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ON WRIGHT-FISHER DIFFUSION AND ITS RELATIVES

THIERRY HUILLET

Abstract. We present a series of elementary stochastic models arising from
population genetics. Various mathematical aspects are investigated at the in-
tuitive level. Special emphasis is put on the diffusion method. Focus is on
the Wright-Fisher diffusion model and its variations, describing the forward
evolution of one colony undergoing random sampling, possibly under the ad-
ditional forces arising from mutation, selection with or without dominance.
Some aspects of their dual coalescents obtained while running the diffusion
process backward in time are also investigated.

Keywords: Mutational and evolutionary processes (theory), Population
dynamics (Theory), Phylogeny (Theory).

1. Introduction

The goal of this manuscript is to present a series of elementary stochastic models
from population dynamics which found their way over the last sixty years, chiefly in
mathematical population genetics. Related biological material and various math-
ematical techniques are discussed at the simple intuitive level. Special emphasis
is put on the diffusion method with a tentative emphasis on the underlying unity
of various problems, based on Kolmogorov backward and forward equations. Most
of the manuscript’s content focuses on the specific Wright-Fisher (WF) diffusion
model and its variations, describing the evolution of one colony undergoing ran-
dom mating, possibly under the additional actions of mutation, selection with or
without dominance. Some aspects of the coalescents obtained while running the
diffusion process backward in time are also investigated, using duality techniques.
A non-exhaustive list of references to the vast existing literature will be given, when
necessary, in the body of the text. We now describe the content of this work in
some more details.

Section 2 is devoted to generalities on one-dimensional diffusions. It is designed
to fix the background and notations. Special emphasis is put on the Kolmogorov
backward and forward equations, while stressing the crucial role played by the
boundaries in such one-dimensional diffusion problems. Some questions such as the
meaning of speed and scale functions, existence of an invariant measure, validity of
detailed balance, are addressed in the light of Feller classification of boundaries. The
important problem of evaluating additive functionals along sample paths is then
briefly discussed, emphasizing the prominent role played by the Green function
of the model; several simple illustrative examples are supplied. As a by-product,
the transformation (selection) of sample paths techniques, deriving from specific
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additive functionals, are next briefly introduced in the general diffusion context.
Some transformations of interest are then investigated, together with the problem
of evaluating additive functionals of the transformed diffusion process itself.

Roughly speaking, the transformation of paths procedure allows to select sample
paths of the original process with, say, a fixed destination and/or, more generally,
to kill certain sample paths that do not fit the integral criterion encoded by the
additive functional. One should therefore see it as a selection of paths procedure
leading to new processes described by an appropriate modification of the infinitesi-
mal generator of the original process. It turns out therefore that the same diffusion
methods used in the previous discussions apply to the transformed processes, ob-
tained after a change of measure. When particularized to the WF model, these new
processes favoring large values of the additive functional will reveal some biologi-
cal phenomena and problems of interest, examples of which are discussed below in
some detail.

Section 3 is concerned with the specific Wright-Fisher diffusion model and its rel-
atives, allowing various drifts of biological interest to force the neutral WF model
in specific directions. These continuous space-time models can be obtained as scal-
ing limits of a biased discrete Galton-Watson model with a conservative number of
offsprings over generations. The purpose of this Section is to illustrate the general
techniques introduced in Section 2, allowing to address some important questions
raised in population genetics, such as for example: times to extinction and/or fix-
ation of an allele, dynamics of heterozygosity, time spent in some frequency range,
fixation probability when extinction is most likely, conditional limiting frequency
distributions given neither fixation nor extinction occurred in the past... The se-
lection of paths procedure based on specific additive functionals is next illustrated
in the following problems, starting with the simplest: neutral WF diffusion condi-
tioned on exit at some boundary, neutral WF sample paths favoring a large exit
time, selection of WF sample paths with large heterozygosity, selection of WF
sample paths with large sojourn time density at some point of the state-space, con-
ditioned Wright-Fisher diffusion with irreversible (one-way) mutation. In solving
some of these problems, some use is made of the explicit spectral decomposition of
the neutral WF Kolmogorov infinitesimal generators. In each cases, the character-
istics of the transformed process are discussed and analyzed.

Last Section is devoted to the various coalescents obtained while running the
Wright-Fisher diffusions backward in time. It makes use of the duality techniques.
The advantage is that the structure of the dual process is often of great simplicity
as compared to the one of WF diffusions themselves. We illustrate these classical
ideas firstly on Kingman coalescent (the dual pure death process of the pure ran-
dom genetic drift model), then on the ancestral selection graph (the dual birth and
death process) when both mutation and selection are present in WF model, and
finally on the ancestral graph of WF with selective dominance, in some range of the
dominance parameter. Some of their mathematical features are briefly analyzed.
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2. Preliminaries on diffusions

Before particularizing our study to the Wright-Fisher model and its relatives, we
start with generalities on one-dimensional diffusions. For more technical details,
we refer to [3], [4], [9] and [11]. This Section is designed to fix the background and
notations for the rest of the paper.

2.1. Generalities on one-dimensional diffusions on an interval. Let (wt; t ≥ 0)
be a standard one-dimensional Brownian (Wiener) motion. Consider a 1−dimensional
Itô diffusion driven by (wt; t ≥ 0) on an interval I = [a, b] with −∞ ≤ a < b ≤ ∞.
Assume it has locally Lipschitz continuous drift f (x) and local standard deviation
(volatility) g (x), namely consider the stochastic differential equation (SDE):

(1) dxt = f (xt) dt+ g (xt) dwt, x0 = x ∈ (a, b) .

The condition on f (x) and g (x) guarantees in particular that there is no point x∗

in the interior
◦

I := (a, b) of I for which |f (x)| or |g (x)| would blow up and diverge
as |x− x∗| → 0.

The Kolmogorov backward infinitesimal generator of (1) isG = f (x) ∂x+ 1
2g

2 (x) ∂2
x.

As a result, for all suitable ψ in the domain of operator St := etG, u := u (x, t) =
Exψ

(
xt∧τ(x)

)
satisfies the Kolmogorov backward equation (KBE)

∂tu = G (u) ; u (x, 0) = ψ (x) .

In the definition of the mathematical expectation u, we have t∧τ (x) := inf (t, τ (x))
where τ (x) indicates a random time at which the process should eventually be
stopped, given the process was started at x. The description of this (adapted) ex-
plosion time is governed by the type of boundaries which {a, b} are to (xt; t ≥ 0) .
We shall return to this point later.

Natural coordinate, scale and speed : For such Markovian diffusions, it is interesting
to consider the G−harmonic coordinate ϕ ∈ C2 belonging to the kernel of G, i.e.
satisfying G (ϕ) = 0. For ϕ and its derivative ϕ′ := dϕ/dy, with (x0, y0) ∈ (a, b),
one finds

ϕ′ (y) = ϕ′ (y0) e
−2

∫
y

y0

f(z)

g2(z)
dz

ϕ (x) = ϕ (x0) + ϕ′ (y0)

∫ x

x0

e
−2

∫
y

y0

f(z)

g2(z)
dz
dy.

One should choose a version of ϕ satisfying ϕ′ (y) > 0, y ∈
◦

I. The function ϕ
kills the drift f of (xt; t ≥ 0) in the sense that, considering the change of variable
yt = ϕ (xt) ,

dyt = (ϕ′g)
(
ϕ−1 (yt)

)
dwt, y0 = ϕ (x) .

The drift-less diffusion (yt; t ≥ 0) is often termed the diffusion in natural coordinates
with state-space [ϕ (a) , ϕ (b)]. Its volatility is g̃ (y) := (ϕ′g)

(
ϕ−1 (y)

)
. Function ϕ

is often called the scale function.
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Whenever ϕ (a) > −∞ and ϕ (b) < +∞, one can choose the integration constants
defining ϕ (x) so that

ϕ (x) = a+ (b− a)

∫ x

a e
−2

∫
y

a

f(z)

g2(z)
dz
dy

∫ b

a e
−2

∫
y

a

f(z)

g2(z)
dz
dy
,

with ϕ (a) = a and ϕ (b) = b. In this case, the state-space of (yt; t ≥ 0) is again
[a, b] , the same as for (xt; t ≥ 0) .

Finally, considering the random time change t → θt with inverse: θ → tθ defined
by θtθ

= θ and

θ =

∫ tθ

0

g̃2 (ys) ds,

the novel diffusion (wθ := ytθ
; θ ≥ 0) is easily checked to be identical in law to a

standard Brownian motion. Let now δy (·) = weak− limε↓0
1
2ε1 (· ∈ (y − ε, y + ε))

stand for the Dirac delta mass at y. The random time θt can be expressed as

θt =

∫ b

a

dx ·m (x)

∫ t

0

δϕ(x) (ws) ds =

∫ t

0

m
(
ϕ−1 (ws)

)
ds

where m (x) := 1/
(
g2ϕ′

)
(x) is the (positive) speed density at x = ϕ−1 (y) and

Lt (y) := limε↓0
1
2ε

∫ t

0
1 (ws ∈ (y − ε, y + ε)) ds the local time at y of Brownian mo-

tion before time t. Both scale function ϕ and speed measure m (x) ·dx therefore are
essential ingredients to reduce the original stochastic process (xt; t ≥ 0) to standard
Brownian motion (wt; t ≥ 0). Indeed, it follows from the above arguments that if

θt =
∫ t

0
m (xs) ds, then (ϕ (xθt

) ; t ≥ 0) is a Brownian motion.

Examples (from population genetics, with I = [0, 1]):

• Assume f (x) = 0 and g2 (x) = x (1 − x). This is the neutral Wright-Fisher
(WF) model discussed at length later. This diffusion is already in natural scale

and ϕ (x) = x, m (x) = [x (1 − x)]
−1
. The speed measure is not integrable. Due

to symmetries of this particular diffusion, we observe that defining xt := 1 − xt,
(xt; t ≥ 0) with x0 = x := 1 − x obeys the same SDE as (xt; t ≥ 0).

