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Multidimensional Systems: BIBO Stability Test
Based on Functional Schur Coefficients

Ioana Serban and Mohamed Najim, Fellow, IEEE

Abstract—This paper presents a multidimensional extension
of the Schur-Cohn algorithm for testing BIBO stability in IV
variables. This new method only needs a unique condition to
be checked, as an alternative to the set of IN conditions of the
well-known Huang-Jury-Anderson stability test. The proposed
algorithm is based on a generalization of the Schur coefficients
recently obtained by the authors. In the two-variable case a
simplification to the Sturm algorithm is presented, which can also
be used in the case of a polynomial with complex coefficients. This
approach is illustrated on several numerical examples.

Index Terms—BIBO stability, functional Schur coefficients,
multidimensional Schur-Cohn test, positive trigonometric
polynomials.

I. INTRODUCTION

HE problem of testing BIBO stability of multivariable sys-
T tems is a quite difficult issue, unlike the one-variable case
where the solution is given by the well-known Schur—Cohn al-
gorithm [15]. In order to recall the definition of BIBO stability,
let us denote by A and P two coprime polynomials in N vari-
ables with complex coefficients, D the open unit disk in the com-
plex plane, T the unit circle, and D = DUT the closed unit disk.
A linear filter with rational transfer function

and no nonessential singularities of the second kmd is BIBO
stable if P has no zeros in the closed unit polydisk D"

A 2-D criterion for testing stability was given by Huang and
further developed for the multidimensional case by Anderson
and Jury and by Strintzis (see [5] and [10] for more details).
Several methods for testing the multidimensional stability
where proposed (see [5] and [12, Ch. 3] for an overwiew). More
recent developments were obtained in [3], [7]-[9], and [22].
The common background is to characterize BIBO stability
throughout a set of N — 1 positivity conditions, parameterized
respectively over TV =1 TN=2 T,

The one- dnnensmnal Schur—Cohn stability test relies on
Schur coefficients associated to rational functions, which are
a powerful tool used in many fields of applications [13]. A
widely used framework regards the Cholesky factorization for
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autocorrelation matrices, where the Schur coefficients appear
in an equivalent form known as the reflection coefficients,
computed via the Levinson algorithm. In the multidimensional
case, this equivalence is not longer true.

On one hand, in [14] Liu and Najim proposed a 2-D repre-
sentation based on the 2-D reflection coefficients and a fast re-
cursive algorithm for their estimation. In [1], the authors tried
to extend the Schur—Cohn stability condition in the bidimen-
sional case, using these 2-D reflection coefficients. They ob-
tained a necessary but not sufficient condition of stability. On
the other hand, in [20] an analytic extension of the Schur coeffi-
cients associated to a contractive analytic function is given. This
approach provides a stronger condition of stability, which is a
necessary and sufficient condition of stability for multidimen-
sional linear systems. In [19], an overview of the two extensions
of the Schur—Cohn stability test that derive from these extended
Schur coefficients is presented.

The functional Schur parameters introduced in [20] are a
multivariable analogue of the Schur coefficients. They are as-
sociated to contractive several-variable analytic functions by
means of the notion of “slice functions”, a useful tool in mul-
tivariable analysis [17]. These coefficients are used to charac-
terize rational inner functions in polydisk algebra, leading to a
stability characterization for /N-variable polynomials.

In this paper, we make use of this analytic approach in order
to derive a Schur—Cohn multidimensional extension in the Jury-
table form. The stability criterion obtained via slice functions in-
volves only one positivity condition, parameterized over T™ 1,
rather than the N — 1 conditions in the Huang test.

We also show how such types of positivity conditions for
trigonometric polynomials with complex coefficients can be re-
duced, in the two-variable case, to the Sturm algorithm. Such
simplifications were developed by several authors [5].

The paper is organized as follows: in Section II we recall
the background of the 1-D Schur—Cohn test in connection
with the Schur algorithm. In Section III, the multidimensional
Schur criterion given in [20] is used in order to derive a new
stability test in a Jury-table form. Section IV provides exam-
ples and comparisons with other existing methods. Section V
analyzes the 2-D case, and a simplification to the Sturm algo-
rithm in the case of a polynomial with complex coefficients is
proposed. We also provide in this section several 2-D numer-
ical illustrations.

