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A new multidimensional Schur-Cohn type stability criterion

Ioana Serban and Mohamed Najim, fellow, IEEE

Abstract— In this paper a new multidimensional BIBO stabil-
ity algorithm is proposed. The algorithm is based on a necessary
and sufficient condition for BIBO stability of n-dimensional
filters. The criterion involves the use of the functional Schur
coefficients, recently introduced by the authors. This new
criterion only needs a unique condition to be checked, as an
alternative to the set of N−1 conditions of the Jury-Anderson or
DeCarlo Strintzis stability test. A new procedure involving the
Modified Multidimensional Jury Table for testing this criterion
is proposed. The procedure is illustrated by a two-dimensional
example.

I. INTRODUCTION

In the last years a big amount of research was dedicated

to developing techniques for the multidimensional systems.

The interest in multidimensional systems is due to their

increasing number of applications in many fields (such as

digital filtering, image processing, video processing, seismic

data processing, biomedical signals processing, control, etc).

One of the many problems that arise naturally in control

theory is that of BIBO stability of systems. A system is

called BIBO stable (Bounded Input Bounded Output) if for

a bounded sequence of input a bounded sequence is always

outputted. The BIBO stability of multidimensional filters

with multivariable rational transfer function avoid on non-

essential second kind singularities is assured if all the zeros

of the N -variable denominator P lie outside the closed unit

polydisc D̄
N . Testing this condition in the multidimensional

case problem is still difficult, as there is no root factorization

for multivariable polynomials. Several n-dimensional stabil-

ity tests were developed in [2], [5], [6], [8], [9], [18]. The

2-dimensional case was considered in [7], [10], [11], [3].

In the one-dimensional case one of the methods used to

verify that a one variable polynomial has no zeros inside

the closed unit disc is the Schur-Cohn SC criterion (see e.g.

[13]). It involves the use of ”Schur parameters”, also known

as the ”reflection coefficients”. Using an extension of the

reflection coefficients to the two-dimensional case [12], a

sufficient but not necessary condition for stability of two-

dimensional systems was obtained in [1].

The purpose of this paper is to present a new criterion

of stability for multidimensional systems. This new criterion

is obtained using the functional Schur coefficients, recently

introduced by the authors, who are a natural extension to
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the multidimensional case of the Schur parameters. Their

use leads to a multidimensional extension of the classical

SC algorithm.

The paper is organized as follows: Section II gives a

global overview of the one-dimensional case and connections

between two different aspects of the classical Schur algo-

rithm. In Section III the slice technique method is presented,

the functional Schur coefficients are introduced and the

multidimensional stability criterion is formulated. In section

IV a multidimensional Jury-Table form procedure for testing

the stability in the n-dimensional case is proposed. A 2-D

result obtained by Siljak is generalized for the n-D case and

the Modified Multidimensional Jury Table is obtained. To

illustrate this procedure the Jury table form for the two-

dimensional SC algorithm is given in Section V, and an

example is provided.

II. THE ONE DIMENSIONAL SCHUR-COHN CRITERION

In [16] the necessary and sufficient condition of stability

was obtained by making use of the analytic aspect of the

Schur algorithm. We shall briefly recall in this section

the mathematical background of the Schur algorithm, and

make the connection between the analytic approach and the

algebraic approach, which leads to the connection between

the Schur coefficients and the leading principal minors in the

Schur Cohn matrix.

A. Analytic approach

In this subsection a sequence of Schur parameters is

associated to a complex function F . General considerations

are made, and the reader will see later on the connection

between F and the transfer function of the filter which is

tested for stability.

Consider the transform Φ that maps a complex function

F analytic around the origin to the function Φ(F ) defined

by Φ(F ) = 0 if F is a constant function of modulus equal

to one, and

Φ(F )(z) =

{

F (z)−F (0)

z(1−F (0)F (z))
z 6= 0

F ′(0)(1 − |F (0)|2)−1 z = 0
(1)

otherwise (see [4]).

To a function F , one can associate the sequence of

functions (Fk)k=0,1,... using the following recursion:

F0 = F, Fk = Φ(Fk−1) (k ≥ 1). (2)

The functions Fk are called the Schur iterates of F and the

parameters:

γk = Fk(0) (k ≥ 0) (3)
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are called the Schur coefficients of the function F . They char-

acterize the function in the sense that a different sequence

of Schur coefficients is associated to each function.