• With u1, u2 > 0, assume f (x) = u1 − (u1 + u2)x and g2 (x) = x (1 − x). This is
the Wright-Fisher model with mutation. Parameters u1, u2 interpret as mutation
rates. The drift vanishes when x = u1/ (u1 + u2) which is an attracting point for
the dynamics. Here:

ϕ′ (y) = ϕ′ (y0) y
−2u1 (1 − y)−2u2 , ϕ (x) = ϕ (x0) + ϕ′ (y0)

∫ x

x0
y−2u1 (1 − y)−2u2 dy,

with ϕ (0) = −∞ and ϕ (1) = +∞ if u1, u2 > 1/2. The speed measure density is

m (x) ∝ x2u1−1 (1 − x)
2u2−1

and so is always integrable.

• With σ ∈ R, assume a model with quadratic logistic drift f (x) = σx (1 − x)

and local variance g2 (x) = x (1 − x). For this diffusion (Kimura), ϕ (x) = 1−e−2σx

1−e−2σ

and m (x) ∝ [x (1 − x)]−1 e2σx is not integrable. Here, σ is a selection or fitness
parameter.

• The WF model for which f (x) = σx (1 − x) + u1 − (u1 + u2)x and g2 (x) =
x (1 − x) is called WF model with mutations and selection (σ, u1, u2).
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We have: ϕ (x) = ϕ (x0) + ϕ′ (y0)
∫ x

x0
e−2σyy−2u1 (1 − y)

−2u2 dy and speed density

m (x) ∝ x2u1−1 (1 − x)2u2−1 e2σx is integrable.

Considering as for the WF model, xt := 1 − xt, one can check that the diffusion
which governs (xt; t ≥ 0) is the in the same class as the one governing (xt; t ≥ 0)
after the following substitutions: (σ, u1, u2) → (−σ, u2, u1) .

• (diploidy) The WF model for which f (x) = σx (1 − x) (h− x (2h− 1)) and
g2 (x) = x (1 − x) is called WF model with selection and dominance h ∈ R\

{
1
2

}
.

When h > 1 (overdominance), the drift vanishes at x∗ = h/ (2h− 1) which lies
inside (1/2, 1) . When σ > 0 (σ < 0), x∗ is a stable (unstable) equilibrium point for

the underlying deterministic dynamics. We have ϕ (x) =
∫

x

0
eσ̃(y−x∗)2dy∫ 1

0
eσ̃(y−x∗)2dy

and m (x) ∝

[x (1 − x)]−1 e−σ̃(x−x∗)2 where σ̃ := σ (2h− 1) . When passing from (xt; t ≥ 0) to
(xt; t ≥ 0) for a WF model with selection and dominance, one remains in the same
class of models after the substitution (σ, h) → (−σ, 1 − h) in parameter space (from
which x∗ → 1 − x∗). Finally, considering the random time change: θ → tθ defined
by

θ =

∫ tθ

0

xs (1 − xs) ds,

the novel process (yθ := xtθ
− σx∗; θ ≥ 0) is governed by the familiar Ornstein-

Uhlenbeck linear SDE: dyθ = −σ̃yθdθ + dwθ, y0 = x0 − σx∗.

Probability density: Assume f (x) and g (x) are now differentiable in
◦

I. Let then
p (x; t, y) stand for the transition probability density function of xt∧τ(x) at y given
x0 = x. Then p := p (x; t, y) is the smallest solution to the Kolmogorov forward
(Fokker-Planck) equation (KFE):

∂tp = G∗ (p) , p (x; 0, y) = δy (x)

where G∗ (·) = −∂y (f (y) ·) + 1
2∂

2
y

(
g2 (y) ·

)
is the adjoint of G (G∗ acts on the

terminal value y whereasG acts on the initial value x). In general, p (x; t, y) is a sub-

probability because, letting πt (x) :=
∫ 1

0 p (x; t, y) dy, we have πt (x) = P (τ (x) > t)
and this tail distribution is different from 1 unless stopping time τ (x) = ∞ with
probability 1.

For one-dimensional diffusions, the transition density p (x; t, y) is reversible with
respect to the speed density ([9], Chapter 15, Section 13) and so detailed balance
holds:

m (x) p (x; t, y) = m (y) p (y; t, x) , a < x, y < b.

The speed density m (y) satisfies G∗ (m) = 0. It may be written as: m (y) ∝ e−U(y)

where potential function U (y) reads:

U (y) := 2

∫ y

a

(gg′) (z) − f (z)

g2 (z)
dz, a < y < b.

Further, if p (s, x; t, y) is the transition probability from (s, x) to (t, y), s < t,
then −∂sp = G (p), p (t, x; t, y) = δy (x) and so p (s, x; t, y) also satisfies KBE
when looking at it backward in time. The Feller evolution semigroup being time-
homogeneous, one may as well observe that with p := p (x; t, y), operating the time
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substitution t− s→ t, p itself solves KBE

∂tp = G (p) , p (x; 0, y) = δy (x) .

In particular, integrating over y, ∂tπt (x) = G (πt (x)), with π0 (x) = 1 (x ∈ (0, 1)).

Defining the normalized conditional probability density pc (x; t, y) := p (x; t, y) /πt (x),
now with total mass 1, we get

∂tp
c = −∂tπt (x) /πt (x) · pc +G∗ (pc) , pc (x; 0, y) = δy (x) .

The term ρt (x) := −∂tπt (x) /πt (x) > 0 is the time-dependent rate at which mass
should be created to compensate the loss of mass of the original process due, say,
to absorption of (xt; t ≥ 0) at the boundaries. In the creation of mass process, a
diffusing particle dies at rate ρt (y) at point (t, y) where it is duplicated in two
independent particles both started at y, evolving in the same diffusive way.

Let us draw again attention on KFE for p. One has ∂tp = −∂yJ where J =
f (y) p (x; t, y)− 1

2∂y

(
g2 (y) p (x; t, y)

)
is the probability current at (t, y) . Assuming

a stationary solution pst (y) to exist, independently of the initial condition, it must
solve f (y) pst (y)− 1

2∂y

(
g2 (y) pst (y)

)
= Jst where Jst is the probability current at

some boundary {a, b}. Integrating, one gets

pst (y) =
1

g2 (y)
e
2
∫

y

y0

f(z)

g2(z)
dz
[
C − 2Jst

∫ y

y0

dze
2
∫

z

y0

f(x)

g2(x)
dx
]

which reduces to pst (y) = C
g2(y)e

2
∫

y

y0

f(z)

g2(z)
dz

∝ m (y) if Jst = 0 at both boundaries.

In this case, one can check that the probability current vanishes at all points of [a, b] .
The constant C is the normalization constant which eventually renders pst (y) of
total mass 1.

To take an example, the WF model with mutation rates u1, u2 > 0 has invariant

measure on [0, 1] : Γ(2(u1+,u2))
Γ(2u1)Γ(2,u2)

y2u1−1 (1 − y)2u2−1 which is an integrable probability

density known as the beta(2u1, 2u2) density.

2.2. Feller classification of boundaries. The KBE equation may not have unique
solutions, unless one specifies the conditions at the boundaries {a, b} .

For 1−dimensional diffusions as in (1) on [a, b], the boundaries ∂I := {a, b} are of
two types: either accessible or inaccessible. Accessible boundaries are either regular
or exit boundaries, whereas inaccessible boundaries are either entrance or natural
boundaries. Integrability of the scale function and the speed measure turn out to
be essential in the classification of boundaries due to Feller [6].

In the sequel, the symbol ◦ will designate either a or b. We shall say that a function
f (y) ∈ L1 (y0, ◦) if −∞ <

∫ ◦
y0
f (y) dy < +∞.

(A1) The boundary ◦ is a regular boundary if ∀y0 ∈ (a, b):

(i) ϕ′ (y) ∈ L1 (y0, ◦) and (ii)
1

(g2ϕ′) (y)
∈ L1 (y0, ◦)

In this case, a sample path of (xt; t ≥ 0) can reach ◦ from the interior
◦

I of I and
reenter inside I, in finite time. The WF model with mutation has both regular
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boundaries whenever u1, u2 < 1/2.

Remarks:

(i) If ◦ is not a regular boundary, it is unbridgeable and a sample path of (xt; t ≥ 0)
will never quit nor reenter I at ◦. For such an unbridgeable boundary at least, for
all t > 0: f (y) p (x; t, ◦) − 1

2∂y

(
g2 (y) p (x; t, ◦)

)
= 0 and the probability current

vanishes at (t, ◦) .

(ii) For diffusion processes with regular boundaries, one may think in some cases
that allowing the particle to quit the definition domain I and reentering later on,
lacks physical meaning. In this case, if ◦ is found to be a regular boundary, one may
force it a posteriori to be a reflecting or absorbing barrier or a mixture of them. In
this case, one needs to impose boundary conditions on KBE at ◦; we shall return
to this point later. ♦

(A2) The boundary ◦ is an exit boundary if ∀y0 ∈ (a, b):

(i)
1

(g2ϕ′) (y)
/∈ L1 (y0, ◦) and (ii) ϕ′ (y)

∫ y

y0

1

(g2ϕ′) (z)
dz ∈ L1 (y0, ◦)

In this case, a sample path of (xt; t ≥ 0) can reach ◦ from the inside of I in finite
time but cannot reenter. The sample paths are absorbed at ◦. There is an ex-
plosion at ◦ at time τ◦ (x) = inf (t > 0 : xt = ◦ | x0 = x) and P (τ◦ (x) <∞) = 1.
Whenever both boundaries {a, b} are absorbing, the diffusion xt should be stopped
at τ (x) = τa (x)∧ τ b (x) . When at least one of the boundaries is an exit boundary,
the diffusion is transient and the process stops with probability 1 when hitting one
of these exit boundaries. Whenever none of the boundaries {a, b} is absorbing,
τ (x) = +∞. Examples of diffusion with exit boundaries is WF model and WF
model with selection.

(I1) The boundary ◦ is an entrance boundary if ∀y0 ∈ (a, b):

(i) ϕ′ (y) /∈ L1 (y0, ◦) , (ii)
1

(g2ϕ′) (y)
∈ L1 (y0, ◦)

(iii)
1

(g2ϕ′) (y)

∫ y

y0

ϕ′ (z)dz ∈ L1 (y0, ◦) .

An entrance boundary clearly is not a regular boundary.

