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LASSO AND ITERATIVE FEATURE SELECTION: ORACLE

INEQUALITIES AND NUMERICAL PERFORMANCES

PIERRE ALQUIER

Abstract. We propose a general family of algorithms for regression estima-
tion with quadratic loss. Our algorithms is able to select relevant functions
into a large dictionary. We prove that some algorithms that have already been
studied (LASSO, by Tibshirani [15], Iterative Feature Selection, in our paper
[1], among others) belong to our family. We prove oracle-type inequalities in
some particular cases, and compare numerical performances of LASSO and

Iterative Feature Selection on a toy example.
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1. Introduction

1.1. Setting of the problem. Let n ∈ N\{0}. Let P be a probability distribution
on

(

(X ×R)
n

, (B ⊗ BR)
⊗n

)
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2 P. ALQUIER

and
(

(X1, Y1), ..., (Xn, Yn)

)

drawn from P .
For i ∈ {1, ..., n}, let pi denote the marginal distribution of Xi under P , and let

us put:

PX =
1

n

n
∑

i=1

pi.

We assume that PX is known to the statistician.
Moreover, we put:

P =
1

n

n
∑

i=1

δ(Xi,Yi).

The statistician chooses a dictionary of functions: (f1, ..., fm). For the sake of
simplicity we assume that it is such that for any j ∈ {1, ..., m} we have:

PX

[

f2
j

]

= 1.

Definition 1.1. Let us put, for any α = (α1, ..., αm) ∈ Rm and (x, y) ∈ X ×R:

lα(x, y) =



y −
m
∑

j=1

αjfj(x)



 .

We define:

r(α) = P (lα) =
1

n

n
∑

i=1



Yi −

m
∑

j=1

αjfj(Xi)





2

and

R(α) = P [r (α)] .

We put:

α ∈ arg min
α∈Rm

R(α).

For any α, α′ ∈ Rm we put:i

〈α, α′〉X = PX





m
∑

j=1

m
∑

k=1

αjα
′
kfjfk



 ,

and

‖α‖X =
√

〈α, α〉.

Finally, we put e1 = (1, 0, ..., 0) ∈ Rm, ..., em = (0, ..., 0, 1) ∈ Rm the canonical
basis of Rm.

Let us remark that for any α ∈ Rm we have:

R(α) − R (α) = ‖α − α‖
2
X .

Remark 1.1. We think of two cases of interest. If the pairs (Xi, Yi) are i. i. d. we
have p1 = ... = pn = PX and so PX is the marginal distribution of X . It is assumed
to be known to the statistician (restrictive hypothesis).

Another case of interest is when the values X1, ..., Xn are deterministic. In this
case:

PX =
1

n

n
∑

i=1

δXi
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and so we obtain:

〈α, α′〉X =
1

n

n
∑

i=1





∑

j,k

αjαkfj(Xi)fk(Xi)



 .

In this case ‖.‖X is called the empirical norm (usually denoted ‖.‖n).

Definition 1.2. Let C be a closed, convex subset of Rd. We let ΠX
C (.) denote the

orthogonal projection on C with respect to the norm ‖.‖X; ΠC(.) will denote the
orthogonal projection on C with respect to the euclidian norm ‖.‖.

1.2. Organization of the paper. The aim of this paper is to propose a method
to estimate the real regression function (say f) by selecting a few relevant functions
among all the functions in the dictionary.

Recently, a lot of algorithms have been proposed for that purpose, let’s cite
among others the LASSO by Tibshirani [15] and some variants or generalization
like LARS by Efron, Hastie, Johnstone and Tibshirani [11], the Dantzig selector
by Candes and Tao [6] and the Group LASSO by Yuan and Lin [17], or Iterative
Feature Selection in our paper [1]. This paper proposes a general algorithm that
contains LASSO and Iterative Feature Selection as a particular case.