II. EQUIVALENT FORMS OF THE SCHUR—COHN ALGORITHM

We briefly recall in this section the background of the Schur—
Cohn algorithm. Given a polynomial P(z) = >, _, prz* of
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degree n with complex coefficients, Tp denotes the infinite
Toeplitz matrix associated to P

po 0 0
p1 po 0
Tp = R I (D

P2 P11 DPo

The Schur-Cohn matrix associated to a pair (P, Q) of poly-
nomials is defined by

A(P,Q) = ToTH — TpTf Q)

and A (P, @) denotes the k X k leading principal submatrix of
A(P,Q).

An important particular case of a polynomial pair is (P, P#),
where P is the transpose of P, defined by

P¥(2) = 2"P(1/7) = B2 3)
k=0

In this case, all the entries of the matrix A(P, P#) are zero out-
side A, (P, P#), and this latter submatrix is known as the n X n
Schur—Cohn matrix associated to P.

The Schur—Cohn criterion can be stated as follows [15]: the
polynomial P has all the roots inside the unit disk if and only if
the matrix A, (P, P#) is positive definite, which amounts to

det Ap(P, P >0 (k=1,2,...,n). @)

This connection between the roots of P and the leading mi-
nors of the Schur—Cohn matrix goes through the Schur recur-
sion and the so called Schur coefficients i.e., given a pair (P, Q)
of polynomials, one can construct a sequence (P, Qk)k=0,1,_.
of pairs of polynomials defined in the following way: Py =

P, Qo = Q and

Pi(e) = H(Pia(2) = @i (2) (21) O
Qr(2) = Qr-1(2) = Vi1 Pr1(2)) (K >1) (6)

where
Y = Pr(0)/Qr(0) (k>0) @)

are called the Schur coefficients of the pair (P, Q). The connec-
tion with the Schur—Cohn matrix is the following relation:

det A(P,Q) = |Qr-1(0)]* = [Pe_1(0)]?
= (1= Jy-1*)|Qr-1(0)* ®)
for k > 1. In particular, the positivity condition (4) holds if and

only if the Schur coefficients (Y )k=o0,....n—1 of the pair (P, P#)
satisfy

el <1 (k=0,...,n—1). 9)
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Now the equivalence between (9) and the fact that P has all
the roots in the unit disk can be proved by writing the Schur
recursion (5), (6) in an equivalent way which emphasizes the
quotients Fy : = Py /Q rather than the pairs (P, Q).

Consider the transform ¢ that maps a complex function F an-
alytic around the origin to the function ®(F’) defined by ®(F') =
0 if F' is a constant unimodular function, and

F(2)=F(0)

B(F)(2) = { PO - PO

z#0
z=0

(10)

otherwise [4].
Starting with any function F', one can construct the sequence

of functions (F})r=0,1,... using the recursion
Fo=F, Fp=9Fr1)

(k> 1). (11)

The parameters

T = Fi(0) (k>0) (12)
are called the Schur coefficients of the function F', and they char-
acterize the function in the sense that a different sequence of
Schur coefficients is associated to each function. A straight com-
putation shows that if ' = P/Q, then Fy, = P, /Qy. fork > 1,
where (P, Q) are defined by (5) and (6). Therefore, (11), (5)
and (6) define the same Schur recursion, and the Schur coeffi-
cients defined, respectively, in (7) and (12) coincide.

The Schur class S is by definition the closed unit ball of
H>(D): ={f e H*(D) :|f(%)| < 1,z € D}. Schur proved
in [18], using a simple argument given by the Schwartz lemma,
that if F' is in the Schur class, then |®(F')] is also bounded by
1. This means that whenever |F'(z)| < 1 for z € D, the Schur
coefficients (12) of F necessarily verify

Il <1 (k> 1), (13)
Moreover, equality in (13) can occur for at most one k, since
|F%(0)| = 1 implies, by the maximum modulus principle, that
Fy(z) = Fy(0) for z in D. Therefore, F}, is a constant unimod-
ular function and so F4; = 0 for! > 1 (by the definition of ®).

Consider now a polynomial P of degree m and let
F = pP/P* If P(z) = [Tj_.(z — ;) is the root factor-
ization of P, then

(14)

We recall that in digital filtering an all pass filter is a Blaschke
product of degree n, defined by

15)

2 z — bq'

B(z) = -— bi e D).

& =175 €0
The fact that all the roots «; of P lie in the open unit disk is

equivalent to the fact that F is a Blaschke product of degree 7.