In case ◦ is entrance, a sample path of (xt; t ≥ 0) can enter from ◦ to the interior
of [a, b] but cannot return to ◦ from the interior of [a, b]. The WF model with
mutation has both entrance boundaries whenever u1, u2 > 1/2.

When both boundaries are entrance boundaries, the diffusion (xt; t ≥ 0) is positive
recurrent inside [a, b] ; note that condition (ii) guarantees the integrability of the
(unique) invariant measure. In natural coordinate, (yt = ϕ (xt) ; t ≥ 0) is a diffusion
in R, since ϕ (a) = −∞ and ϕ (b) = +∞.

(I2) The boundary ◦ is natural in all other cases. When ◦ is natural, sample
paths cannot enter nor quit [a, b] and sample paths are trapped inside [a, b] with
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{a, b} inaccessible; the ‘simplest’ case is when (xt; t ≥ 0) is itself a Brownian motion.

Restriction of the diffusion to a sub-interval : Let I∗ ⊂ I with I∗ := [x∗, x
∗] and

−∞ ≤ a ≤ x∗ < x∗ ≤ b ≤ ∞. It is sometimes of interest to consider the restriction
of the diffusion (1) to the interval I∗. Then, one must specify what happens to
the diffusing particle whenever it hits x∗ or x∗, since one of the new boundaries at
least is different from {a, b} . In the sequel, the symbol ∗ will designate either x∗
or x∗ whenever it differs from the pair {a, b} . It is often of interest to impose that
the particle is either reflected (with probability π) or absorbed (with probability
1− π) at ∗. In this case, the KBE equation with infinitesimal generator G must be
considered on I∗ together with the additional boundary condition(s): π∂xu (∗, t) +
(1 − π)u (∗, t) = 0, for all t ≥ 0.

For instance, if both x∗ and x∗ differ from {a, b} , assuming x∗ is reflecting and
x∗ absorbing, then ∂xu (x∗, t) = 0 and u (x∗, t) = 0, t ≥ 0. Note that reflecting
or absorbing barriers are not regular barriers. Therefore the probability current
vanishes at these points. The canonical coordinate to consider is the restriction of
ϕ to I∗; finally, note that necessarily ϕ (x∗) > −∞ and ϕ (x∗) < +∞, whenever x∗
and x∗ both differ from {a, b} .

Remark: When I = I∗, it still makes sense to impose additional boundary con-
ditions only if one of the boundaries ◦ is a regular boundary. By imposing a
reflecting/absorbing condition at ◦: π∂xu (◦, t) + (1 − π)u (◦, t) = 0, for all t ≥ 0,
we force the diffusion inside I although its natural tendency is to quit I to reenter
later on. ♦

2.3. Evaluation of additive functionals along sample paths. Let (xt; t ≥ 0)
be the diffusion model defined by (1) on the interval I where both endpoints are
assumed absorbing (exit). We wish to evaluate the non-negative additive quantities

α (x) = Ex

(∫ τ(x)

0

c (xs) ds+ d
(
xτ(x)

)
)
,

where functions c and d are both assumed non-negative. As is well-known, func-
tional α (x) ≥ 0 solves:

−G (α) = c if x ∈
◦

I

α = d if x ∈ ∂I.

Important examples are:

1. Assume c = 1 and d = 0 : here, α = Exτ (x) is the mean time of explosion
(average time spent in I before explosion), solution to:

−G (α) = 1 if x ∈
◦

I

α = 0 if x ∈ ∂I.
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More generally, if αn := Ex [τ (x)
n
] is the n−th moment of τ (x), by Nagylaki

formula

−G (αn) = nαn−1, α0 = 1,

allowing to compute recursively αn once αn−1 is known.

2. Assume c (x) = 1 (x ∈ (x∗, x
∗)) where a < x∗ < x∗ < b and d = 0 : here, α =

Ex
(∫ τ(x)

0
1 (xs ∈ (x∗, x

∗)) ds
)

is the mean time spent in (x∗, x
∗) before explosion,

solution to:

−G (α) = 1 (x ∈ (x∗, x
∗)) if x ∈

◦

I

α = 0 if x ∈ ∂I.

If x ∈ (a, x∗] or x ∈ [x∗, b) and if x∗ − a or b− x∗ is small, one expects α (x) to be
short because the diffusion starts at a point close to a boundary where it is likely
to explode and should therefore find little time to visit (x∗, x

∗).

3. Whenever both {a, b} are exit boundaries, it is of interest to evaluate the prob-
ability that xt first hits [a, b] (say) at b, given x0 = x. This can be obtained by
choosing c = 0 and d (◦) = 1 (◦ = b) .

Let then α =: αb (x) = P (xt first hits [a, b] at b | x0 = x) . αb (x) is a G−harmonic
function solution toG (αb) = 0, with boundary conditions αb (a) = 0 and αb (b) = 1.

Solving this problem, we get: αb (x) =
∫ x

a dye
−2

∫
y

a

f(z)

g2(z)
dz
/
∫ b

a dye
−2

∫
y

a

f(z)

g2(z)
dz
.

On the contrary, choosing αa (x) to be a G−harmonic function with boundary con-
ditions αa (a) = 1 and αa (b) = 0, αa (x) = P (xt first hits [a, b] at a | x0 = x) =
1 − αb (x) .

4. Let y ∈
◦

I and put c = 1
2ε1 (x ∈ (y − ε, y + ε)) and d = 0. As ε ↓ 0, c converges

weakly to δy (x) and, α =: g (x, y) = Ex
(
lim 1

2ε

∫ τ(x)

0 1 (xs ∈ (y − ε, y + ε)) ds
)

=
∫∞
0
p (x; s, y) ds is the Green function, solution to:

−G (g) = δy (x) if x ∈
◦

I

g = 0 if x ∈ ∂I.

g therefore is the mathematical expectation of the local time at y, starting from x
(the sojourn time density at y). The solution is easily seen to be

g (x, y) = 2
(ϕ (x) − ϕ (a)) (ϕ (b) − ϕ (y))

(g2ϕ′) (y) (ϕ (b) − ϕ (a))
if x < y

g (x, y) = 2
(ϕ (b) − ϕ (x)) (ϕ (y) − ϕ (a))

(g2ϕ′) (y) (ϕ (b) − ϕ (a))
if x > y.

The Green function is of particular interest to solve the general problem of evalu-
ating additive functionals α (x). Indeed, one easily finds

α (x) =

∫
◦

I

g (x, y) c (y) dy if x ∈
◦

I

α = d if x ∈ ∂I
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Consider now the restriction of (xt; t ≥ 0) to the interval I∗. Assume a < x∗ <

x∗ < b and that x∗ is reflecting and x∗ absorbing. With x ∈
◦

I∗, we now wish to
evaluate the quantities

α (x) = Ex

(∫ τ(x)

0

c (xs) ds

)
,

where τ (x) now is the exit time of I∗, necessarily at x∗, starting from x. α (x) now
solves:

−G (α) = c if x ∈
◦

I∗

whose solution in the bulk is

α (x) =

∫
◦

I∗

g (x, y) c (y) dy if x ∈
◦

I∗

The Green function in this particular case also solves −G (g) = δy (x) if x ∈
◦

I∗,
but now with the additional boundary conditions ∂xg (x∗, y) = 0 and g (x∗, y) = 0,

reflecting the nature of the novel boundaries {x∗, x
∗}. Solving in

◦

I∗ this Cauchy
problem, g takes the explicit form

g (x, y) =
2 (ϕ (x∗) − ϕ (y))

(g2ϕ′) (y)
if x < y

g (x, y) =
2 (ϕ (x∗) − ϕ (x))

(g2ϕ′) (y)
if x > y

in terms of the G−harmonic function ϕ. An explicit expression of the Green func-
tion also exists for all combinations of {x∗, x

∗} either absorbing or reflecting.

2.4. Transformation of sample paths. Consider a one-dimensional diffusion
(xt; t ≥ 0) as in (1). Let p := p (x; t, y) be its transition probability and let τ (x) be
its explosion time.

Let α (x) := Ex
(∫ τ(x)

0
c (xs) ds+ d

(
xτ(x)

))
be a non-negative additive functional

solving

−G (α) = c if x ∈
◦

I

α = d if x ∈ ∂I.

Recall functions c and d are both chosen non-negative so that so is α.

Define a new transformed stochastic process (
`

xt; t ≥ 0) by its transition probability

`

p (x; t, y) =
α (y)

α (x)
p (x; t, y) .

In this construction of (
`

xt; t ≥ 0) through a change of measure, sample paths of
(xt; t ≥ 0) for which α (y) is large are favored. This is a selection of paths procedure
due to Doob (see [3]).

Now, the KFE for
`

p clearly is ∂t
`

p =
`∗

G (
`

p), with p (x; 0, y) = δy (x) and
`∗

G (
`

p) :=

α (y)G∗(
`

p/α (y)). The Kolmogorov backward operator of the transformed process
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therefore is
`

G (·) =
1

α (x)
G (α (x) ·) .

Developing, with α′ (x) := dα (x) /dx and G̃ (·) := α′

α g
2∂x (·) +G (·), we get

`

G (·) =
1

α
G (α) · +G̃ (·) = −

c

α
· +G̃ (·)

and the new KB operator can be obtained from the latter by adding a drift term
α′

α g
2∂x to the one G of the original process to form a new process (x̃t; t ≥ 0) with

KB operator G̃ and by killing its sample paths at rate c
α (provided c 6= 0). In

others words, with f̃ (x) := f (x) + α′

α g
2 (x) , the novel time-homogeneous SDE to

consider is

(2) dx̃t = f̃ (x̃t) dt+ g (x̃t) dwt, x̃0 = x ∈ (a, b) ,

eventually killed at rate c
α as soon as c 6= 0. Whenever (x̃t; t ≥ 0) is killed, it enters

conventionally the coffin state {∂}. Let τ̃ (x) be the new explosion time at the
boundaries of (x̃t; t ≥ 0) started at x, with τ̃ (x) = ∞ if the boundaries are now
inaccessible to the new process. Let τ̃∂ (x) be the killing time of (x̃t; t ≥ 0) started

at x (hitting time of ∂), with τ̃∂ (x) = ∞ if c = 0. Then
`

τ (x) := τ̃ (x) ∧ τ̃∂ (x) is
the novel stopping time of killed (x̃t; t ≥ 0) . The SDE for (x̃t; t ≥ 0), together with

its stopping time
`

τ (x) characterize the new process (
`

xt; t ≥ 0) to consider.