A paper by Butucea, Tsybakov and Wegkamp [5] gives sparsity oracle inequalities
for the LASSO, that is inequalities that bounds the risk of the LASSO estimators in
terms of the number of selected functions in the dictionary. This paper by Butucea
and al. is writen is a different context than ours: random design with unknown
distribution (in the case of a random design, our method require the knowledge
of the distribution of the design). Another paper, by Bickel, Ritov and Tsybakov
[3] gives sparsity oracle inequalities for the LASSO and the Dantzig selector in the
case of the deterministic design. However, in both papers the main results require
the assumtion ‖fj‖∞ ≤ L for some given L that is not necessary in our paper, and
that prevents the use of popular basis of functions like wavelets. This is partly due
to the use of Hoeffding’s inequality.

Our paper uses a geometric point of view that allows to obtain simple sparsity
oracle inequalities for the obtained estimator, in both deterministic design case
and random design with known distribution. It also uses a deviation inequality
proved in a previous work [1] that is sharper than Hoeffding’s inequality, and so
get rid of the assumption of a (uniform) bound over the functions of the dictionary.
Another improvement is that our method is valid for some types of data-dependant
of dictionaries of function, for example the case where m = n and:

{f1(.), ..., fm(.)} = {K(X1, .), ..., K(Xn, .)}

where K is a function X 2 → R.
In section 2, we give the general form for our algorithm and explicit some par-

ticular cases (LASSO, Iterative Feature Selection and Group LASSO) under a par-
ticular assumption (CRA, Definition 2.2) that says that we are able to build some
confidence region for the best value of α in some subspace of Rm. In section 3, we
give some oracle inequalities under some hypothesis on the dictionary of functions.

Finally, section 4 is dedicated to simulations: we compare ordinary least square
(OLS), LASSO and Iterative Feature Selection on a toy example. Simulations shows
that both particular cases of our family of estimators (LASSO and Iterative Feature
Selection) generally outperforms the OLS estimate. Moreover, LASSO performs
generally better than Iterative Feature Selection, however, this is not always true:
this fact leads to the conclusion that a data-driven choice of a particular algorithm
in our general family could lead to optimal results.
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2. General projection algorithms

2.1. Additional notations and hypothesis. We choose M ∈ N and S1 ⊂
{1, ..., m}, ... , SM ⊂ {1, ..., m}. We put, for every S ⊂ {1, ..., m}:

MS =
{

α ∈ Rm, ℓ /∈ S ⇒ αℓ = 0
}

.

So every MSj
is a submodel of the original model Rm.

Definition 2.1. We put, for every S ⊂ {1, ..., m}:

αS = arg min
α∈MS

R(α).

Remark that for every S ⊂ {1, ..., m}:

αS = ΠX
MS

(α).

Moreover let us put:
α̂S = arg min

α∈MS

r(α).

Definition 2.2. We say that the confidence region assumption (CRA) is satisfied
if ε ∈ [0, 1] we have a bound r(Sj , ε) ∈ R such that

P
[

∀j ∈ {1, ..., M},
∥

∥αSj
− α̂Sj

∥

∥

X
≤ r(Sj , ε)

]

≥ 1 − ε.

Such confidence regions for αSj
can be obtained with standard techniques and

various hypothesis on the probability P , we refer the reader to our previous work
[1] for example.

Definition 2.3. We define, for any ε > 0 and j ∈ {1, ..., M}, the random set:

CR(j, ε) =
{

α ∈ Rm,
∥

∥

∥ΠX
MSj

(α) − α̂Sj

∥

∥

∥

2

X
≤ r(Sj , ε)

}

.

We remark that the hypothesis implies that:

P
[

∀j ∈ {1, ..., M}, α ∈ CR(j, ε)
]

≥ 1 − ε.

In our previous work [1] we examined different hypothesis on the probability P
such that this hypothesis is satisfied. For example, using inequalities by Catoni [7]
and Panchenko [13] we proved the following results (for models of dimension 1, that
will be the most used in the sequel of this paper).