Consider now the case when F = P/Q, where P and Q
are two polynomials in one variable. A simple computation

shows that Fk = Pk/Qk for k ≥ 1, where (Pk, Qk) are

defined by:

Pk(z) =
1

z
(Pk−1(z) − γk−1Qk−1(z)) (k ≥ 1) (4)

Qk(z) = Qk−1(z) − γk−1Pk−1(z)) (k ≥ 1) (5)

or, in equivalent form:
[

Pk(λ)
Qk(λ)

]

=

[

z−1 0
0 1

] [

1 −γk−1

−γk−1 1

] [

Pk−1(λ)
Qk−1(λ)

]

where

γk = Pk(0)/Qk(0) (k ≥ 0) (6)

Consider now a polynomial P of degree n, with the root

factorization P (z) =
∏n

j=1(z−αj). Let PT be the transpose

of P defined by PT (z) = znP (1/z). It is obvious that if

F = P/PT , then:

F (z) =
n

∏

j=1

z − αj

1 − αjz
. (7)

In digital filtering F is called an all pass filter if all the

roots αi of P are in D. This happens if and only if:

|γk| < 1 (k = 0, ..., n − 1). (8)

(see [4] for more details)

To see if a polynomial P has no zeros outside the closed

unit circle, one has to compute the Schur coefficients for

F := P
P T and verify if condition (8) holds. In order to check

if P does not have any roots inside the unit disc the function

F := P T

P
is to be used.

B. Algebraic approach

Another way to compute the Schur parameters involves

the use of the the Schur-Cohn matrix, this procedure being

more appropriate for implementation purposes. We briefly

present here the context, and connections with the previous

subsection will be made.

The SC matrix associated to a complex polynomial

P (z) =
n

∑

i=0

piz
i (9)

is the matrix DP = (dij)1≤i,j≤n, where:

dij =
i

∑

k=1

(pn−i+kp̄n−j+k − p̄i−kpj−k), (i ≤ j) (10)

The classical SC criterion states that the number of zeros

of P (z) inside the unit circle is equal to the number of

positive eigenvalues of DP ; the number of zeros outside the

unit circle is equal to the number of negative eigenvalues

of DP (reciprocal zeros with respect to the unit circle and

zeros on the circle are not considered), and the number of

reciprocal zeros with respect to the unit circle and zeros on

the circle is the nullity of DP (see, e.g. [3]).

A consequence of this criterion is that a polynomial P has

all its zeros inside the unit circle if and only if the matrix DP

is positive definite. Moreover, it is easy to see that DP T =
−DP . Therefore, P has all its zeros outside the unit circle if

and only if the matrix DP T is positive definite. The matrix

positivity is assured if all its principal leading minors are

positive.

To see the connection between the principal leading mi-

nors of the SC matrix and the Schur coefficients, denote by

TP the infinite Toeplitz matrix associated to P :

TP =















p0 0 0 . . .

p1 p0 0
. . .

p2 p1 p0
. . .

...
. . .

. . .
. . .















. (11)

Then one can consider the SC matrix associated to a pair

(P,Q) of polynomials, defined by:

∆(P,Q) = TQTH
Q − TP TH

P . (12)

Note that if Q = PT then all the entries of the matrix

∆(P, PT ) are zero outside the n × n leading principal

submatrix of ∆(P, PT ).
Denote by ∆k(P,Q) the k×k leading principal submatrix

of ∆(P,Q). The following relation holds for k ≥ 1:

det∆k(P,Q) = |Qk−1(0)|2 − |Pk−1(0)|2

= (1 − |γk−1|
2)|Qk−1(0)|2

(13)

where Pk−1 and Qk−1 are given by the Schur recursion (4),

(5).

In particular, the positivity condition for the leading prin-

cipal minors:

det ∆k(P, PT ) > 0 (k = 1, 2, . . . , n). (14)

holds if and only if the Schur coefficients of the function

F := P
P T given by (6) satisfy:

|γk| < 1 (k = 0, ..., n − 1). (15)

It is easy to see that ∆n(PT , P ) is the (complex) conjugate

of the SC matrix associated to PT by (10). Therefore we

have that P has all his roots outside the unit circle iff

∆n(PT , P ) > 0. Moreover, ∆n(P, PT ) = −∆n(PT , P ).
Thus the polynomial P has all his roots inside the unit circle

iff ∆n(P, PT ) is positive definite.

