3.7. Oracle inequality for the Correlation Selector.

Theorem 3.4. We have:

P



‖α̂csel − α‖
2
csel ≤ inf

S⊂{1,...,m}





∑

j /∈S

〈α, ej〉
2
X + 4

∑

j∈S

r({j}, ε)







 ≥ 1 − ε.

Moreover, if we assume that there is a D > 0 such that for any α ∈ Em, ‖α‖X ≥
D ‖α‖ where

Em =
{

α ∈ Rm, 〈α, ej〉X = 0 ⇒ 〈α, ej〉 = 0
}

then we have:

P



R(α̂csel) − R(α) ≤
1

D2
inf

S⊂{1,...,m}





∑

j /∈S

〈α, ej〉
2
X + 4

∑

j∈S

r({j}, ε)







 ≥ 1 − ε.

The proof can be found in Subection 6.4 page 17.

Remark 3.4. Note that if there is a S such that for any j /∈ S, 〈α, ej〉X = 0 and if
r({j}, ε) = k log(m/ε)/n then we have:

P

[

‖α̂csel − α‖
2
csel,2 ≤

4k|S| log m
ε

n

]

≥ 1 − ε,
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and if moreover for any α ∈ Em, ‖α‖X ≥ D ‖α‖ then

P

[

R(α̂csel) − R(α) ≤
4k|S| log m

ε

D2n

]

≥ 1 − ε.

4. Numerical simulations

4.1. Motivation. We compare here LASSO, Iterative Feature Selection and Cor-
relation Selector on a toy example, introduced by Tibshirani [13]. We also compare
their performances to the ordinary least square (OLS) estimate as a benchmark.
Note that we will not propose a very fine choice for the r({j}, ε). The idea of these
simulations is not to identify a good choice for the penalization in practice. The idea
is to observe the similarity and differences between different order in projections in
our general algorithm, using the same confidence regions.

4.2. Description of the experiments. The model defined by Tibshirani [13] is
the following. We have:

∀i ∈ {1, ..., 20}, Yi = 〈β, Xi〉 + εi

with Xi ∈ X = R8, β ∈ R8 and the εi are i. i. d. from a gaussian distribution with
mean 0 and standard deviation σ.

The Xi’s are i. i. d. too, and each Xi comes from a gaussian distribution with
mean (0, ..., 0) and with variance-covariance matrix:

Σ(ρ) =
(

ρ|i−j|
)

i ∈ {1, ..., 8}
j ∈ {1, ..., 8}

for ρ ∈ [0, 1[.
We will use the three particular values for β taken by Tibshirani [13]:

β1 = (3, 1.5, 0, 0, 2, 0, 0, 0),

β2 = (1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5),

β3 = (5, 0, 0, 0, 0, 0, 0, 0),

corresponding to a ”sparse” situation (β1), a ”non-sparse” situation (β2) and a
”very sparse” situation (β3).

We use two values for σ: 1 (the ”low noise case”) and 3 (the ”noisy case”).
Finally, we use two values for ρ: 0.1 (”weakly correlated variables”) and 0.5

(”highly correlated variables”).
We run each example (corresponding to a given value of β, σ and ρ) 250 times.

We use the software R [12] for simulations. We implement Iterative Feature Selec-
tion as described in subsection 3.3 page 8, and the Correlation Selector, while using
the standard OLS estimate and the LASSO estimator given by the LARS package
described in [10]. The choice:

r({j}, ε) =
σ

3

√

log m

n
=

σ

3

√

log 8

20

was not motivated by theoretical considerations but seems to perform well in prac-
tice.

4.3. Results and comments. The results are reported in Table 1.
The following remarks can easily be made in view of the results:

• both methods based on projection on random confidence regions using the
norm ‖.‖X clearly outperforms the OLS in the sparse cases, moreover they
present the advantage of giving sparse estimates;
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Table 1. Results of the Simulations. For each possible combina-
tion of β, σ and ρ, we report in a column the mean empirical loss
over the 250 simulations, the standard deviation of this quantity
over the simulations and finally the mean number of non-zero coef-
ficients in the estimate, this for each estimate, ordinary least square
(OLS), LASSO, Iterative Feature Selection (IFS) and Correlation
Selector (C-SEL).