Lemma 2.1. Let us assume that P = P1 ⊗ ... ⊗ Pn. Let us assume that Yi =
f(Xi) + εi with P (εi|Xi) = 0,

sup
i∈{1,...,n}

Pi

(

ε2
i |Xi

)

≤ σ2

for some known σ and that ‖f‖∞ ≤ L for some known L > 0. If we take Sj = {j}
for any j ∈ {1, ..., m}, assumption CRA is satisfied with:

r({j}, ε) =
4
(

1 + log 2m
ε

)

n

[

1

n

n
∑

i=1

f2
j (Xi)Y

2
i + L2 + σ2

]

.

Remark 2.1. It is also shown is [1] that we are allowed to take:

{f1, ..., fm} = {K(X1, .), ..., K(Xn, .)}

for some function X 2 → R, this being also true in the random design case, but we
have to take:

r({j}, ε) =
4
(

1 + log 4m
ε

)

n

[

1

n

n
∑

i=1

f2
j (Xi)Y

2
i + L2 + σ2

]

.
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Lemma 2.2. Let us assume that P = P1 ⊗ ... ⊗ Pn and that X1, ..., Xn are
deterministic. Let us assume that there is a K > 0 such that Pi(|Yi| ≤ K) = 1
for any i. If we take Sj = {j} for any j ∈ {1, ..., m}, assumption CRA is satisfied
with:

r({j}, ε) =
8K2

(

1 + log 2m
ε

)

n
.

2.2. General description of the algorithm. Now let us choose N ≤ M and
indices (j1, ..., jN ) ∈ {1, ..., M}N , the region:

N
⋂

ℓ=1

CR(jℓ, ε)

is a closed, convex confidence region for α.
So we propose the following iterative algorithm.

• Step 0. Choose α̂0 = (0, ..., 0) ∈ Rm. Choose ε ∈ [0, 1].

• General Step (k). Choose N(k) ≤ M and indices (j
(k)
1 , ..., j

(k)
N ) ∈ {1, ..., M}N(k)

and put:
α̂k = Π⋂N(k)

ℓ=1 CR(j
(k)
ℓ

,ε)

(

α̂k−1
)

.

Theorem 2.3. When the CRA assumtion is satisfied we have:

P



∀k ∈ N, R(α̂k) ≤ R(α̂0) −
k
∑

j=1

∥

∥α̂j − α̂j−1
∥

∥

2

X



 ≥ 1 − ε.

Proof. Let us choose k ∈ N.

R(α̂k) − R(α) =
∥

∥α̂k − α
∥

∥

2

X
=
∥

∥

∥ΠX
⋂N(k)

ℓ=1 CR(j
(k)
ℓ

,ε)

(

α̂k−1
)

− α
∥

∥

∥

2

X

≤
∥

∥α̂k−1 − α
∥

∥

2

X
−
∥

∥

∥ΠX
⋂N(k)

ℓ=1 CR(j
(k)
ℓ

,ε)

(

α̂k−1
)

− α̂k−1
∥

∥

∥

2

X

= R(α̂k−1) − R(α) −
∥

∥α̂k − α̂k−1
∥

∥

2

X
.

A recurrence ends the proof. �

We choose as our estimator α̂ = α̂k for some step k ∈ N; the choice of the
stopping step k will depend of the particular choices of the projections and is
detailed in what follows.

2.3. First particular case: LASSO. We first look at the case where Sj = {j}
for any j ∈ {1, ..., m} (and so M = m). In this case, we only use submodels of
dimension 1.

Here, we use only one step where we project 0 onto the intersection of all the
confidence regions and so we obtain:

α̂ = α̂1 = ΠX
⋂

m
ℓ=1 CR(ℓ,ε) (0) .

Definition 2.4. Let us put, for any j ∈ {1, ..., m}:

α̃j =
1

n

n
∑

i=1

Yifj(Xi).