This means that F' is bounded by 1 in D and that |v,,| = 1. But
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this happens, as explained earlier, if and only if |y;| < 1 for
kE=0,1,...,n—1,ie., (9).

The equivalent stability condition for P to have all the roots
outside the closed unit disk is then simply obtained by switching
the roles of P and P¥. The Jury table for instance [11] is a way
to write the recursion given by (5) and (6) for the pair (P#7 pP)
and test positivity of det Ax(P, Q) in (8).

The Jury Table Form of the Schur—Cohn Algorithm

Take the polynomial P(z) = po+p12+p22z2+---+p,2".
Test if |po|? — |pn]? > 0.

Form the coefficients p}, = DopPr — PrPr_k-

Restart with Py (2) = p} +piz+---+pL_;2" ! instead
of P.

Sl e

III. FUNCTIONAL SCHUR COEFFICIENTS AND EXTENDED
SCHUR—COHN CRITERION

In [20], the definition of the Schur coefficients sequence for
an analytic function F' is extended to analytic functions in sev-
eral variables, by means of the so-called “slice functions” [17].

Let F be an analytic function in the open unit polydisk D*.
For each point w = (wy, ..., wx) on the polytorus T? let D,,
be the one-dimensional disk that “slices” D? through the origin
and through w

D, = {Dw = (Awy,...,\wy) : A € D}. (16)
Consider the restriction of F' to the one-dimensional disk D,,,
which can be regarded as a one variable function
F,(\) = F(Qw) (X eD). (17)
F,, is called the slice of F through w [17]. For each w on TV
define, by the Schur recursion (11), the sequence (F, x)>0

Fw,O = Fw Fw,k = (I)(Fw,k—l) (k Z 1)

The functions 7 : TV — C defined in [20] by

Yi(w) = Fup 1 (0) (we TV) (18)
are called the functional Schur coefficients of the function F'.
In order to write the transpose of a polynomial in the multi-

variable case we will introduce some notations. For a multiindex

a = (ai,...,ay) € NN and for z = (21,...2y5) € CV the
multi-index notation z* stands for the monomial 27" ... 23"
whose degree is |a] = a3 + -+ + an.

If

P(Z) = Z PaZ”

lo]<n

is a polynomial in IV variables of degree n, one can define the
transpose polynomial Pt as

Ph(2) = My(2)P <3>

z
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where My is the monomial of the least degree such that
My(z)P(1/z) is a polynomial, and

1 (1 1
g )
More explicitly, define 3 = (81, ..,08nx) € N by

Bi= max «; (i=1,...,N)

|a|<n,pa #0

19)

which represent the dimensions of the smallest /NV-dimensional
rectangular “box” in Nf with one corner at the origin and
containing the multiindexes of all the coefficients of P dif-
ferent from zero. Then the transpose Pt is the polynomial of
degree ||

PHay= 3 pyazt. (20)

|| <|B]

Itis shown in [20] that for any [N —variable analytic function F’
and for each & > 1, the functional Schur coefficient 4 is a con-
tinuous function in every point w of TN for which the slice F,,
is not a Blaschke product of degree less than or equal to k. This
is a consequence of the fact that the correspondence w — F, is
weakly continuous. The particular case of most interest is, as in
the 1-D case, when F is written as P¥ /P for some N-variable
polynomial P. The properties of these rational inner functions
[17] are used in [20] in conjunction with the continuity property
aforementioned in order to show the following equivalent condi-
tions relating the stability to the functional Schur coefficients.

Theorem 3.1: Let P be a polynomial of degree n in N vari-
ables, F'(z) = (P#(z)/P(z)) and (v )ren be the sequence of
functional Schur coefficients of . Denote n = deg(P¥). The
following statements are equivalent.

a) The polynomial P has no zeros in the closed unit polydisk

D»;

b) -y are continuous in each w for each k > 0;

c¢) F belongs to the disk algebra A(DY) (i.e., F' is contin-

uous on D™);

d) F, is a Blaschke product of degree n¥ for all w € TV ;

e) Foreach w € TV we have

21
(22)

[y #(w)] =1
e(w)| <1 (0<k<n® —1).