Normalizing: Integrating over y, with
`

πt(x) =
∫ `

p (x; t, y) dy := P̃x(
`

τ (x) > t),

we have ∂t
`

πt (x) =
`

G(
`

πt (x)), with
`

π0 (x) = 1 (x ∈ (0, 1)). This gives the tail

distribution of stopping time
`

τ (x).

Defining the conditional probability density
`c
p (x; t, y) =

`

p (x; t, y) /
`

πt (x), now with
total mass 1, we get

∂t
`c
p = −∂t

`

πt (x) /
`

πt (x) ·
`c
p +

`∗

G (
`c
p ),

`c
p (x; 0, y) = δy (x) .

The term −∂t
`

πt (x) /
`

πt (x) > 0 is the rate at which mass should be created to
compensate the loss of mass of the process (x̃t; t ≥ 0) due to eventual absorption
at the boundaries and/or killing.

Additive functionals of transformed process: For the new process (x̃t; t ≥ 0), it
is also of interest to evaluate additive functionals along their own sample paths.

Let then α̃ (x) := Ẽx

(∫ `

τ (x)

0 c̃ (x̃s) ds+ d̃
(
x̃`

τ (x)

))
be such an additive functional

where functions c̃ and d̃ are themselves both non-negative. It solves

−
`

G(α̃) = c̃ if x ∈
◦

I

α̃ = d̃ if x ∈ ∂I.
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Then, recalling the expression of g (x, y), the Green function of (xt; t ≥ 0) :

g (x, y) = 2
(ϕ (x) − ϕ (a)) (ϕ (b) − ϕ (y))

(g2ϕ′) (y) (ϕ (b) − ϕ (a))
if x < y

g (x, y) = 2
(ϕ (b) − ϕ (x)) (ϕ (y) − ϕ (a))

(g2ϕ′) (y) (ϕ (b) − ϕ (a))
if x > y,

we find explicitly

α̃ (x) =
1

α (x)

∫
◦

I

g (x, y)α (y) c̃ (y) dy.

Remark: It results of the following simple formula:

G(αα̃) = αG(α̃) + α̃G (α) + g2α′α̃′,

where
`

G(α̃) = −c̃ and G (α) = −c, that: αG(α̃) = cα̃−αc̃− g2α′α̃′. Consequently,

with G̃ (·) := α′

α g
2∂x (·) +G (·) :

−G̃(α̃) = −cα−1α̃+ c̃.

As a result:

α̃ (x) = Ẽx

(∫ τ̃(x)

0

dt · c̃ (x̃t) e
−
∫

t

0 (cα−1)(x̃s)ds + d̃
(
x̃`

τ (x)

))
,

where (x̃t; t ≥ 0) is the process (2) with infinitesimal generator G̃ (including the
additional drift) with explosion time τ̃ (x). ♦

Specific transformations of interest:

(i) The case c = 0 deserves a special treatment. Indeed, in this case, τ̃∂ (x) = ∞

and so
`

τ (x) := τ̃ (x), the explosion time for the process (x̃t; t ≥ 0) governed by the

new SDE. Here
`

G = G̃. Assuming α solves −G (α) = 0 if x ∈
◦

I with boundary
conditions α (a) = 0 and α (b) = 1 (respectively α (a) = 1 and α (b) = 0), the new
process (x̃t; t ≥ 0) is just (xt; t ≥ 0) conditioned on exiting at x = b (respectively
at x = a). In the first case, boundary b is exit whereas a is entrance; α reads

α (x) =

∫ x

a
e
−2

∫
y

a

f(z)

g2(z)
dz
dy

∫ b

a
e
−2

∫
y

a

f(z)

g2(z)
dz
dy

with

f̃ (x) = f (x) +
g2 (x) e

−2
∫

x

a

f(z)

g2(z)
dz

∫ x

a e
−2

∫
y

a

f(z)

g2(z)
dz
dy

giving the new drift. In the second case, α (x) =
∫

b

x
e
−2

∫ y
a

f(z)

g2(z)
dz

dy

∫
b

a
e
−2

∫ y
a

f(z)

g2(z)
dz

dy

and boundary a

is exit whereas b is entrance. Thus τ̃ (x) is just the exit time at x = b (respectively

at x = a). Let α̃ (x) := Ẽx (τ̃ (x)). Then, α̃ (x) solves −G̃ (α̃) = 1, whose explicit
solution is:

α̃ (x) =
1

α (x)

∫
◦

I

g (x, y)α (y) dy
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in terms of g (x, y) , the Green function of (xt; t ≥ 0) .

Example: Consider the WF model on [0, 1] with selection for which, with σ ∈ R,
f (x) = σx (1 − x) and g2 (x) = x (1 − x). Assume α solves −G (α) = 0 if x ∈ (0, 1)
with α (0) = 0 and α (1) = 1; one gets, α (x) =

(
1 − e−2σx

)
/
(
1 − e−2σ

)
. The

diffusion corresponding to (2) has the new drift: f̃ (x) = σx (1 − x) coth (2σx),
independent of the sign of σ. It models WF diffusion with selection conditioned

on exit at ◦ = 1. If σ is small with (say) σ = c/n, where c ∈ R, then: f̃ (x) ∼
1
2 (1 − x)

(
1 + c2x2/n2

)
only depends on c2 and not on c.

(ii) Assume α now solves −G (α) = 1 if x ∈
◦

I with boundary conditions α (a) =
α (b) = 0. In this case study, one selects sample paths of (xt; t ≥ 0) with a large

mean explosion time α (x) = Exτ (x) . Sample paths with large sojourn time in
◦

I
are favored. We have

α (x) =

∫
◦

I

g (x, y) dy

where g (x, y) is the above Green function. The boundaries of (x̃t; t ≥ 0) are now
both entrance boundaries and so τ̃ (x) = ∞. (x̃t; t ≥ 0) is not absorbed at the

boundaries. The stopping time
`

τ (x) of (x̃t; t ≥ 0) is just its killing time τ̃∂ (x). Let

α̃ (x) := Ẽx (τ̃∂ (x)). Then, α̃ (x) solves −
`

G(α̃) = 1, α̃ (a) = α̃ (b) = 0, with explicit
solution:

α̃ (x) =
1

α (x)

∫
◦

I

g (x, y)α (y) dy.

(iii) Assume α now solves −G (α) = δy (x) if x ∈
◦

I with boundary conditions
α (a) = α (b) = 0. In this case study, one selects sample paths of (xt; t ≥ 0) with a

large sojourn time density at y since α (x) =: g (x, y) = Ex
(∫ τ(x)

0 δy (xs) ds
)
. The

stopping time τ̃y (x) of (x̃t; t ≥ 0) is just its killing time when the process is at y

for the last time. Let α̃y (x) := Ẽx (τ̃y (x)). Then, α̃y (x) solves −
`

G(α̃) = 1, with
explicit solution:

α̃y (x) =
1

g (x, y)

∫
◦

I

g (x, z) g (z, y)dz.

The Green function at x0 ∈ (0, 1) of the transformed process (x̃t; t ≥ 0) is g̃y (x, x0)

solution to: −
`

G(g̃y) = δx0 (x). It takes the simple form:

g̃y (x, x0) =
1

g (x, y)

∫
◦

I

g (x, z) g (z, y) δx0 (z)dz =
g (x0, y)

g (x, y)
g (x, x0) .

3. The Wright Fisher example

In this Section, we shall largely particularize the general diffusion model to the
pure neutral genetic model, originally due to Wright and Fisher (WF). Some of its
relatives including various drifts are also examined. To some extent, it is possible to
find a transformation from the general diffusion model (1) to the specific WF type
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model with quadratic volatility g2 (x) = x (1 − x). (see [8], Appendix 1). When
particularized to WF models, the general techniques introduced in Section 2 will lift
the veil of obscurity on some problems of interest in population genetics at large.
This is the main purpose of this Section.

We refer to [13] and to its extensive and exhaustive list of references for historical
issues, ownership of evoked results (after Wright, Fisher, Crow, Kimura, Nagylaki,
Maruyama, Ohta, Watterson, Ewens, Kingman, Griffiths, Tavaré...) and for the
role played by french geneticist Gustave Malécot in the development of modern
mathematical population genetics. See also the general monographs [2], [12], [5] and
[7]. For recent related works with statistical physics’ motivations, see [1] and [15].
In the first reference, focus chiefly is on neutral populations with fixed population
sizes with a mapping with ecological and linguistic models, whereas the second work
includes mutations and discusses how the transient time to Most Recent Common
Ancestor (MRCA) is related to genetic diversity. Both works therefore consider
the problem of running the descendant process backward in time to trace back the
ancestral lineages; we shall also address this point of view in Section 4.

3.1. The neutral Wright-Fisher model. Consider a discrete-time Galton Wat-
son branching process preserving the total number of individuals at each generation.
We start with n individuals. The initial Cannings reproduction law is defined as
follows: Let |kn| :=

∑n
m=1 km = n and kn := (k1, ..., kn) be integers. Assume

the first-generation random offspring numbers νn := (νn (1) , ..., νn (n)) admit the
following joint exchangeable polynomial distribution on the simplex |kn| = n:

P (νn = kn) =
n! · n−n

∏n
m=1 km!

.

This distribution can be obtained by conditioning n independent Poisson dis-
tributed random variables on summing to n. Assume subsequent iterations of this
reproduction law are independent so that the population is with constant size at
all generations.

Let Nr (m) be the offspring number of the m first individuals at discrete genera-
tion r ∈ N0. This sibship process is a discrete-time Markov chain with binomial
transition probability given by:

P (Nr+1 (m) = k′ | Nr (m) = k) =

(
n

k′

)(
k

n

)k′ (
1 −

k

n

)n−k′

.