Note that we have:

α̂Sj
= α̂{j} = (0, ..., 0, α̃j , 0, ..., 0)

with the α̃j in j-th position, and that:

CR(j, ε) =

{

α = (α1, ..., αm) ∈ Rm, α̃j − r({j}, ε) ≤ 〈α, ej〉X ≤ α̃j + r({j}, ε)

}

.
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The optimization program to obtain α̂ is given by:






arg minα=(α1,...,αm)∈Rm ‖α‖2
X

s. t. α ∈
⋂m

ℓ=1 CR(ℓ, ε)

and so:






arg minα∈Rm ‖α‖2
X

s. t. ∀j ∈ {1, ..., m},
∣

∣〈α, ej〉X − α̃j

∣

∣ ≤
√

r({j}, ε)

We can write the programm in dual form:

(2.1) arg min
α∈Rm







‖α‖2
X − 2

m
∑

j=1

αjα̃j + 2

m
∑

j=1

√

r({j}, ε) |αj |







.

If ‖.‖X is the empirical norm we obtain:

‖α‖2
X − 2

m
∑

j=1

αj α̃j =
1

n

n
∑

i=1





m
∑

j=1

αjfj(Xi)





2

− 2
1

n

n
∑

i=1

Yi





m
∑

j=1

αjfj(Xi)





=
1

n

n
∑

i=1



Yi −

m
∑

j=1

αjfj(Xi)





2

−
1

n

n
∑

i=1

Y 2
i

= r(α) −
1

n

n
∑

i=1

Y 2
i ,

and so the programm is equivalent to:

arg min
α∈Rm







r(α) + 2

m
∑

j=1

√

r({j}, ε) |αj |







.

Note that, if r({j}, ε) does not depend on j, this is exactly the formulation of the
original LASSO algorithm as introduced by Tibshirani [15]. An explicit algorithm
to obtain the projection is given by Efron, Hastie, Johnstone and Tibshirani [11].

However, in the cases where r({j}, ε) is not constant, the difference with the
LASSO algorithm is the following: coordinates that are more difficult to estimate
(because the confidence interval is larger) are more penalized.

Moreover, note that the program 2.1 gives a form different of the usual LASSO
programm for the cases where we do not use the empirical norm.

2.4. Particular case: Iterative Feature Selection. Here, we choose general
subsets S1, ..., Sm ⊂ {1, ..., N}.

Moreover, instead of taking the intersection of every confidence region, we project
on each of them iteratively. So the algorithm is the following:

α̂ = (0, ..., 0)

and at each step k we choose a j(k) ∈ {1, ..., m} and

α̂k = ΠX
CR(j(k),ε)

(

α̂k−1
)

.

In the case where, as in the LASSO, we actually have Sj = {j} for any j, this
is exactly the Iterative Feature Selection algorithm that was introduced in Alquier
[1], with the choice of j(k):

j(k) = argmax
j

∥

∥

∥α̂k−1 − ΠX
CR(j,ε)

(

α̂k−1
)

∥

∥

∥

X
,
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and the suggestion to take as an estimator:

α̂ = α̂k̂

where
k̂ = inf

{

k ∈ N∗,
∥

∥α̂k − α̂k−1
∥

∥

X
≤ κ

}

for some small κ > 0. In [1] is also given the explicit computation of every step of
this algorithm.

2.5. Particular case: Generalization of the Group LASSO. Here we choose
general subsets S1, ..., SM ⊂ {1, ..., N}.

As in the LASSO algorithm we only use one step where we project 0 onto the
intersection of all the confidence regions and so we obtain:

α̂ = α̂1 = ΠX
⋂

M
ℓ=1 CR(ℓ,ε)

(0) .

The optimization program to obtain α̂ is given by:










argminα=(α1,...,αm)∈Rm ‖α‖2
X

s. t. ∀j ∈ {1, ..., M},
∥

∥

∥ΠMX
Sj

(α) − α̂j

∥

∥

∥

X
≤
√

r({j}, ε).

In the case of the empirical norm, this program is equivalent to the following:

arg min
α∈Rm







r(α) +

M
∑

j=1

√

r({j}, ε)
∥

∥ΠMj
α
∥

∥

X







,

that is a generalization of the Group LASSO algorithm defined by Yuan and Lin
[17] in the case of orthogonal basis functions and extended by Chesneau and Hebiri
[8] to the general case.