One of the methods used to check the positivity of the

SC matrix, and therefore the stability of a polynomial P
is the Jury Table JT (see [11]). The JT which gives a way

of computing the principal leading minors in the SC matrix

associated to P . We recall in the following the construction

of the JT for a polynomial P as in (9).
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Jury Table (I)

1. For i = 0, . . . , n let b0
i = pi.

2. For k = 1, . . . n let m be equal to 0 if k = 1, 2 and

m = 1 if k > 2. Then construct the kth row of the table

with the entries bk
i for i = 0, . . . , n − k − 1 defined by:

bk
i =

(

1

bk−1
0

)m

∣

∣

∣

∣

∣

∣

bk−1
0 bk−1

n−k+1−i

b̄k−1
n−k+1 b̄k−1

i

∣

∣

∣

∣

∣

∣

(16)

3. P (z) 6= 0 for all |z| ≤ 1 if and only if bk
0 > 0 for all

k = 1, . . . , n

In this form of the table P has all the roots outside the unit

circle if and only if all the entries of the first column of the

table are positive. In order to test if the roots of P are inside

the unit circle only a modification of in the initialization of

the table is necessary, in order to construct the Jury Table

for the polynomial transpose PT :

Jury Table (II)

1. For i = 0, . . . , n let b0
i = p̄n−i.

2. For k = 1, . . . n let m be equal to 0 if k = 1, 2 and

m = 1 if k > 2. Then construct the kth row of the table

with the entries bk
i for i = 0, . . . , n − k − 1 defined by:

bk
i =

(

1

bk−1
0

)m

∣

∣

∣

∣

∣

∣

bk−1
0 bk−1

n−k+1−i

b̄k−1
n−k+1 b̄k−1

i

∣

∣

∣

∣

∣

∣

(17)

3. P (z) 6= 0 for all |z| ≥ 1 if and only if bk
0 > 0 for all

k = 1, . . . , n.

In Section IV a modified Jury Table for the multidimen-

sional case will be obtained.

III. FUNCTIONAL SCHUR COEFFICIENTS AND

MULTIDIMENSIONAL SCHUR-COHN CRITERION

In [16] the authors obtained a multidimensional extension

of the analytic approach of the SC criterion. To each function

F a multidimensional analogous of the Schur parameters

sequence is associated, and a multidimensional SC criterion

is obtained.

The multidimensional extension of the analytic context is

based on the slice functions, first introduced by Rudin [15].

They were used in extending to the 2-D or n-D case several

results well known in the 1-D case. We present here briefly

the ”slice” method.

Denote by D the set {z ∈ C : |z| < 1}, and by T the set

{z ∈ C : |z| = 1}.

For each point w = (w1, ..., wN ) on the polytorus T
N let

D̃w be the one-dimensional disc that ”slices” D
N through

the origin and through w:

D̃w = {λw = (λw1, ..., λwN ) : λ ∈ D}. (18)

It is obvious that if u and w are in T
N such that there is

z ∈ T with w = zu then D̃w = D̃u. To avoid considering

redundant slices, one has to do a ”normalization” on one

coordinate, say for now the last one:

Dv = {λ(v1, ..., vN−1, 1) : λ ∈ D} (v ∈ T
N−1) (19)

In the following we introduce the definition of the slice

of a multivariable polynomial.

Let P (z1, z2, . . . , zN ) be a polynomial in N variables of

degree n:

P (z) =
∑

|α|≤n

pαz
α

where z = (z1, z2, . . . , zN ) ∈ C
N , α = (α1, . . . , αN ) ∈ N

N

and z
α = zα1

1 . . . zαN

N whose degree is |α| = α1 + · · ·+αN .

For each v ∈ T
N−1 consider the restriction of the

multivariable polynomial P to the one-dimensional disc Dv ,

which can be regarded as a one variable polynomial:

Pv(λ) = P (λv) (λ ∈ D). (20)

Pv is called the slice of P through v [15].