Assume next that m = ⌊nx⌋ where x ∈ (0, 1) . Then, as well-known, the dynamics
of the continuous space-time re-scaled process xt := N⌊nt⌋ (m) /n, t ∈ R+ can

be approximated for large n, to the leading term in n−1, by a Wright-Fisher-Itô
diffusion on [0, 1] (the purely random genetic drift case):

(3) dxt =
√
xt (1 − xt)dwt, x0 = x.

Here (wt; t ≥ 0) is a standard Wiener process. For this scaling limit process, a unit
laps of time t = 1 corresponds to a laps of time n for the original discrete-time pro-
cess; thus time is measured in units of n. If the initial condition is x = n−1, xt is the
diffusion approximation of the offspring frequency of a singleton at generation ⌊nt⌋.
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Equation (3) is a 1−dimensional diffusion as in (1) on I = [a = 0, b = 1] , with zero

drift f (x) = 0 and volatility g (x) =
√
x (1 − x). This diffusion is already in nat-

ural coordinate and so ϕ (x) = x. The scale function is x and the speed measure

[x (1 − x)]
−1
dx. One can check that both boundaries are exit in this case: Stopping

time is τ (x) = τ0 (x)∧ τ1 (x) where τ0 (x) is the extinction time and τ1 (x) the fix-
ation time. The corresponding infinitesimal generators are G (·) = 1

2x (1 − x) ∂2
x (·)

and G∗ (·) = 1
2∂

2
y (y (1 − y) ·) .

Remark: Non-neutral Wright-Fisher models (with non-null drifts) can be obtained
by considering the binomial transition probabilities

P (Nr+1 (m) = k′ | Nr (m) = k) =

(
n

k′

)(
pn

(
k

n

))k′ (
1 − pn

(
k

n

))n−k′

where

pn (x) : x ∈ (0, 1) → (0, 1)

now is some state-dependent probability which is different from identity x. For
instance, taking pn (x) = (1 − π1,n)x + π2,n (1 − x) where (π1,n, π2,n) are small
(n-dependent) mutation probabilities, assuming (n · π1,n, n · π2,n) →n↑∞ (u1, u2),
leads after scaling to the drift of WF model with mutations rates (u1, u2). Taking
pn (x) = (1 + sn) x/ (1 + snx) where sn > 0 is a small n−dependent selection pa-
rameter satisfying n · sn →n↑∞ σ > 0, leads, after scaling, to the WF model with
selective drift σx (1 − x). Essentially, the drift f (x) is a large n approximation of
the bias: n (pn (x) − x) .

3.2. Explicit solutions to KBE and KFE. As shown by Kimura in 1955, it
turns out that both Kolmogorov equations are exactly solvable in this case, using
spectral theory. Indeed, solutions involve a series expansion in terms of eigenfunc-
tions of KB and KF infinitesimal generators with discrete eigenvalues spectrum. In
principle, such a spectral expansion of the solutions is possible as soon as the diffu-
sion process under study has no natural boundaries. We now consider the specific
WF model.

With z ∈ (−1, 1), let (Pk (z) ; k ≥ 1) be the degree-k Gegenbauer polynomials

solving
(
1 − z2

)
P ′′k (z) + k (k − 1)Pk (z) = 0 with P

′

k (±1) = ∓1/2, k ≥ 2; we
let P1 (z) := (1 − z) /2. When k ≥ 2, we have Pk (±1) = 0 and so Pk (z) =(
1 − z2

)
Qk (z) where Qk (z) is a polynomial with degree k − 2. With x ∈ (0, 1),

let (uk (x) ; k ≥ 1) be defined by: uk (x) = Pk (1 − 2x). These polynomials clearly
constitute a system of eigenfunctions for the KB operator G = 1

2x (1 − x) ∂2
x with

eigenvalues λk = −k (k − 1) /2, k ≥ 1, thus with G (uk (x)) = λkuk (x) . In particu-
lar, u1 (x) = x, u2 (x) = x− x2, u3 (x) = x− 3x2 + 2x3, u4 (x) = x− 6x2 + 10x3 −
5x4,...With k ≥ 2, we have uk (0) = uk (1) = 0 and u′k (0) = 1 and u′k (1) = −1.

The eigenfunctions of KF operator G∗ (·) = 1
2∂

2
x [y (1 − y) ·] are given by vk (y) =

m (y) · uk (y) , k ≥ 1 where the Radon measure of weights m (y) dy is the speed

measure: m (y) dy = dy
y(1−y) , for the same eigenvalues. For instance, v1 (y) = 1

1−y ,

v2 (y) = 1, , v3 (y) = 1 − 2y, v4 (y) = 1 − 5y + 5y2,...
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Although λ1 = 0 really constitutes an eigenvalue, only v1 (y) is not a polynomial.
When k ≥ 2, from their definition, the uk (x) polynomials satisfy uk (0) = uk (1) = 0
in such a way that vk (y) = m (y) · uk (y) , k ≥ 2 is a polynomial with degree k− 2.

We note that, 〈vj , uk〉 = 〈uj, uk〉m = 0 if j 6= k and system uk (x) ; k ≥ 2 is
a complete orthogonal set of eigenvectors. Therefore, for any square-integrable
function ψ (x) ∈ L2 ([0, 1] ,m (y) dy) admitting a decomposition in the basis uk (x) ,
k ≥ 2

Exψ
(
xt∧τ(x)

)
=
∑

k≥2

cke
λktuk (x) where ck =

〈ψ, uk〉m
〈vk, uk〉

=

∫ 1

0
ψ (y)uk (y)m (y)dy
∫ 1

0 vk (y)uk (y) dy
,

and ψ (x) =
∑

k≥2 ckuk (x) .This series expansion solves KBE: ∂tu = G (u); u (x, 0) =

ψ (x) where u = u (x, t) := Exψ
(
xt∧τ(x)

)
.

Moreover, with Px
(
xt∧τ(x) ∈ dy

)
:= p (x; t, y) dy, we have the decomposition of

this measure on the series of measures vk (y) dy:

Px
(
xt∧τ(x) ∈ dy

)
=
∑

k≥2

bke
λktuk (x) vk (y) dy where bk =

1
∫ 1

0 vk (y)uk (y) dy
.

This series expansion solves KFE of the WF model. The transition density p (x; t, y) =
Px
(
xt∧τ(x) ∈ dy

)
/dy is reversible with respect to the speed density since for 0 <

x, y < 1

m (x) p (x; t, y) = m (y) p (y; t, x) =
∑

k≥2

bke
λktvk (x) vk (y) .

The measures vk (y) dy, k ≥ 2 are not probability measures because vk (y) is not
necessarily positive over [0, 1]. This decomposition is not a mixture. We have

〈vk, uk〉 = ‖uk‖
2
2,m the 2−norm for the weight functionm. We notice that 〈v1, u1〉 =

∫ 1

0
y

1−ydy = ∞ so that c1 = b1 = 0; although λ1 = 0 is indeed an eigenvalue, the

above sums should be started at k = 2 (expressing the lack of an invariant measure
for the WF model as a result of explosion at the boundaries).

We have Px (τ (x) > t) =
∫ 1

0 Px
(
xt∧τ(x) ∈ dy

)
and so

πt (x) := Px (τ (x) > t) =
∑

k≥2

∫ 1

0
vk (y) dy

∫ 1

0
vk (y)uk (y) dy

eλktuk (x)

is the exact tail distribution of the explosion time.

Since v2 (y) = 1, to the leading order in t, for large time

Px
(
xt∧τ(x) ∈ dy

)
∼ 6e−t · x (1 − x) dy + O

(
e−3t

)

which is independent of y. Integrating over y, πt (x) := Px (τ (x) > t) ∼ 6e−t ·
x (1 − x) so that the conditional probability

Px (xt ∈ dy | τ (x) > t) ∼
t↑∞

dy

is asymptotically uniform in the Yaglom limit. As time passes by, given explosion

did not occur in the past, xt
d
→ x∞ (as t ↑ ∞) which is a uniformly distributed

random variable on [0, 1].
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We finally observe that Exul

(
xt∧τ(x)

)
= eλltul (x), l ≥ 1 so that the law has all its

moments given by:

mk,t (x) := Ex
(
xk

t∧τ(x)

)
= x+

k∑

l=2

ck,le
λltul (x) .

Here ck,l =
∫ 1
0 (yk−y)ul(y)m(y)dy
∫ 1
0

vk(y)ul(y)dy
, l = 2, .., k, are the rational coefficients of the

projection of xk − x on the eigenfunctions ul (x): x
k = x+

∑k
l=2 ck,lul (x) .

For instance,m1,t (x) = u1 (x) = x, m2,t (x) = u1 (x)−e−tu2 (x) = x (1 − (1 − x) e−t) ,
m3,t (x) = u1 (x)− 3

2e
−tu2 (x)+ 1

2e
−3tu3 (x)...Note that, for all k ≥ 1, mk,0 (x) = xk

and mk,t (x) →t↑∞ Ex
(
xk

τ(x)

)
= P (τ1 (x) < τ0 (x)) = x, the fixation probability.

From this, we get the dynamics of heterozygosity Ex
(
2xt∧τ(x)

(
1 − xt∧τ(x)

))
=

2x (1 − x) e−t which tends to 0 exponentially fast as t → ∞. Its variance can be
found to be

σ
2
x

(
2xt∧τ(x)

(
1 − xt∧τ(x)

))
=

4

5
x (1 − x)

[
e−t − (1 − 5x (1 − x)) e−6t − 5x (1 − x) e−2t

]
.

It vanishes linearly when t → 0 and exponentially when t → ∞; it is maximal at
some intermediate time t = t∗ (x).

3.3. Additive functionals for WF. Let (xt; t ≥ 0) be the WF diffusion model
defined by (1) on the interval I = [0, 1] where both endpoints are absorbing (exit).
We wish to evaluate the additive quantities

α (x) = Ex

(∫ τ(x)

0

c (xs) ds+ d
(
xτ(x)

)
)
,

where functions c and d are both non-negative. With G = 1
2x (1 − x) ∂2

x, α (x)
solves:

−G (α) = c if x ∈
◦

I

α = d if x ∈ ∂I.

1. c = limε↓0
1
2ε1 (x ∈ (y − ε, y + ε)) =: δy (x) and d = 0, when y ∈

◦

I : in this case,
α := g (x, y) is the Green function. The solution takes the simple form

g (x, y) = 2
x

y
if x < y

g (x, y) = 2
1 − x

1 − y
if x > y.