3. Oracle inequalities in some particular cases

Some particular assumptions about the dictionnary of functions chosen by the
statistician allow us to obtain oracle inequalities for some particular order of pro-
jection.

3.1. Order on the dictionary of functions. In this subsection, we assume that
there is an order on the basis function: in some sense, the statistician knows that
a function fj with a small indice j ∈ {1, ..., m} is more likely to be useful for his
regression problem than another function fj′ with a large indice j′ ∈ {1, ..., m}.

A usual way to formalize this hypothesis is to make the following regularity
assumption.

Definition 3.1. We say that the ordered regularity assumption with order β > 0
and constant C > 0 is satisfied if, for any j ∈ {1, ..., m}, we have:

∥

∥α{1,...,j} − α
∥

∥

X
≤ Cj−β .

Remark 3.1. This is a Sobolev-type regularity assumption, see Tsybakov [16] and
the references therein for estimation in Sobolev spaces.

Note that this is equivalent to:

R
(

α{1,...,j}

)

− R (α) ≤ Cj−2β .

Let us put S1 = {1}, S2 = {1, 2}, ..., Sm = {1, ..., m} and so M = m and follow
the following iterative projection scheme:

α̂ = ΠX
CR(m,ε)...Π

X
CR(2,ε)Π

X
CR(1,ε)(0).

Then we have the following result.
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Theorem 3.1. Let us assume that the CRA assumtion is satified. Then we have:
(3.1)

P

{

R (α̂) ≤ R (α) + inf
1≤j≤m

[

R
(

α{1,...,j}

)

− R (α) + 4r({1, ..., j}, ε)
]

}

≥ 1 − ε.

If we assume moreover that there is a k > 0 such that:

r({1, ..., j}, ε) ≤
jk log m

ε

n

and that the ordered regularity assumption is satisfied with regularity β and constant
C then we have:
(3.2)

P

{

R (α̂) ≤ R (α) + (2β + 1)C
1

2β+1

(

2k log m
ε

βn

)
2β

2β+1

+

(

4k log m
ε

n

)

}

≥ 1 − ε.

Proof. Let us assume that the event:
{

∀j ∈ {1, ..., M},
∥

∥αSj
− α̂Sj

∥

∥

X
≤ r(Sj , ε)

}

is satisfied (this is true with probability at least 1− ε thanks to assumption CRA).
For any j ∈ {1, ..., m} we have:

α̂j = ΠX
CR(j,ε)...Π

X
CR(2,ε)Π

X
CR(1,ε)(0),

and α̂ = α̂m. It is evident that α̂j ∈ CR(j, ε). Moreover, we can prove that
α̂j ∈ M{1,...,j} by recurrence. So we have:

∥

∥α̂j − α{1,...,j}

∥

∥

2

X
≤ 4r(Sj , ε),

which means that:

R
(

α̂j
)

≤ R
(

α{1,...,j}

)

+ 4r(Sj , ε).

Now, Theorem 2.3 ensures that:

R (α̂) = R (α̂m) ≤ R
(

α̂j
)

,

this proves Equation 3.1:

R (α̂) ≤ R (α) + inf
1≤j≤m

[

R
(

α{1,...,j}

)

− R (α) + 4r(Sj , ε)
]

.

For Equation 3.2 note that:

R (α̂) ≤ R (α) + inf
1≤j≤m

[

Cj−2β +
4jk log m

ε

n

]

,

and take:

j =

⌊

(

βCn

2k log m
ε

)
1

2β+1

⌋

+ 1

to conclude. �

Remark 3.2. Note that, as soon as β > 1/2, we reach the minimax rate of con-
vergence up to a log m term. In general, as β is unknown to the statistician, we
propose to take m = n so we miss the optimal rate of convergence by a log n term.
In this case, we propose the following modification (inspired by the block method,
see Tsybakov [16] and the references therein for example). We take Sh = {1, ..., 2h}
with h ∈ {1, ..., m} and

m =

⌊

log n

log 2

⌋
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as this choice ensures that 2m−1 < n ≤ 2m so we obtain:

R (α̂) ≤ R (α) + inf
1≤h≤m

[

R
(

α{1,...,2h}

)

− R (α) + r(Sh, ε)
]

≤ R (α) + inf
1≤h≤m



2−2βh +
2h4k log

log⌊ log n
log 2 ⌋
ε

n





and so we can conclude:

R (α̂) ≤ R (α) + O





(

log log n
ε

n

)
2β

2β+1



 ,

so in this case we reach the minimax rate of convergence up to a log log n term.