The authors proved recently [16] the following result:

the N -variable polynomial P has no zeros inside the unit

polydisc is equivalent with the fact that the one variable

polynomial Pv(λ) has no zeros inside the unit polydisc, for

each v ∈ T
N−1. This was obtained by the means of the Schur

coefficients sequence associated to the n variable polynomial

P , which is an extension of the Schur parameters sequence

in the multidimensional case. In the following we define

the functional Schur coefficients sequence for an analytic

function F in several variables.

Definition 3.1: Let F (z) be an analytic function in the

open unit polydisc D
N , and let v = (v1, ..., vN−1) ∈ T

N−1.

For each point (v1, ..., vN−1, 1) on the polytorus T
N consider

the restriction of F to the one-dimensional disc Dv , which

can be regarded as a one variable function (the slice of F
through v):

Fv(λ) = F (λv1, ..., λvN−1, λ) (λ ∈ D), (21)

For each v on T
N−1 define, by the Schur recursion (2), the

sequence (Fv,k)k≥0:

Fv,0 = Fv Fv,k = Φ(Fv,k−1) (k ≥ 1).

The functions γk : T
N−1 → C defined in [16] by

γk(v) = Fv,k(0) (v ∈ T
N−1) (22)

are called the functional Schur coefficients of the function F .

The following theorem is established in [16]

Theorem 3.2: N-D Schur-Cohn criterion

The following statements are equivalent:

A) P has no zeros in the closed unit polydisc D
N :

P (z1, z2, . . . , zN ) 6= 0 |zi| ≤ 1, i = 1 . . . N (23)

B) Pv(λ) = P (λv1, ...λvN−1, λ) has no zeros in D for

v ∈ T
N−1;
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C) |γk(v)| < 1 for all v ∈ T
N−1 and 0 ≤ k ≤ n − 1,

were γk(v) are the functional Schur coefficients associated

to F = (Pv)T

Pv

Summing up, in order to associate the multidimensional

analogous of the one-dimensional Schur parameters sequence

case to a multivariable polynomial P , the functional Schur

coefficients for the function

F =
(Pv)T

Pv

are required.

IV. MULTIDIMENSIONAL JURY TABLE

When testing the stability condition C) one can use again

the Jury table form, by using positivity in (13) instead of

(8). In the following we give the construction of the Jury

Table in the multidimensional case. Let P be a N -variable

polynomial:

P (z) =
∑

|α|≤n

pαz
α (z = (z1, ..., zN ) ∈ T

N ) (24)

Let v = (v1, ..., vN−1) ∈ T
N−1. Then the slice pf P through

v is:

Pv(λ) =

n
∑

k=1

ck(v)λk (λ ∈ D), (25)

where the coefficients ck are polynomials in v given by:

ci(v) =
∑

|α|=i

pαvα1

1 vα1

2 ...v
αN−1

N−1 (0 ≤ i ≤ n). (26)

The Multidimensional Jury Table MJT

1. For i = 0, . . . , n let b0
i (v) = ci(v).

2. For k = 1, . . . n let m be equal to 0 if k = 1, 2 and

m = 1 if k > 2. Then construct the kth row of the table

with the entries bk
i for i = 0, . . . , n − k − 1 defined by:

bk
i (v) =

(

1

bk−1
0 (v)

)m

∣

∣

∣

∣

∣

∣

∣

bk−1
0 (v) bk−1

n−k+1−i(v)

bk−1
n−k+1(v) b̄k−1

i (v)

∣

∣

∣

∣

∣

∣

∣

(27)

3. P (z) 6= 0 for all |z| ≤ 1 if and only if bk
0(v) > 0 for

all k = 1, . . . , n and v ∈ T
N−1.

In the following we give the generalization of a result

of Siljak [17] for the multidimensional case, and as a

consequence we provide with the Multidimensional Modified

Jury Table MMJT.

Consider again a N -variable polynomial as in (24), and

associate to Pv(λ) given by (25) the SC matrix

DP (v) = (dij(v))1≤i,j≤n (28)

where dij are given by:

dij(v) =
i

∑

k=1

(cn−i+k(v)c̄n−j+k(v)−c̄i−k(v)cj−k(v)) (29)

for i ≤ j. We give the following theorem [5]:

Theorem 4.1: The positivity of the SC matrix :

DP (v) > 0, ∀v ∈ T
N−1 (30)

is equivalent with the following two conditions:

DP (1) > 0 (31)

detDP (v) > 0 ∀v ∈ T
N−1 (32)

Proof: The direct implication is obvious. Assume that

(31) and (32) are satisfied. The eigenvalues ri(v), i = 1 . . . n
of the Hermitian matrix DP (v) are real and continuous. From

(32) we have:

Πn
i=1ri(v) > 0,∀ v ∈ T

N−1 (33)

Suppose that there is a v0 ∈ T
N−1 and a i0 ∈ {1, . . . , n}

such that ri0(v0) < 0. From (31) we have that ri0(1) > 0.