The Green function is of particular interest to solve the above general problem of
evaluating additive functionals α (x). Indeed, one easily finds

α (x) =

∫
◦

I

g (x, y) c (y) dy if x ∈
◦

I

α = d if x ∈ ∂I
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2. c = 1 and d = 0 : here, α = Exτ (x) is the mean time of explosion (average time
spent in I before explosion). The solution is (Crow and Kimura formula)

α (x) = 2x

∫ 1

x

dy

y
+ 2 (1 − x)

∫ x

0

dy

1 − y
= −2 (x log x+ (1 − x) log (1 − x)) .

3. Let c = 0 and d (◦) = 1 (◦ = 1) . Let α (x) = P (xt first hits [0, 1] at 1 | x0 = x) .
Then α (x) is a G−harmonic function solution to G (α) = 0, with boundary con-
ditions α (0) = 0 and α (1) = 1. The solution for WF model is: α (x) = x. Stated
differently, x = Px (τ1 (x) < τ0 (x)) is the probability that the exit time at ◦ = 1
is less than the one at ◦ = 0, starting from x.

On the contrary, choosing α (x) to be a G−harmonic function with boundary con-
ditions α (0) = 1 and α (1) = 0, α (x) = P (xt first hits [0, 1] at 0 | x0 = x) = 1−x.
Thus, 1 − x = Px (τ0 (x) < τ1 (x)) .

4. Let c (x) = 2x (1 − x) measure the heterozygosity of the WF process and assume
d (0) = d (1) = 1. The average heterozygosity over sample paths is

α (x) = 4x

∫ 1

x

(1 − y)dy + 4 (1 − x)

∫ x

0

ydy = 2x (1 − x) .

5. Assume c (x) = 1
(
x ∈

(
n−1, 1 − n−1

))
and d = 0 :

Then, α = Ex
(∫ τ(x)

0 1
(
xs ∈

(
n−1, 1 − n−1

))
ds
)

is the mean time spent in interval
(
n−1, 1 − n−1

)
before explosion, solution to:

−G (α) = 1
(
x ∈

(
n−1, 1 − n−1

))
if x ∈

◦

I

α = 0 if x ∈ ∂I.

If x = n−1, one finds α
(
n−1

)
= 2n−1

∫ 1−n−1

n−1 dy/y ∼ 2 logn/n which is small when
n is large. The diffusion represents the offspring frequency of a singleton; it starts
at n−1 which is close to boundary 0 where xt gets extinct. It therefore has little
opportunity to visit

(
n−1, 1 − n−1

)
.

3.4. Transformation of WF sample paths ([12]). With p (x; t, y) the transition
probability density of WF model, define a new α−transformed stochastic process

(
`

xt; t ≥ 0) by its transition probability

`

p (x; t, y) =
α (y)

α (x)
p (x; t, y) .

(i) Conditioned WF on exit at some boundary: Assume first α solves −G (α) = 0
with boundary conditions α (0) = 0 and α (1) = 1; hence, α reads α (x) = x. In

this case, τ̃∂ (x) = ∞ (no killing) and so
`

τ (x) := τ̃ (x) is the explosion time for
a process (x̃t; t ≥ 0) governed by a new SDE with a drift term. The new process
(x̃t; t ≥ 0) is just (xt; t ≥ 0) conditioned on exiting at ◦ = 1. Boundary 1 is exit
whereas 0 is entrance. Thus the model for (x̃t; t ≥ 0) becomes dx̃t = (1 − x̃t) dt +√
x̃t (1 − x̃t)dwt, x̃0 = x ∈ (0, 1) now with linear drift f̃ (x) = 1 − x and g (x) =√
x (1 − x). Its transition probability is

`

p1 (x; t, y) =
y

x
p (x; t, y) ,
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where subscript 1 indicates that this is the conditional transition probability of
sample paths whose exit is necessarily at boundary 1.

Assuming now α solves −G (α) = 0 if x ∈
◦

I with boundary conditions α (0) = 1 and
α (1) = 0, the new process (x̃t; t ≥ 0) is just (xt; t ≥ 0) conditioned on exiting at
x = 0. Boundary 0 is exit whereas 1 is entrance; in this case, α is α (x) = 1−x. Thus

the model for (x̃t; t ≥ 0) becomes dx̃t = −x̃tdt +
√
x̃t (1 − x̃t)dwt, x̃0 = x ∈ (0, 1)

with f̃ (x) = −x and g (x) =
√
x (1 − x). Its transition probability is

`

p0 (x; t, y) =
1 − y

1 − x
p (x; t, y) ,

where subscript 0 indicates that this is the conditional transition probability of WF
sample paths whose exit now is at ◦ = 0. Recalling that, starting from x, (xt; t ≥ 0)
gets absorbed at ◦ = 1 (respectively 0) with probability x (respectively 1 − x), we
recover that

p (x; t, y) = x ·
`

p1 (x; t, y) + (1 − x) ·
`

p0 (x; t, y) .

Using the solution to KFE for p, we obtain an expression for both
`

p1 (x; t, y) and
`

p0 (x; t, y), simply by pre-multiplying it by the corresponding right factor. Inte-
grating the results over y, we get the conditional tail distributions of the exit times
at ◦ = 1 or 0, given the exit is at ◦ = 1 or 0.

Exploiting the large time behavior of p (x; t, y) , to the first order in t, we get

`

p1 (x; t, y) ∼ 6e−t · (1 − x) y
`

p0 (x; t, y) = 6e−t · x (1 − y) .

Integrating over y, πt,1 (x) := P̃x
1 (τ̃ (x) > t) ∼ 3e−t · (1 − x) and πt,0 (x) :=

P̃x
0 (τ̃ (x) > t) ∼ 3e−t · x are the large time behaviors of the absorption times at 1

and 0 respectively. Using this, we get the large time behaviors of the conditional
probabilities

P̃x
1 (x̃t ∈ dy | τ̃ (x) > t) ∼ 2ydy

P̃x
0 (x̃t ∈ dy | τ̃ (x) > t) ∼ 2 (1 − y) dy,

where we recognize the densities of specific beta-distributed random variables.
Specifically, we conclude that, as time passes by, given explosion occurs at ◦ = 1

and given it has not occurred in the past, x̃t
d
→ beta(2, 1) distribution on [0, 1] .

Similarly, given explosion occurs at ◦ = 0 and given it has not occurred previously,

x̃t
d
→ beta(1, 2) distribution on [0, 1] .

In the previously displayed formula, τ̃ (x) is just the exit time at ◦ = 1 (respectively

at ◦ = 0) of the conditional transformed WF diffusions. Let α̃ (x) := Ẽx (τ̃ (x)).

Then, α̃ (x) solves −
`

G(α̃) = 1, whose explicit solution is:

α̃ (x) =
1

α (x)

∫ 1

0

g (x, y)α (y) dy
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in terms of g (x, y) , the Green function of (xt; t ≥ 0) . For the WF model conditioned
on exit at ◦ = 1 (respectively 0), we find respectively Kimura and Ohta’s formulae

α̃1 (x) = −
2

x
(1 − x) log (1 − x)

α̃0 (x) = −
2

1 − x
x log x.

This result could have been guessed by observing that xα̃1 (x) + (1 − x) α̃0 (x) is
the expected explosion time of the original WF model. When x ↓ 0, (respectively
x ↑ 1), it takes an average time 2 to reach 1 (respectively 0) for WF conditioned on
exit at ◦ = 1 (respectively 0).

(ii) WF sample paths favoring large exit time: Assume α now solves −G (α) = 1

if x ∈
◦

I with boundary conditions α (0) = α (1) = 0 and consider the associated
α−transformed process. In this case study, one selects sample paths of (xt; t ≥ 0)
with a large mean explosion time α (x) = Exτ (x) . Sample paths with large sojourn

time within
◦

I are favored. For the neutral WF model, we have

α (x) = −2 (x log x+ (1 − x) log (1 − x)) .

With f̃ (x) = x(1−x) log(x/(1−x))
x log x+(1−x) log(1−x) , the dynamics of (x̃t; t ≥ 0) is

dx̃t = f̃ (x̃t) dt+
√
x̃t (1 − x̃t)dwt,

with killing rate 1/α (x). The new drift is symmetric around 1/2 (f̃ (1 − x) =

−f̃ (x)); it tends to concentrate the probability mass of x̃t at this point. The
boundaries of (x̃t; t ≥ 0) are now both entrance boundaries and so τ̃ (x) = ∞.

(x̃t; t ≥ 0) is not absorbed at the boundaries. The stopping time
`

τ (x) of (x̃t; t ≥ 0)

is just its killing time τ̃∂ (x). Let α̃ (x) := Ẽx (τ̃∂ (x)) be its expected value. Then,

α̃ (x) solves −
`

G(α̃) = 1 whose explicit solution is:

α̃ (x) = 2
x
∫ 1

x
y log y+(1−y) log(1−y)

y dy + (1 − x)
∫ x

0
y log y+(1−y) log(1−y)

1−y dy

x log x+ (1 − x) log (1 − x)
.

We get the large time behavior of the conditional probabilities

P̃x (x̃t ∈ dy | τ̃∂ (x) > t) ∼ −2 (y log y + (1 − y) log (1 − y)) .

As time passes by, killing occurs, and given killing has not occurred in the past, x̃t
d
→

x∞ a random variable with logarithmic density −2 (y log y + (1 − y) log (1 − y)) on
[0, 1] .

(iii) Selection of WF sample paths with large heterozygosity. Assume α now solves

−G (α) = 2x (1 − x) if x ∈
◦

I with boundary conditions α (0) = α (1) = 0. Then,
α = 2x (1 − x) . In this case study, one selects sample paths of (xt; t ≥ 0) with large
heterozygosity. The dynamics of (x̃t; t ≥ 0) is

dx̃t = (1 − 2x̃t) dt+
√
x̃t (1 − x̃t)dwt,

subject to a constant killing rate 1. The boundaries of (x̃t; t ≥ 0) are now both
entrance boundaries and so τ̃ (x) = ∞. (x̃t; t ≥ 0) is not absorbed at the boundaries.
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The stopping time
`

τ (x) of (x̃t; t ≥ 0) is just its killing time τ̃∂ (x) which is mean

1 exponentially distributed: P̃x (τ̃∂ (x) > t) =:
`

πt (x) = e−t, independently of the

starting point x. Let for instance α̃ (x) := Ẽx (τ̃∂ (x)) be its expected value. Then,

α̃ (x) solves −
`

G(α̃) = 1, whose explicit solution is, as required:

α̃ (x) = 2
x
∫ 1

x
y(1−y)

y dy + (1 − x)
∫ x

0
y(1−y)
1−y dy

x (1 − x)
= 1.