β σ ρ OLS LASSO IFS C-
SEL

3 0.5 3.67 1.64 1.56 3.65

β1 1.84 1.25 1.20 1.96
(sparse) 8 4.64 4.62 8

1 0.5 0.40 0.29 0.36 0.44

0.22 0.19 0.23 0.23
8 5.42 5.70 8

3 0.1 3.75 2.72 2.85 3.44

1.86 1.50 1.58 1.72
8 5.70 5.66 8

1 0.1 0.40 0.30 0.31 0.43

0.19 0.19 0.19 0.20
8 5.92 5.96 8

3 0.5 3.54 3.36 4.90 3.98

β2 1.82 1.64 1.58 1.85
(non sparse) 8 7.08 6.57 8

1 0.5 0.41 0.54 0.84 0.47

0.21 0.93 0.36 0.24
8 7.94 7.89 8

3 0.1 3.78 3.82 4.50 4.01

1.78 1.51 1.59 1.86
8 7.06 7.03 8

1 0.1 0.40 0.42 0.71 0.48

0.20 0.29 0.32 0.22
8 7.98 7.98 8

3 0.5 3.55 1.65 1.59 3.42

β3 1.79 1.28 1.27 1.74
(very sparse) 8 4.48 4.49 8

1 0.5 0.40 0.18 0.17 0.46

0.21 0.14 0.14 0.25
8 4.46 4.48 8

3 0.1 3.46 1.69 1.62 3.00

1.74 1.29 1.18 1.45
8 4.92 4.92 8

1 0.1 0.40 0.20 0.19 0.44

0.20 0.14 0.14 0.24
8 4.98 4.91 8

• in the non-sparse case, the OLS performs generally better than the other
methods, but LASSO is very close, it is known that a better choice for the
value r({j}, ε) would lead to a better result (see Tibshirani [13]);
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• LASSO seems to be the best method on the whole set of experiments. In
every case, it is never the worst method, and always performs almost as
well as the best method;

• in the ”sparse case” (β1), note that IFS and LASSO are very close for the
small value of ρ. This is coherent with the previous theory, see Theorem
3.3 page 9;

• IFS gives very bad results in the non-sparse case (β2), but is the best
method in the sparse case (β3). This last point tends to indicate that dif-
ferent situations should lead to a different choice for the confidence regions
we are to project on. However, theoretical results leading on that choice
are missing;

• the Correlation Selector performs badly on the whole set of experiments.
However, note that the good performances for LASSO and IFS occurs for
sparse values of β, and the previous theory ensures good performances for
C-SEL when Mβ′ is sparse where M is the covariance matrix of the Xi.
In other words, two experiments where favorable to LASSO ans IFS, but
there was no experiment favorable to C-SEL.

In order to illustrate this last point, we build a new experiment favorable to
C-SEL. Note that we have

(4.1) Yi = β′Xi + εi = (Mβ)′M−1Xi + εi

where M is the correlation matrix of the Xi. Let us put X̃i = M−1Xi and β̃ = Mβ,
we have the following linear model:

(4.2) Yi = β̃′X̃i + εi.

The sparsity of β gives advantage to the LASSO for estimating β in Model 4.1,
it also gives an advantage to C-SEL for estimating β̃ in Model 4.2 (according to
Remark 3.3 page 10).

We run again the experiments with β = β3 and this time we try to estimate β̃
instead of β (so we act as if we had observed X̃i and not Xi).

Results are given in Table 2.
The correlation selector clearly outperforms the other methods in this case.

5. Conclusion

This paper provides a simple interpretation of well-known algorithms of statisti-
cal learning theory in terms of orthogonal projections on confidence regions. This
very intuitive approach provides a very simple way to prove oracle inequalities.

Also note that this approach can be easily extended into general statistical prob-
lems with quadratic loss: in our paper [2], the Iterative Feature Selection method
is generalized to the density estimation with quadratic loss problem, leading to
a proposition of a LASSO-like programm for density estimation, that have also
been proposed and studied by Bunea, Tsybakov and Wegkamp [4] under the name
SPADES.

Simulations shows that methods based on confidence regions clearly outperforms
the OLS estimate in most examples. However, theoretical results leading the statis-
tician to a particular choice for the order of the successive projections are still
missing. Moreover, more accurate values for r({j}, ε) would be needed in practice.
More complete experimental studies are coming on this topic, including also various
forms of group selectors, in joint works with Thomas Willer, Mohamed Hebiri and
Christophe Chesneau.
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Table 2. Results for the estimation of β̃. As previously, for each
possible combination of σ and ρ, we report in a column the mean
empirical loss over the 250 simulations, the standard deviation of
this quantity over the simulations and finally the mean number of
non-zero coefficients in the estimate, this for each estimate: OLS,
LASSO, IFS and C-SEL.