3.2. Nearly orthogonal dictionary of functions.

Definition 3.2. For a pair (δ, D) ∈ (R+)2, we say that the condition NO(δ, D) is
satisfied if:

∀α ∈ Rm, δ‖α‖ ≤ ‖α‖X ≤ D‖α‖.

Remark 3.3. This condition was given by Kerkyacharian and Picard [12] to study
the statistical properties of algorithms generalizing the idea of thresholding. The
meaning of condition NO(δ, D) when δ ≃ 1 and D ≃ 1 is clear: the norms ‖.‖
and ‖.‖X have the same behaviour, in other words the dictionary of functions
(fj)j∈{1,...,m} is ”nearly orthogonal”. Of course, as we are in a space of finite
dimention m, we can always find a small δ (of the order 1/m) and a large D (of the
order m) such that condition NO(δ, D) is satisfied. However, Theorem 3.2 clearly
shows that the results are interesting for values of δ and D that does not depend
on m.

We will also use the following regularity hypothesis.

Definition 3.3. We say that the general regularity assumption with order β > 0
and constant C > 0 if, for any j ∈ {1, ..., m}, we have:

inf
S ⊂ {1, ..., m}

|S| ≤ j

‖αS − α‖X ≤ Cj−β .

Remark 3.4. This is the type of regularity assumption used to define weak Besov
spaces, see Cohen [9] and the references therein.

We still take S1 = {1}, ..., Sm = {m}, and

α̂ = ΠX
⋂

m
j=1 CR(j,ε)(0)

the LASSO estimator.

Theorem 3.2. Let us assume that the CRA assumption is satisfied. For any
(δ, D) ∈ (R+)2 such that condition NO(δ, D) is satisfied we have:

P







R (α̂) ≤ R (α) +
1

δ2
inf

S⊂{1,...,m}



D2 [R (αS) − R (α)] + 4
∑

j∈S

r({j}, ε)











≥ 1 − ε,

and so, if moreover the general regularity assumption is satisfied with regularity
β > 0 and constant C > 0 and if there is a k > 0 such that:

r({j}, ε) ≤
k log m

ε

n
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then we have:

P

{

R (α̂) ≤ R (α) +
(2β + 1)C

1
2β+1

δ2

(

2Dk log m
ε

βn

)
2β

2β+1

+
1

δ2

(

4k log m
ε

n

)

}

≥ 1 − ε.

Proof. In this proof, we adopt the notation α′ for the transposed vector of α, and
let M denote the matrix:

M =
(

〈ej , ek〉X
)

(j,k)∈{1,...,m}2 = (PX (fjfk))(j,k)∈{1,...,m}2 .

So note that for any (α, β) ∈ (Rm)2 we have:

〈α, β〉 = α′β

and

〈α, β〉X = α′Mβ.

We have:

R (α̂) − R (α) = ‖α̂ − α‖
2
X =

∥

∥

∥M
1
2 (α̂ − α)

∥

∥

∥

2

≤
1

δ2

∥

∥

∥M
1
2 (α̂ − α)

∥

∥

∥

2

X
=

1

δ2
‖M (α̂ − α)‖

2
=

1

δ2
(α̂ − α)

′
MM (α̂ − α)

=
1

δ2
Tr
[

(α̂ − α)
′
MM (α̂ − α)

]

=
1

δ2
Tr
[

M (α̂ − α) (α̂ − α)
′
M
]

=
1

δ2

m
∑

j=1

ej′M (α̂ − α) (α̂ − α)
′
Mej =

1

δ2

m
∑

j=1

〈α̂ − α, ej〉
2
X .