As time passes, killing of x̃t occurs, and given killing has not yet occurred, x̃t
d
→

x∞ a random variable with density 6y (1 − y) on [0, 1] which is a beta(2, 2) density.
In this selection of paths procedure, the conditional density of (x̃t; t ≥ 0) given

τ̃∂ (x) > t is
`c
p (x; t, y) :=

`

p (x; t, y) /
`

πt (x) where
`

p (x; t, y) = y(1−y)
x(1−x)p (x; t, y) and

`

πt (x) = e−t. Using the reversibility property,
`c
p (x; t, y) = etp (y; t, x) takes the

simple explicit form

`c
p (x; t, y) =

∑

k≥2

bke
(λk+1)tvk (x)uk (y) .

(iv) Selection of WF sample paths with large sojourn time density at y. Assume

now α solves −G (α) = δy (x) if x ∈
◦

I and so α (x) =: g (x, y). The stopping time
τ̃y (x) of (x̃t; t ≥ 0) is just its killing time when the process is at y for the last

time. Let α̃y (x) := Ẽx (τ̃y (x)) be the expected such time. Then, α̃y (x) solves

−
`

G(α̃y) = 1, whose explicit solution is:

α̃y (x) =
1

g (x, y)

∫ 1

0

g (x, z) g (z, y)dz

= −2

(
1 +

y

1 − y
log y +

1 − x

x
log (1 − x)

)
if x < y

= −2

(
1 +

1 − y

y
log (1 − y) +

x

1 − x
log x

)
if x > y.

The Green function at x0 ∈ (0, 1) of the transformed WF process (x̃t; t ≥ 0) is

g̃y (x, x0) solution to: −
`

G(g̃y) = δx0 (x). It takes the simple form:

g̃y (x, x0) =
1

g (x, y)

∫ 1

0

g (x, z) g (z, y) δx0 (z)dz =
g (x0, y)

g (x, y)
g (x, x0) .

Explicitly,

g̃y (x, x0) = 2
xg (x0, y)

x0g (x, y)
if x < x0

= 2
(1 − x) g (x0, y)

(1 − x0) g (x, y)
if x > x0.
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Depending on the position of y with respect to x and x0, there are six different
expressions of g̃y (x, x0) . For instance, if x = n−1 :

g̃y

(
n−1, x0

)
= 2 if n−1 < x0 < y

= 2
y (1 − x0)

x0 (1 − y)
if n−1 < y < x0

is the Green function of singleton sample-paths at x0, started at x = n−1, for
transformed WF model favoring large sojourn time density at y, x0 ∧ y > n−1. It
is insensitive to y, on the whole x0−range n−1 < x0 < y.

(v) Transformation of WF sample paths with selection: Consider the Wright-

Fisher diffusion with selection: dxt = σxt (1 − xt) dt +
√
xt (1 − xt)dwt, x0 =

x ∈ (0, 1) . For this model, both boundaries are exit. Suppose α solves −G (α) =
1
2σ

2x (1 − x) e−σx, with solution α (x) = e−σx. In this case study, one selects sam-
ple paths of (xt; t ≥ 0) with large heterozygosity weighted by the selection fac-
tor σ2e−σx/4. The dynamics of (x̃t; t ≥ 0) is the drift-less WF dynamics dx̃t =√
x̃t (1 − x̃t)dwt, subject to the quadratic killing at rate 1

2σ
2x (1 − x) inside I. The

boundaries of (x̃t; t ≥ 0) are still exit and the stopping time
`

τ (x) of (x̃t; t ≥ 0) is
`

τ (x) = τ̃ (x) ∧ τ̃∂ (x) where τ̃ (x) is its (known) explosion time at the boundaries
and τ̃∂ (x) its killing time.

3.5. Wright-Fisher diffusion with irreversible (one-way) mutation. We
now consider another interesting occurrence of conditioning. Let u > 0 be some
mutation rate. Consider the Wright-Fisher diffusion with irreversible mutation:
dxt = −uxtdt +

√
xt (1 − xt)dwt, x0 = x ∈ (0, 1) . For this model, ◦ = 0 is an exit

absorbing boundary. The drift term −ux attracts the particle at 0. When u < 1/2,
boundary ◦ = 1 is regular whereas it is an exit boundary when u > 1/2. When
u < 1/2 the drift term is not strong enough to fix definitively the sample paths of
xt when it first hits ◦ = 1.

Assume next that u < 1/2. We want to compute the expected extinction time
of (xt; t ≥ 0) at ◦ = 0 given fixation at ◦ = 1 did not occur in the past. To do
this, we first force its boundary ◦ = 1 to be itself absorbing. Next, for this model
with both boundaries absorbing, we compute the probability α (x) that exit is at
◦ = 0 rather than at ◦ = 1, starting from x. α (x) satisfies G (α) = 0, α (0) = 1,
α (1) = 0, where G = −ux∂x + 1

2x (1 − x) ∂2
x. We find: α (x) = (1 − x)

v
where v :=

1− 2u > 0. We consider the new conditioned diffusion with infinitesimal generator
`

G (·) = α−1G (α·) . The associated diffusion is: dx̃t = −ũ · x̃tdt+
√
x̃t (1 − x̃t)dwt,

x̃0 = x ∈ (0, 1) . The new drift term is linear −ũ · x where ũ := 1 − u > 1/2. This
diffusion is WF model with irreversible mutation conditioned on exit at ◦ = 0. For
(x̃t; t ≥ 0), ◦ = 0 still is an exit absorbing boundary but ◦ = 1 now is an entrance
boundary. Let α̃ (x) be the expected extinction time at ◦ = 0 given fixation at

◦ = 1 did not occur in the past. α̃ (x) solves
`

G(α̃) = −1 and so

α̃ (x) =
1

α (x)

∫ 1

0

g (x, y)α (y) dy
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where g (x, y) is the Green function of WF with irreversible mutation, admitting
both absorbing boundaries. The natural coordinate being ϕ (x) = 1− (1 − x)

v
, we

have

g (x, y) =
2

v

1 − (1 − x)
v

y
if x < y

g (x, y) =
2

v

(1 − x)
v
(1 − (1 − y)

v
)

y (1 − y)
v if x > y.

The final searched result is (Maruyama formula):

α̃ (x) =
2

v

∫ x

0

1 − (1 − y)v

y
dy +

2

v

1 − (1 − x)v

(1 − x)
v

∫ 1

x

(1 − y)v

y
dy.

4. Backward in time: the coalescents

Based on the forward discrete time Galton-Watson process whose offspring is n
and constant at all generations, a coalescent process can be defined (together with
its scaling limit). It is a backward discrete-time Markov process whose state-space
is the set of equivalence classes (partitions) of set [n] := {1, .., n}, identifying two
labels from [n] at each step if they share a common ancestor one generation ago. If
one views the descendant process backward in time, individuals are seen to choose
their parents independently and at random from the individuals in the previous
generation, successive choices being independent from generation to generation. A
scaling limit of the ancestral process can be obtained. Let us first illustrate this
point, starting with Kingman coalescent (see [10]) associated to the pure genetic
drift WF model.

Transition probabilities: Let us start with the discrete case already discussed. Let
νn (m), m = 1, .., n be the offspring number of individual number m, one generation
ahead with exchangeable law, assuming the number n of individuals is conserved
over time. Let b ≥ a ≥ 1 both belonging to [n] . Moving backwards in time, the
probability that b randomly chosen individuals out of n have a distinct parents, c
merging classes and cluster sizes b1 ≥ .. ≥ bc ≥ 2, bc+1 = .. = ba = 1 is

Pb;a,ba
=

{n}a

{n}b

E

(
a∏

m=1

{νn (m)}bm

)

where ba := b1, ..., bc, bc+1, ..., ba, all larger than 1, satisfy
∑a

m=1 bm = b. Here
{n}a := n (n− 1) .. (n− a+ 1) is the falling factorial. When the exchangeable
reproduction law is Cannings’, we simply have

E

(
a∏

m=1

{νn (m)}bm

)
=

{n}b

nb
,

independently of ba (for given a, all arrival states (a,ba) are equally likely). Thus,

Pb;a,ba
=

{n}a

nb
,

is the one-step transition probability from b to (a,ba).
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Let ∇b;a,ba
:= {partitions of [b] into a clusters with sizes ba ≥ 1} with: #∇b;a,ba

=
b!
a!

1∏
a
m=1 bm! . Let also ∇b;a := {partitions of [b] into a clusters} . Then, with Sb,a the

second-kind Stirling numbers,

#∇b;a =
∑

ba

#∇b;a,ba
= Sb,a,

where the summation runs over sequences ba ≥ 1 satisfying
∑a

m=1 bm = b. Let now

Pb;a :=
b!

a!

∑

ba

1∏a
m=1 bm!

Pb;a,ba

be the one-step transition probability from b to a. For the Cannings model, we
obtain:

Pb;a =
{n}a

nb
Sb,a.

This expression allows to compute some quantities of interest.

• First, the coalescence probability for pairs is: cn := P2;1 = n−1.

• Another transition of interest is the one from b to b − 1 (binary collisions): we
have

Pb;b−1 =
{n}b−1

nb
Sb,b−1, with Sb,b−1 =

(
b

2

)
.

Note that, when n is large

Pb;b−1 ∼n↑∞
1

n

(
b

2

)

and Pb;a = o
(
n−1

)
if a 6= b− 1. As a result, Pb;b ∼n↑∞ 1 − Pb;b−1.

• Finally,
P3;1

P2;1
=

1

n
→

n↑∞
0,

and ancestral triple mergers of ancestral lines are asymptotically negligible in com-
parison with binary mergers.