β σ ρ OLS LASSO IFS C-
SEL

3 0.5 3.64 4.83 5.12 2.41

β1 1.99 2.53 2.64 1.92
(sparse) 8 5.98 6.05 8

1 0.5 0.41 1.09 0.92 0.26

0.21 1.72 0.48 0.19
8 7.11 7.40 8

3 0.1 3.65 3.71 3.72 2.09

1.71 1.96 1.99 1.40
8 6.25 6.28 8

1 0.1 0.40 0.47 0.55 0.23

0.20 0.25 0.16 0.27
8 7.35 7.38 8

6. Proofs

6.1. Proof of Proposition 3.1.

Proof. Let us remember program 3.1:

(6.1)







maxα∈Rm −‖α‖2
X

s. t. ∀j ∈ {1, ..., m},
∣

∣〈α, ej〉X − α̃j

∣

∣ ≤
√

r({j}, ε).

Let us write the lagrangian of this program:

L(α, λ, µ) = −
∑

i

∑

j

αiαj 〈ei, ej〉X

+
∑

j

λj

[

∑

i

αi 〈ei, ej〉X − α̃j −
√

r({j}, ε)

]

+
∑

j

µj

[

−
∑

i

αi 〈ei, ej〉X + α̃j −
√

r({j}, ε)

]

with , for any j, λj ≥ 0, µj ≥ 0 and λjµj = 0. Any solution (α∗) of Program 3.1
must satisfy, for any j,

0 =
∂L

∂αj
(α∗, λ, µ) = −2

∑

i

α∗
i 〈ei, ej〉X +

∑

i

(λi − µi) 〈ei, ej〉X ,

so for any j,

(6.2)
∑

i

〈

1

2
(λi − µi) ei, ej

〉

X

= 〈α∗, ej〉X .
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Note that this also implies that:

‖α∗‖X =

〈

∑

i

α∗
i ei,

∑

j

α∗
jej

〉

X

=
∑

i

α∗
i

〈

ei,
∑

j

α∗
jej

〉

X

=
∑

i

α∗
i

〈

ei,
∑

j

1

2
(λj − µj)ej

〉

X

=
∑

j

1

2
(λj − µj)

〈

∑

i

α∗
i ei, ej

〉

X

=
∑

j

∑

i

1

2
(λj − µj)

1

2
(λi − µi) 〈ei, ej〉X .

Using these relations, the lagrangian may be written:

L(α∗, λ, µ) = −
∑

i

∑

j

1

2
(λi − µi)

1

2
(λj − µj) 〈ei, ej〉X

+
∑

i

∑

j

1

2
(λi − µi)(λj − µj) 〈ei, ej〉X

−
∑

j

(λj − µj)α̃j +
∑

j

(λj + µj)
√

r({j}, ε).

Note that the condition λj ≥ 0, µj ≥ 0 and λjµj = 0 means that there is a γj ∈ R
such that γj = 2(λj −µj), |γj | = 2(λj +µj), and so µj = (γj/2)− and λj = (γj/2)+.
Let also γ denote the vector which j-th component is exactly γj , we obtain:

L(α∗, λ, µ) = ‖γ‖
2
X − 2

∑

j

γjα̃j + 2
∑

j

|γj |
√

r({j}, ε)

that is maximal with respect to the λj and µj , so with respect to γ. So γ is the
solution of Program 3.2.

Now, note that Equation 6.2 ensures that any solution α∗ of Program 3.1 satisfies:
〈

∑

i

γiei, ej

〉

X

= 〈α∗, ej〉X .

We can easily see that α∗ = γ is a possible solution.
If ‖.‖X is the empirical norm we obtain:

‖γ‖2
X − 2

m
∑

j=1

γjα̃j =
1

n

n
∑

i=1





m
∑

j=1

γjfj(Xi)





2

− 2
1

n

n
∑

i=1

Yi





m
∑

j=1

γjfj(Xi)





=
1

n

n
∑

i=1



Yi −

m
∑

j=1

γjfj(Xi)





2

−
1

n

n
∑

i=1

Y 2
i

= r(γ) −
1

n

n
∑

i=1

Y 2
i .

�

6.2. Proof of Theorem 3.2.

Proof. Let us assume that the event:
{

∀j ∈ {1, ..., M},
∥

∥αSj
− α̂Sj

∥

∥

X
≤ r(Sj , ε)

}
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is satisfied (this is true with probability at least 1− ε thanks to assumption CRA).
For any j ∈ {1, ..., m} we have:

α̂j = ΠX
CR(j,ε)...Π

X
CR(2,ε)Π

X
CR(1,ε)(0),

and α̂ = α̂m. It is evident that α̂j ∈ CR(j, ε). Moreover, we can prove that
α̂j ∈ M{1,...,j} by recurrence. So we have:

∥

∥α̂j − α{1,...,j}

∥

∥

2

X
≤ 4r(Sj , ε),

which means that:
R
(

α̂j
)

≤ R
(

α{1,...,j}

)

+ 4r(Sj , ε).