These equivalent conditions can be simplified using two in-
dependent arguments.
1) Take (3 as in (19), so |G| = n*, and put g = n* —n. A
simple computation shows the following relationship be-
tween slicing and transposing:

(PH) N = WA (P )*(\) (weT™ XeD)  (23)
and, therefore
P 50 (Pu) (V) .
<?> (A =w XIT()\) (we T, X eD).
(24)

The last relationship shows that the condition d) in the
Theorem 3.1 is equivalent to the fact that (Pw)# /P, is a
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Blaschke product of degree n for all w € TV . Thus, in the
second relation of e) one might replace the first n® func-
tional Schur coefficients of P¥ /P with the first n. Schur
coefficients of (P, )# /Puw.

2) One does not have to consider all the slices through the
points w on T?, because many of them are “redundant.”
More precisely, if w and w’ are two points on TV such that
w’ = uww for some u € T, then the disks D,, and D, in
(16) coincide. One coordinate can then be “normalized,”
say the last one

(wi,...,wN) =wn(wi/wN,...,wN_1/wn,]1)

so one can consider only the disks of the type

Dy ={Av1,...,on_1,1): A €D} (ve TN (25

and the corresponding “normalized” Schur coefficients de-
noted (9x)xk>o0, defined as in (18) but only for the slicing
disks (25), i.e., as functions of v € TV,

Summing up, and generalizing the Schur—Cohn criterion
written as in (9), the following multidimensional Schur—Cohn
criterion is obtained.

Corollary 3.2: Let P be a polynomial in [V variables of de-
gree n. Forv € TV~ let (91 (v))o<r<n_1 be the first n Schur
coefficients of the one-variable function

A = (P(Avy, ... Aoy, \)*
v o P(/\Ul,...)\’UN_l,)\)

(26)

The following statements are equivalent:

A) P has no zeros in the closed unit polydisk BN;

B) P,(\) = P(M\vi,...\n_1,A) has no zeros in D for

ve TN,

O |Fx(v)| < 1forve TN land0 <k <n—1.

The stability condition C) in the last corollary can be written
in Jury table form by developing the slice expansions in (26) and
using positivity in (8) instead of (9). If P(z) = Z|a\gn Paz®

andv = (vy,...,on_1) € TN7L, then
Py(\) =) c(v)X* (AeD) Q27)
k=1
where the coefficients ¢, are polynomials in v given by
ck(v) = Z paviiost oY (0<k<mn). (28)

|a|=k

The extended algorithm then goes through the following steps:

The Jury Table Form of the n-D Slice-Based Schur—Cohn
Algorithm

1) Take P and form the polynomials ¢y, for k = 0,...,n.
2) Test if the trigonometric polynomial
A(v) = leo(0)[* = len(v)]? (29)

is positive for v € TN~L,
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™

Fig. 1. Shifting the coefficients.

3) Form the new polynomial coefficients

cr(v) = Zo(v)er(v) = cn(v)Tn

,k(’U)
(0<k<n-1).

4) Restart with the sequence (c})o<kr<n_1 instead of
(ck)o<k<n-

Alternatively, one can derive a similar algorithm based on the
Bistritz table [2] instead of the Jury table. The use of Jury table
can better emphasize the connection between the Schur coeffi-
cients and the leading minors in the Schur—Cohn matrix, while
the use of Bistritz table reduces the computational complexity.

IV. COMPARISONS AND EXAMPLES

It is natural to compare condition B) in Corollary 3.2 with the
Huang-Jury-Anderson stability conditions which we state here
for the convenience of the reader: P has no zeros in Z . if and
only if the following conditions hold for A € Z:

...,’UN_l)G—ﬂ—N_l)
(Cn-2): P(v1,- o8 -2, A,0)£0 ((v1,..., o8 2) €TV 7?)

(Cl)IP(Ul7)\,07...,0) 750
(Co) : P(M,0,...,0) #0.

It follows from (27) and (28) that, for A € Z and
v = (U17...,UN_1) S TN

('Ul € T)

Py(\) = P(vy,...,on_1,)) (30)
where the polynomial P(z) = 3. 2" is obtained from P
by “shifting up” the coefficients of P along the last coordinate:
(see Fig. 1)

(e NV).  (31)

Thus, (30) shows that the slice-based condition B) in the
Corollary 3.2 is equivalent to only the first condition (Cn_1),
applied for P instead of P, so by using B) one has to check only
one condition instead of N. A counterpart is that the degree of
P exceeds n (it is no greater than 2n), so numerically it is more
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efficient to use 3.2 B) for polynomials of small degree in many
variables.