Now, note that the fact that for any j ∈ {1, ..., m}, α̂ ∈ CR(j, ε) implies that:

∀j ∈ {1, ..., m}, 〈α̂ − α, ej〉
2
X ≤ 4r({j}, ε).

Moreover, the by the definition of α̂ we have:

∀j ∈ {1, ..., m}, 〈α̂ − α, ej〉
2
X ≤ 〈α, ej〉

2
X .

So, for any S ⊂ {1, ..., m} we have:

R (α̂) − R (α) ≤
1

δ2



4
∑

j∈S

r({j}, ε) +
∑

j /∈S

〈α, ej〉
2
X



 .

So, in order to proove Theorem 3.2 we just have to upper bound the second sum,
using the same techniques:

∑

j /∈S

〈α, ej〉
2
X =

m
∑

j=1

〈α − αS , ej〉
2
X =

m
∑

j=1

ej′M (α − αS) (α − αS)
′
Mej

= Tr
[

M (α − αS) (α − αS)
′
M
]

= Tr
[

(α − αS)
′
MM (α − αS)

]

= ‖M (α − αS)‖2 =
∥

∥

∥M
1
2 (α − αS)

∥

∥

∥

2

X
≤ D2

∥

∥

∥M
1
2 (α − αS)

∥

∥

∥

2

= D2 ‖α − αS‖
2
X = D2 [R (αS) − R (α)] .

�

Remark 3.5. A particularly interesting case is the orthogonal case, where condition
NO(1, 1) is satisfied. In this case:

α̂ = ΠX
CR(m,ε)Π

X
CR(m−1,ε)...Π

X
CR(1,ε)(0) = ΠX

⋂

m
j=1 CR(j,ε)(0)
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so in this case, LASSO and Iterative Feature Selection (with κ = 0) are equivalent
and actually we have:

α̂ =

m
∑

j=1

sgn (α̃j)
(

|α̃j | −
√

r(j, ε)
)

+
ej

that is a soft-thresholded estimator. See our previous work on Iterative Feature
Selection [1] for a proof. Soft-thresholding is now a standard way to deal with
selection of functions in an orthogonal family, see for example the seminal paper by
Donoho and Johnstone [10] in the case of a wavelet basis. The bound just becomes:

P







R (α̂) ≤ R (α) + inf
S⊂{1,...,m}



R (αS) − R (α) + 4
∑

j∈S

r({j}, ε)











≥ 1 − ε.

4. Numerical simulations

4.1. Motivation. We compare here LASSO and Iterative Feature Selection on a
toy example, introduced by Tibshirani [15]. We also compare their performances
to the ordinary least square (OLS) estimate as a benchmark. Note that we will not
propose a very fine choice for the r({j}, ε). The idea of these simulations is not
to identify a good choice for the penalization in practice. The idea is to observe
the similarity and differences between different order in projections in our general
algorithm, unsing the same confidence regions.

4.2. Description of the experiments. The model defined by Tibshirani [15] is
the following. We have:

∀i ∈ {1, ..., 20}, Yi = 〈β, Xi〉 + εi

with Xi ∈ X = R8, β ∈ R8 and the εi are i. i. d. from a gaussian distribution with
mean 0 and standard device σ.

The Xi’s are i. i. d. too, and each Xi comes from a gaussian distribution with
mean (0, ..., 0) and with variance-covariance matrix:

Σ(ρ) =
(

ρ|i−j|
)

i ∈ {1, ..., 8}
j ∈ {1, ..., 8}

for ρ ∈ [0, 1[.
We will use the three particular values for β taken by Tibshirani [15]:

β1 = (3, 1.5, 0, 0, 2, 0, 0, 0),

β2 = (1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5),

β3 = (5, 0, 0, 0, 0, 0, 0, 0),

corresponding to a ”sparse” situation (β1), a ”non-sparse” situation (β2) and a
”very sparse” situation (β3).