Now, Theorem 2.3 ensures that:

R (α̂) = R (α̂m) ≤ R
(

α̂j
)

,

this proves Equation 3.3:

R (α̂) ≤ R (α) + inf
1≤j≤m

[

R
(

α{1,...,j}

)

− R (α) + 4r(Sj , ε)
]

.

�

For Equation 3.4 note that:

R (α̂) ≤ R (α) + inf
1≤j≤m

[

Cj−2β +
4jk log m

ε

n

]

,

and take:

j =

⌊

(

βCn

2k log m
ε

)
1

2β+1

⌋

+ 1

to conclude.

6.3. Proof of Theorem 3.3.

Proof. In the case of orthogonality, we have ‖.‖X = ‖.‖ the euclidian norm. So
α̂LASSO satisfies, according to its definition:







argminα=(α1,...,αm)∈Rm

∑m
j=1 α2

j

s. t. ∀j ∈ {1, ..., m}, |αj − α̃j | ≤
√

r({j}, ε)

while α̂DANTZIG satisfies:






arg minα=(α1,...,αm)∈Rm

∑m
j=1 |αj |

s. t. ∀j ∈ {1, ..., m}, |αj − α̃j | ≤
√

r({j}, ε).

We can easily solve both problem by an individual optimization on each αj and
obtain the same solution

α∗
j = sgn (α̃j)

(

|α̃j | −
√

r(j, ε)
)

+
.

For α̂IFS just note that in the case of orthogonality, sequential projections on
each CR(j, ε) leads to the same result than the projection on their intersection, so
α̂IFS = α̂LASSO. Then, let us choose S ⊂ {1, ..., m} and remark that

R (α̂LASSO) − R (α) = ‖α̂LASSO − α‖
2
X = ‖α̂LASSO − α‖

2

=

m
∑

j=1

〈α̂LASSO − α, ej〉
2

=
∑

j∈S

〈α̂LASSO − α, ej〉
2

+
∑

j /∈S

〈α̂LASSO − α, ej〉
2
.
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Now, with assumption CRA, with probability 1− ε, for any j, α satisfies the same
constraint than the LASSO estimator so

|〈α, ej〉| ≤
√

r({j}, ε)

and so

|〈α̂LASSO − α, ej〉| =
∣

∣α∗
j − 〈α, ej〉

∣

∣ ≤
∣

∣α∗
j − α̃j

∣

∣+ |〈α, ej〉 − α̃j | ≤ 2
√

r({j}, ε).

Moreover, let us remark that α∗
j is the number with the smallest absolute value

satisfying this contraint, so
∣

∣α∗
j − 〈α, ej〉

∣

∣ ≤ max
(∣

∣α∗
j

∣

∣ , |〈α, ej〉|
)

≤ |〈α, ej〉| .

So we can conclude

R (α̂LASSO) − R (α) ≤
∑

j∈S

4r({j}, ε) +
∑

j /∈S

〈α, ej〉
2

= 4
∑

j∈S

r({j}, ε) + ‖α − αS‖
2

= 4
∑

j∈S

r({j}, ε) + R (αS) − R (α) .

�

6.4. Proof of Theorem 3.4.

Proof. Note that, for any S:

‖α̂csel − α‖
2
csel =

m
∑

j=1

〈α̂csel − α, ej〉
2
X

=
∑

j∈S

〈α̂csel − α, ej〉
2
X +

∑

j /∈S

〈α̂csel − α, ej〉
2
X .

By the constraint satisfied by α̂csel we have:

〈α̂csel − α, ej〉
2
X ≤ 4r({j}, ε).

Moreover, we must remember that uj = 〈α̂csel, ej〉X satisfies the program






arg minu |u|

s. t. ∀j ∈ {1, ..., m}, |u − α̃j | ≤
√

r({j}, ε),

that is also satisfied by 〈α, ej〉X , so |uj| ≤ | 〈α, ej〉 | and so

|uj − 〈α, ej〉| ≤ max (|uj|, | 〈α, ej〉 |) = | 〈α, ej〉 |

and so we have the relation:

〈α̂csel − α, ej〉
2
X ≤ 〈α, ej〉

2
X .

So we obtain:

‖α̂csel − α‖
2
csel ≤

∑

j∈S

4r({j}, ε) +
∑

j /∈S

〈α, ej〉
2
X

This proves the first inequality of the theorem. For the second one, we just have to
prove that M(α̂psel − α) ∈ Em. But this is trivial because of the relation:

〈M(α̂csel − α), ej〉
2

= 〈α̂csel − α, ej〉
2
X ≤ 〈α, ej〉

2
X .

�
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