Since the normalization (25) can be done in any of the NV
variables, the normalization variable can be chosen in order to
minimize the degree of P in the range [n, 2n]. More precisely,
if 6= (01,...,0N) are, as in (19), the dimensions of the min-
imal N-dimensional “box” containing the coefficients indexes
for P, then it follows from (31) that the minimal degree of Pis
attained when normalizing P in the variable z;, such that 3;, is
the minimum of f1,...,8N.

Let us illustrate by some comparative examples the simplifi-
cations provided by the proposed method.

Example 1: Consider the following polynomial:

Pi(z1,22) =1+ %21 + %Zz + 32122 + izf + iz%
I. Checking the stability of P; for instance with the method
in [9] requires the following conditions to be satisfied:
1) po(z1) has no zeros on the unit circle;
2) The following matrix function F(z1) is positive definite on
the unit circle:

where

p1(z1) = 5t izl and pa(z1) = i
Note that the matrix F is in fact the Schur—Cohn matrix
associated to P (-, z2) as shown in Section 1. The positivity
of E(z) is equivalent with the positivity of the entry (1, 1)
of the matrix and the positivity of the determinant of F1.
Summing up, to verify the stability of P; the following
conditions must be tested :

1 1
I+ -2+ -2240, |z <1

RS (33)
Aq(z) = Z + é (z1+27")
-Fi@%+zﬁ)>0> 1] = (34)
Ay(z1) = det E(z1)
=133+ 102 (21 + 27 ") 4+ 57(2f + 277)
+18 (23 +27°) +4 (21 +27%) >0, |n|=1
(35)

II. On the other hand, by the proposed criterion of stability
3.2, the polynomial P; has no zeros inside the closed unit poly-
disk if and only if P,,(\) # 0 in the closed unit polydisk, where

1 1
P,(\) =1+ 5)\(w +1)+ Z)\Z(w2 +w+1).

5281

This is equivalent to the positivity on the unit circle of the matrix
function E(w), constructed as in (32), where

polu) = 1ps(w) = 501+ w)
pa(w) = i(l + w + w?).

Furthermore, F is positive definite if and only if the following
inequalities hold for |w| = 1:

— E _ 1 -1y _ i 2 -2
Al(w)_16 8(w+w ) 16(11} +w ) >0
(36)
Axw):(thﬂzQ::§%D39—48@w+w‘5
9]
—6(w? +w ) + (wr+w )] > 0. (37)

In conclusion, (33), (34), and (35) can be replaced with (36) and
(37), resulting in a lower overall computational cost. The differ-
ence between the computational cost of the methods increases
with the number of variables, as illustrated in the following 3-D
example of stable polynomial.

Example 2: Consider the polynomial

PQ(Zl, 22, 23) =5+4+0.25z1 + 0.2529
+0.2523 + 27 + 25 + 23.

I. By the Anderson-Jury criterion of stability, P is stable if
and only if

Py(21,0,0) =54 2521 + 27 £0, |z|<1 (38)
Py(z1,22,0) =54 .252) 4+ 2520 4+ 22 + 22 # 0
lz1]=1,]22] <1 (39)
Py(z1,22,23) =5+ .2521 + .2529 + .2523
+2i+z+ 2 A0
|z1] = |z2| =1, ]23] <1 (40)

The condition (39) is equivalent with the positivity of Aj(z1)
and of Ay(z1) on the circle, where

Aq(z1) = 25.0625 4+ 1.5 (21 + 27 ") + 5 (27 +277) (4D
As(z1) = 681.5625 + 90.109375 (21 + 21 ')

+252.625 (21 + 27 %)

+15 (2 +27°) +25 (2 +20%) 42)

Condition (40) is equivalent with the positivity of Aq(z1,22)
and of As(z1, 22) for |z1| = |22| = 1, where

Ai(z1,22) = [540.25(z1 + 22) + 0.5 (27 + 23) > — 1 (43)
b(z1,22) = 14 0.0625(21 + 22) + .25 (27 + 23)

Ao (z1,22) = |A1 (21, 22)|* = |b(21, 22) % (44)

Thus, a total of five conditions are to be verified, i.e., (38) and
(41) to (44).