We use two values for σ: 1 (the ”low noise case”) and 3 (the ”noisy case”).
Finally, we use two values for ρ: 0.1 (”weakly correlated variables”) and 0.5

(”highly correlated variables”).
We run each example (corresponding to a given value of β, σ and ρ) 250 times.

We use the software R [14] for simulations. We implement Iterative Feature Selec-
tion as described in subsection 2.4 page 6, while using the standard OLS estimate
and the LASSO estimator given by the LARS package described in [11]. The choice:

r({j}, ε) =
σ

3

√

log m

n
=

σ

3

√

log 8

20

was not motivated by theoretical considerations but seems to perform well in prac-
tice.
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4.3. Results and comments. The results are reported in Table 1.

Table 1. Results of the Simulations. For each possible combi-
nation of β, σ and ρ, we report in a column the mean empirical
loss over the 250 simulations, the standard deviation of this quan-
tity over the simulations and finally the mean number of non-zero
coefficients in the estimate, this for each estimate, ordinary least
square (OLS), LASSO and Iterative Feature Selection (IFS).

β σ ρ OLS LASSO IFS

3 0.5 3.67 1.64 1.56

β1 1.84 1.25 1.20
(sparse) 8 4.64 4.62

1 0.5 0.40 0.29 0.36

0.22 0.19 0.23
8 5.42 5.70

3 0.1 3.75 2.72 2.85

1.86 1.50 1.58
8 5.70 5.66

1 0.1 0.40 0.30 0.31

0.19 0.19 0.19
8 5.92 5.96

3 0.5 3.54 3.36 4.90

β2 8 7.08 6.57
(non sparse) 1.82 1.64 1.58

1 0.5 0.41 0.54 0.84

8 7.94 7.89
0.21 0.93 0.36

3 0.1 3.78 3.82 4.50

8 7.06 7.03
1.78 1.51 1.59

1 0.1 0.40 0.42 0.71

8 7.98 7.98
0.20 0.29 0.32

3 0.5 3.55 1.65 1.59

β3 8 4.48 4.49
(very sparse) 1.79 1.28 1.27

1 0.5 0.40 0.18 0.17

8 4.46 4.48
0.21 0.14 0.14

3 0.1 3.46 1.69 1.62

8 4.92 4.92
1.74 1.29 1.18

1 0.1 0.40 0.20 0.19

8 4.98 4.91
0.20 0.14 0.14

The following remarks can easily be made in view of the results:

• both methods based on projection on random confidence regions clearly
outperforms the OLS in the sparse cases, moreover they present the advan-
tage of giving sparse estimates;
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• in the non-sparse case, the OLS performs generally better than the other
methods, but LASSO is very close, it is known that a better choice for the
value r({j}, ε) would lead to a better result (see Tibshirani [15]);

• LASSO seems to be the best method on the whole set of experiments. In
every case, it is never the worst method, and always performs almost as
well as the best method;

• in the ”sparse case” (β1), note that IFS and LASSO are very close for the
small value of ρ. This is coherent with the previous theory, see remark 3.5
page 10;

• IFS gives very bad results in the non-sparse case (β2), but is the best
method in the sparse case (β3). This last point tends to indicate that dif-
ferent situations should lead to a different choice for the confidence regions
we are to project on. However, theoretical results leading on that choice
are missing.

5. Conclusion

This paper provides a simple interpretation of well-known algorithms of statisti-
cal learning theory in terms of orthogonal projections on confidence regions. This
very intuitive approach provides a very simple way to prove oracle inequalities.

Also note that this approach can be easily extended into general statistical prob-
lems with quadratic loss: in our paper [2], the Iterative Feature Selection method
is generalized to the density estimation with quadratic loss problem, leading to
a proposition of a LASSO-like programm for density estimation, that have also
been proposed and studied by Bunea, Tsybakov and Wegkamp [4] under the name
SPADES.

Simulations shows that methods based on confidence regions clearly outperforms
the OLS estimate in most examples. However, theoretical results leading the statis-
tician to a particular choice for the order of the successive projections are still
missing.
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