But since T
N−1 is a convex set, this necessarily implies that

ri0(v1) = 0 for some v1 ∈ T
N , which contradicts (33).

Consequently (31) and (32) imply that ri(v) > 0, for all

v ∈ T
N−1 and for all i = 1 . . . n. Therefore the Schur Cohn

matrix DP (v) is positively defined for all v ∈ T
N−1.

As a consequence, using the SC matrix associated to PT
v ,

we obtain the following:

Corollary 4.2: Simplified N-D Schur-Cohn Criterion

The following assertions are equivalent:

A) P has no zeros inside the closed unit polydisc D
N :

P (z1, z2, . . . , zN ) 6= 0, |zi| ≤ 1, i = 1 . . . N

B) Pv(λ) = P (λv1, ...λvN−1, λ 6= 0), |λ| ≤ 1, v ∈ T
N−1;

C) The SC matrix associated to PT
v given by (28) is

positive definite:

DP T (v) > 0, ∀v ∈ T
N−1

D) D1. DP T (v0) > 0, for an arbitrary v0 ∈ T
N−1

D2. detDP T (v) > 0, ∀v ∈ T
N−1

Using the last assertion, instead of requiring all the prin-

cipal leading minors of the SC matrix to be positive for all

v ∈ T
N−1, all that is required is the positivity of the last

principal minor and the positivity of the SC matrix in an

arbitrary point on the T
N−1. This leads to a simplification

of the MJT table, as only the last entry on the first column

table needs to be checked for positivity plus the positivity at

an arbitrary point on the unit polytorus of the SC matrix:

The Modified Multidimensional Jury Table MMJT

1. Associate to PT
v (λ) given by (25) the SC matrix given

by (28).

2. P (z) 6= 0 for all |z| ≤ 1 if and only if

a) ∆n(v0) > 0, where v0 is an arbitrary point on T
N−1.

b) det ∆n(v) > 0, for all v ∈ T
N−1.

Remark that b) can be written in equivalent form:

b’)bn
0 (v) > 0 for all v ∈ T

N−1, where bn
0 (v) is the last

entry on the first column in the MJT (given by 27).

In the next section we show how this criterion can be

applied to check the stability of the two-dimensional systems.
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V. IMPLEMENTATION IN THE TWO

DIMENSIONAL CASE

To illustrate this new stability criterion we provide with a

2-dimensional example.

Let P (z1, z2) be a two-variable polynomial of degree n.

Let λ ∈ D and consider Pv(λ) = P (λv, λ) the slice of P
through v ∈ T. Let γk(v) be the functional Schur coefficients

associated to F = (Pv)T

Pv

and let bk
0(v) be the first entries on

each row in MJT (27), for k = 1, . . . n. Denote by D(v)
the SC matrix associated to PT

v . Summing up the previous

results, the following assertions are equivalent:

2-D Schur-CohnC criterion:

A) P (z1, z2) 6= 0 |zi| ≤ 1, i = 1, 2;

B) Pv(λ) := P (λv, λ) 6= 0, for all |v| = 1 and |λ| ≤ 1;

C) |γk(v)| < 1 for all |v| = 1 and k = 0 . . . , n − 1;

D) bk
0(v) > 0 for all |v| = 1 and k = 1 . . . , n ;

E) D(v) is positive definite;

F) D(v0) > 0 for a fixed |v0| = 1 and bn
0 (v) > 0 for all

|v| = 1.

The principal leading minors bk
0(v) of the Schur Cohn

matrix are trigonometric polynomials in v1 real valued on

T
2. Several techniques exist for testing their positivity (see

e.g. [3]) and will not be discussed here.

Example. Let P be the two variable polynomial (from [3])

P (z1, z2) = 12 + 10z1 + 6z2 + 5z1z2 + 2z2
1 + z2

1z2.