II. When testing the stability of P, with the proposed crite-
rion, one has to check

Py(A) = N (1 + +wi +w3) + 0.25\ (w1 +wa + 1) +5#0
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)
y
)

i i
Ml

i

Fig. 2. |71 (w1, w2)| and |2 (w1, we)| for Ps.

for |wy| = |we| = 1. This condition is similar to condition
(40), and is equivalent with the positivity of Aj(wy,ws) and of
As(wy,we) for |wi| = |wse| = 1, where
Aq(wy,we) =25 — |1 + w% + w%|2
b(wy,w) =1+ wit +wyt — .25(ws 4 wy)
— .25 (w; w2 + wiwy ?) — .25 (wi + w})
Ag(wy, wy) = |Ar(wy, wa)|* — [b(wy, wa)|?. (46)

(45)

Therefore, when using the proposed n-D Schur—Cohn crite-
rion two conditions are needed, i.e., (45) and (46) instead of five.
Note that the positivity of Aj(wq,ws) and of Ag(wq,ws) is
equivalent with |y1 (w1, w2)| < 1 and |y2(wy,w2)| < 1, where
~; are the functional Schur coefficients for P» (see Fig. 2).

V. A SIMPLIFICATION TO THE STURM ALGORITHM FOR
TwO-VARIABLE POLYNOMIALS

As shown in the previous section, testing the stability of an
N -variable polynomial P, either with Huang-type conditions
or with slice-based conditions, goes through testing the pos-
itivity on a several-dimension polytorus of some real valued
trigonometric polynomials A with complex coefficients, such
as in (29).

In the particular case of a two-variable polynomial P with
complex coefficients, this comes down to checking if some
trigonometric polynomials of the type

Av) = i oot (v eT) (47)

k=—m

with §_; = 8, are positive on the unit circle.

A common way to numerically check such positivity condi-
tions is to use a change of variable in A, in order to reduce it to a
real variable polynomial with real coefficients. Several methods
can be then used to check the positivity of the reduced poly-
nomial. This can be done either directly, with Sturm type algo-
rithms [21], or by checking if the polynomial can be written as
a sum of squares such in [16], which is more efficient in terms
of complexity. Remark that [16] can also deal with polynomials
of two variables and that in this case the generalized Sturm the-
orem can be used (see [5, Ch. 2] for more details).
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If A has real coefficients, then it can be written as

Alv) =" 8e(v* + 7). (48)
k=0

In this case a classical change of variables is used [5, Sec. 3.4]

t= %(v +7) =2Rev=cosf (v=e’€T). (49

The polynomial A then becomes
A(t) =" b cos(k) =Y 6xTi(t) (t € [-1,1]) (50)
k=0 k=0

where (T} )o<k<m are the Chebyshev polynomials of the first
kind.

However, (48) is no longer true in the general case of poly-
nomials A with complex coefficients. The stability of polyno-
mials with complex coefficients can be then tested by multi-
plying the given polynomial with the polynomial obtained by
complex conjugation of its coefficients [5], [7].

We propose in this paper a different approach using a change
of variable based on the omographic transform 1)

zZ—1

zZ4+1

Y(z) = (z€ Q) (51)

which maps the upper half-plane onto the open unit disk and the
real line R onto T \ {1}.
More precisely, in (48) let

o t—u

P (t e R).
Let us define
o= 8wy tem. @
Since
2 m M -3 k
Qt) = w k;m Sk Ei+ Z.;k (teR) (53)

one can see that @ is a polynomial in ¢ of degree at most 2 m,
say

2m
Q)= at'.
1=0
The coefficients ¢; of () are real and can be obtained from
the coefficients 6, of A as follows: for m > 1 consider the
(universal) matrices F™ and F™, of sizes (m + 1) x (m + 1)
and m x m, respectively

1 -1
E!' = [1 ) ] Fl =12 (54)
1 -1 1
E’=12 0 -6
1 1 -1
> [2 -4
F? = [2 ) ] (55)
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rr -1 1 1
3 |3 -1 5 15
B = 3 1 =5 15
L1 1 1 1
[2 —4 6
FP=14 0 =20 (56)
12 4 6
and in general
min{k,s} ' ) '
= Y (Mool 6
j=max{0,k+s—m}
for0 < k,s < m, and
min{k,s} ‘ ' '
Fy = > (D700 (58)

j=max{l,k+s—m}

for 1 < k, s < m. Then the coefficients of () are given by

qo 8o/2 q1 R
q2 Red; qs3 R
. =FE™ . . =Fm

q2m Re(sm q2m—1 %5m

(59)

as shown in the Appendix. Therefore, () is a polynomial of one
real variable ¢, with real coefficients and degree not greater than
2m. Moreover, it follows from (52) that the trigonometric poly-
nomial A is positive on T \ {1} if and only if ) is positive on
R, and this can be tested in the classical way with the Sturm
algorithm.

The point 1 on the unit circle is an exception and requires
specific treatment. Even if () is positive on R, since
2Q(t)

A= G e
it is possible that A(1) = 0. This clearly happens if and only
if the degree of @ is less than 2m. Thus one can check either if
gom = 0, or directly if A(1) = 0, case in which the positivity
of A fails.

A similar approach uses the omographic transform

b = 2

(z€0) (60)
carrying the unit circle onto the imaginary axis, and involving
the Q-matrix methods [10]. They are suitable for computer im-
plementation and are used in the real coefficient case [6].

Let us present some numerical examples for testing the sta-
bility of a 2-D polynomial with real or complex coefficients,
using the algorithm presented.

Example 1, Continued: Consider again the polynomial

1 1 1 1 1
Pi(z1,22) =1+ 74 + 572 + 17172 + ZZ% + Zz%

and the principal leading Schur-Cohn minors Aj(w) and
As(w) given by (36) and (37).
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By the variable change w := (t — i/t + i) (¢ € R) as previ-
ously presented in (53), one needs to check that the following
polynomials are positive:

qu(t) = 7t + 382 + 15 = (5 + t2)(7t* + 3)
g2(t) = 225 + 356t° + 1094¢* + 740t + 33t
= (33t* + 26t% + 9)(5 + t?)%.

This is easily checked using for instance the software
package [16].
Example 3: Consider the polynomial P; and his slice P,,(\)

Py(z1,20) = 1+ (24 1)z + +.8127
+ (=5 = 5]+ 21)z + (14 .521) 22
P,(A)=1—(.5—=.5] + 2w+ 1Tw)A
+ (1 — 1w+ 8Iw?)A? + .5 3w.

The stability of P is equivalent with the positivity on the unit
circle of

Ag(w) = —1.7625 + w + w™' + 45T (w — w™)
— A(w™? + w?) +.72I (w2 — w?).

Checking the positivity of Ay via the change of variable (53)
yields to check if

q2(t) = —4.5625 + 7.56t + 1.275t% — 3.961> — .5625¢*

is positive, which is not true, therefore, P5 is unstable.
Example 4: This is an example of a stable polynomial

P(Zl,Zz) =1 + (9 - 0011)2}1
+(0.01 + 0.011) 2y + 1122

The polynomials to be tested for the positivity are ¢; (¢) = 0.99
and

@2 (t) = .14691319¢* + 0.0436084t>
+.32263398t% + 0.0436084 + .17604079.

VI. CONCLUSION

In the paper, we have proposed a new multidimensional nec-
essary and sufficient BIBO stability condition based on slice-
type extensions of the Schur coefficients. This leads to a new
Schur—Cohn type extension, which only needs a unique condi-
tion to be checked, as an alternative to the set of N — 1 con-
ditions of the known algorithms. In the bidimensional case, we
have also presented a method to reduce this algorithm to the
Sturm algorithm, for polynomials with complex coefficients.
Numerical 2-D and 3-D examples where given to illustrate
these developments.
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APPENDIX for 1 < k < m. Therefore, £y = C},, we finally obtain
PROOF OF (59) m mom
For 0 < k < m denote u;, = Redy, and vi, = J6;,. From (53) Qt) = Z %C’fnt25 + Z Z ukEg’fkt%
we have 5=0 s=0 k=1
o) = 2+ 1)m i s (t=i\" +Y Y P
2 it s=1k=1
- % m 60 < m 2s
(5 9 :Z 5,0_+ZukEs,k [
2(t +1)" +2Xk s=0 2 =
n 2s5—1
where + Z Z v Fl |t
s=1 Lk=1
Xi(t): = %[5_ k(t+ z’)m“f(t - Z’)m*k and, therefore, by coefficient identification
Or(t +4)" Rt — i)mH 8o
J(Ze?i ;)rys)_k (t— i)™ )] = By + ZE;“kReék (0<s<m) (61)
= f[ék(t—i)2k+5k(t+i)2k] k=1
= (£ + 1)™ *Re[by (t — i)] Q2s—1 = Z mS6 (1< s<m) (62)

= (t> 4+ 1) *lupRe(t — 1)?* — v, 3(t — ).
which shows (59).
Now .
Re(t —i)* =) CH(—1)* 7% ACKNOWLEDGMENT
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