The slice of P through v ∈ T is Pv(λ) = P (λv, λ),

Pv(λ) = λ3v2 + (2v2 + 5v)λ2 + (6 + 10v)λ + 12.

In Table I the MJT (27) is constructed for P . The entries

are computed by (27), and represented after simplification

on each line with some positive integer common factor. In

order to check the condition of stability for P , all entries of

the first column of the Table I must be positive for v ∈ T

(first row of the table is to be ruled out, as it represent the

coefficients of Pv(λ)):

b1
0 = 143

b2
0 = 15(235 − 12(v + v̄))

b3
0 = 677 − 250(v + v̄) + 24(v2 + v̄2).

Let v = eit, with t real, and set x = cos t. We have:

b2
0 = −24x + 235

b3
0 = 96x2 − 500x + 629

and it is easy to see that they are strictly positive for x ∈
[−1, 1] ( for instance using [14], [19]). Therefore we have

stability for P (z1, z2).

Now, when applying the MMJT for P , we have to consider

the Schur Cohn matrix associated to PT
v (λ):

PT
v (λ) = 12λ3 + (6 + 10v̄)λ2 + (2v̄2 + 5v̄)λ + v̄2,

TABLE I

2-D JURY TABLE FOR P

λ0 λ1 λ2 λ3

12 6 + 10v 5v + 2v2 v2

143 70 + 115v̄ 18v̄2 + 50v̄

1175 − 60(v + v̄)) 284 + 725v − 84v2

677 − 250(v + v̄)

+24(v2 + v̄2)

which is equal to:

D(v) =





143 115v̄ + 70 50v̄ + 18v̄2

115v + 70 100(v + v̄) + 250 115v̄ + 70
50v + 18v2 115v + 70 143





It is easy to see that D(1) =





143 185 68
185 350 185
68 185 143



 is positive

definite. Moreover, for v = eit, with t ∈ R, we have

positivity for detDn(t) = 1800(8 cos t− 17)(12 cos t− 37).
Condition F) is satisfied, thus Dn(v) is positive definite for

all v ∈ T and furthermore PT
v (λ) has no zeros outside D2.

Therefore Pv(λ) has no zeros inside D2, which implies the

stability of P (z1, z2).

VI. CONCLUSIONS AND FUTURE WORKS

In this contribution a new multidimensional SC type stabil-

ity criterion was introduced, and a procedure for testing this

criterion was given MMJT. The implementation technique

in the two-dimensional case was detailed, and illustrated by

means of an example. Application in design of filters with

guaranteed stability is straightforward.

In order to compare our criterion with others criteria,

remind that the existing multidimensional tests of stability

relies either on the DeCarlo Strintzis criterion or on the Jury-

Anderson criterion:

DeCarlo Strintzis criterion
The condition (23) holds if and only if all the following

N conditions are satisfied:

P (z1, 1, 1, . . . , 1) 6= 0 |z1| ≤ 1; (34)

P (1, z2, 1, . . . , 1) 6= 0 |z2| ≤ 1; (35)

. . . . . .

P (1, 1, . . . , 1, zN ) 6= 0 |zN | ≤ 1; (36)

P (z1, z2, . . . , zN ) 6= 0 |zi| = 1, i = 1 . . . N. (37)

Jury-Anderson criterion
The condition (23) holds if and only if all the following

N conditions are satisfied:

P (z1, 0, 0, . . . , 0) 6= 0 |z1| ≤ 1 (38)

P (z1, z2, 0, . . . , 0) 6= 0 |z1| = 1, |z2| ≤ 1 (39)

. . . . . .

P (z1, . . . , zN−1, 0) 6= 0 |zi| = 1, i = 1 . . . N − 2, |zN−1| ≤ 1
(40)

P (z1, z2, . . . , zN ) 6= 0 |zi| = 1, i = 1 . . . N − 1 |zN | ≤ 1 (41)

Both criteria involve checking a set of N conditions. The

new multidimensional stability criterion 3.2 proposed in
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Section III states that (23) holds if and only if the following

unique condition is satisfied:

P (λv1, ...λvN−1, λ) 6= 0 i = 1 . . . N − 1, |vi| = 1, λ ≤ 1.

This criterion is based on the use of functional Schur coef-

ficients and future research should be directed to investigate

their properties.
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