The ancestral Markov chain: Let Pn be a lower-triangular n × n stochastic ma-
trix with entries (Pn)b,a = Pb;a, n ≥ b ≥ a ≥ 1. Let Ar ∈ [n] be the num-

ber of ancestors of [n], r generations ahead, satisfying A0 = n. Let Pr (n) :=
(P (Ar = 1) , ...,P (Ar = n)) be its row vector of probabilities. We have

Pr+1 (n) = Pr (n)Pn, with P0 (n) = (0, ..., 0, 1) and P∞ (n) = (1, ..., 0, 0) .

The pure death Markov chain Ar evolves backwards in time r, starting from proba-
bility state (0, ..., 0, 1) till it reaches state (1, ..., 0, 0) where Ar is reduced to a single
common ancestor for ever.

Kingman limiting coalescent Markov chain (large sample): Recall that Pn =n↑∞

I+cnQn +o (cn) where the n×n matrix Qn is defined by its entries (Qn)b,a = −
(

b
2

)

if a = b, (Qn)b,a =
(

b
2

)
if a = b − 1 and (Qn)b,a = 0 otherwise. Consequently, as
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n ↑ ∞, with s ∈ R+, the re-scaled discrete-time version of the ancestral pro-
cess As := A⌊s/cn⌋ converges weakly to some continuous-time Markov process
(As; s ≥ 0) known as the standard Kingman tree coalescent (see [16] for a review).

Consider a k × k sub-matrix Qk of Q∞, choosing a sub-sample of k leaves out of
Kingman tree with infinitely many of them. With A0 = k, let (As; s ≥ 0) with
values in N be the continuous-time pure death Markov process with sub-diagonal
transition matrix Qk. The process (As; s ≥ 0) models the coalescence ancestral
process of a sub-sample of k leaves, running the descendant process backward in
time. Given the ancestral process is in state b, only pairs of particles will merge at
rate

(
b
2

)
and one at a time. State 1 is absorbing.

With Ps (k) :=
(
Pk (As = 1) , ...,Pk (As = k)

)
, the Markov chain is described by

its Chapman-Kolmogorov equation

d

ds
Ps (k) = Ps (k)Qk, with P0 (k) = (0, ..., 0, 1) and P∞ (k) = (1, 0, ..., 0) .

Initially (s = 0), As = k with probability 1 whereas, at the end of the coalescence
process (s ↑ ∞), As = 1 with probability 1. The continuous-time Markov chain
(As; s ≥ 0) is Kingman coalescent tree. It has state-space {1, .., k} and backward

generator GAψ (b) =
(

b
2

)
(ψ (b− 1) − ψ (b)) for all suitable ψ : [k]→ C.

Let x ∈ [0, 1] and assume ψ (b) = xb. Let φk (s, x) = Ek
(
xAs

)
=
∑k

a=1 x
aPk (As = a)

be the generating function of the ancestral process (As; s ≥ 0), starting from k de-
scendants. From the above Chapman-Kolmogorov formula, its dynamics may also
be written compactly as:

∂sφk (s, x) =
1

2
x (1 − x) ∂2

xφk (s, x) ,

with initial condition φk (0, x) = xk.

This shows that, if (xs; s ≥ 0) and (xs; s ≥ 0) are the Wright-Fisher diffusions de-
fined by equation (3), the duality relations

Ex
(
xk

s∧τ(x)

)
= Ek

(
xAs

)
and Ex

(
xk

s∧τ(x)

)
= Ek

(
xAs

)

hold, relating moments of the Wright-Fisher descendant processes to the generating
function of the ancestral process.

The process (xs; s ≥ 0) started at x describes the evolution of the type of individuals
constituting a large partitioned population: those (first type) descending from the
first ⌊nx⌋ initiators and those (second type) descending from the remaining part.

If we sample k individuals from the population at time s, then Ex
(
xk

s∧τ(x)

)
is the

probability to obtain only type 1 individuals in the k-sample. But this probability
can be computed in a different way: if we know that the k sampled individuals are
descendants of As different ancestors at time s = 0 and if the initial fraction of type
1 individuals is x, then the probability that all As ancestors are of type 1 can be
obtained by averaging over the random genealogy to get Ek

(
xAs

)
. The advantage

is that the structure of the dual process (As; s ≥ 0) is of great simplicity compared
to the one of the original WF diffusion itself. Using symmetry, the same holds true
by replacing x by x and (xs; s ≥ 0) by (xs; s ≥ 0).
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The Wright-Fisher model first hits the state 1 (respectively 0) in finite time with

probability x (respectively 1 − x). Thus, as s ↑ ∞, Ex
(
xk

s∧τ(x)

)
→ 1kx +

0k (1 − x) = x, showing as required that As → 1 with probability 1.

Recalling Ex
(
xk

s∧τ(x)

)
= x +

∑k
l=2 ck,le

λlsul (x), with i ∈ {2, k}: Pk (As = i) =
[
xi
]∑k

l=2 ck,le
λlsul (x) where

[
xi
]
f (x) is the coefficient of xi for the power-series

expansion of f (x). Let τ (k) = inf (s > 0 : As = 1 | A0 = k) be the time to MRCA
of the ancestral process with k initial descendants. We have: Pk (τ (k) > s) =∑k

i=2 Pk (As = i) which expresses as a linear combination of exponentials eλis,
i ∈ {2, k} with rational coefficients. For instance (k = 3), P3 (τ (3) > s) = 3

2e
−s −

1
2e
−3s. This is consistent with the fact that, from the construction of (As; s ≥ 0),

τ (k)
d
=
∑k

l=2El, where (El; l = 2, .., k) are independent random variables each ex-

ponentially distributed with parameter
(

l
2

)
. Kingman’s tree length with k leaves is

L (k)
d
=
∑k

l=2 lEl.

The ancestral selection graph. We now come to the question of looking at the
genealogy of a Wright-Fisher model in the presence of mutations and selection.

Let (σ, u1, u2) be non-negative parameters. Consider now the birth and death
process (As; s ≥ 0) on N satisfying A0 = k and with backward generator:

GAψ (b) =

[(
b

2

)
+ bu2

]
(ψ (b− 1) − ψ (b)) + bσ (ψ (b+ 1) − ψ (b)) − bu1ψ (b)

for all suitable bounded ψ : N → C. For such a process in state b ∈ N, particles
merge at rate

(
b
2

)
+ bu2, split (branch) at rate bσ and overall killing occurs at rate

bu1.

With x ∈ (0, 1), let φk (s, x) = Ek
(
xAs

)
=
∑k

a=1 x
aPk (As = a) be the generat-

ing function of the process (As; s ≥ 0). From the Chapman-Kolmogorov formula
corresponding to GA with tri-diagonal transition matrix, the dynamics of φk (s, x)
reads:

∂sφk (s, x) = [−σx (1 − x) + u2 − (u1 + u2)x] ∂xφk (s, x) +
1

2
x (1 − x) ∂2

xφk (s, x) ,

with initial condition φk (0, x) = xk.

Consider WF model (xs; s ≥ 0) with mutations and selection for which (σ, u1, u2) >
0 and f (x) = σx (1 − x)+u1−(u1 + u2)x and g2 (x) = x (1 − x). Recall (xs; s ≥ 0)
is also a WF model with mutations and selection for which f (x) = −σx (1 − x) +
u2 − (u1 + u2)x and g2 (x) = x (1 − x). From the dynamics of φk (s, x), we have:

Ex
(
xk

s∧τ(x)

)
= Ek

(
xAs

)
,

relating moments of the Wright-Fisher process (xs; s ≥ 0) to the generating function
of (As; s ≥ 0). Process (As; s ≥ 0) represents the ancestral lines of the ancestral
selection graph of a WF model with mutation selection parameters (−σ, u2, u1) (see
[14]). This graph is a generalization of Kingman’s binary tree in the neutral case.
Process (As; s ≥ 0) could be stopped at time τ (k) = inf (s > 0 : As = 1 | A0 = k)
which is the (almost surely finite) time to Ultimate Ancestor of the ancestral process
with k initial descendants.
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Proceeding further in time, as s → ∞, xs∧τ(x)
d
→ x∞ with density: pst (y) =

Cy2u2−1 (1 − y)
2u1−1

e−2σy, which is the normalizable invariant measure of (xs; s ≥ 0),

independent of the initial condition x0 = x. As a result, As
d
→ A∞, with generating

function Ek
(
xA∞

)
=
∫ 1

0 y
kpst (y)dy. From this, we get that, given A0 = k, A∞ is

degenerate. Indeed, A∞ = 0 (the absorbing state) with probability
∫ 1

0
ykpst (y) dy

and A∞ = ∂ (the ‘coffin state’ reached when the chain is killed in finite time) with
complementary probability. Due to selection, splitting (binary branching) occurs at
rate bσ and so the ancestral process is now allowed to increase (by one unit). There
is an overall balance of branching events with merging and killing ones (which tends
to shrink (As; s ≥ 0) by one unit), producing a degenerate equilibrium state with
masses concentrated at 0 and ∂. The explosion time of (As; s ≥ 0) is TA = T0 ∧ T∂

where T0, T∂ are its times till absorption and killing respectively.

Particular cases:

• Assuming u1 = u2 = 0 (no mutation, only selection), as s → ∞, xs∧τ(x)
d
→ x∞

where the law of x∞, although now degenerate, depends on the initial condition

x0 = x: indeed, x∞ = 0 with probability e2σ−e2σx

e2σ−1 , x∞ = 1 with probability e2σx−1
e2σ−1 .

In this case, As
d
→ A∞ with generating function Ek

(
xA∞

)
= e2σx−1

e2σ−1 (the generating
function of a non-degenerate Poisson distribution with parameter 2σ, restricted to

the non-null integers: Pk (A∞ = l) = (2σ)l

(e2σ−1)l! , l ∈ {1, 2, ...}). (As; s ≥ 0) has this

distribution for invariant measure. In the absence of mutations, state 0 cannot be
attained and the law of A∞ has support {1, 2, ...}, independently of A0 = k.

• Assuming σ = 0 (no selection, only mutation), we get a binary tree again, cor-
responding to Kingman coalescent with mutations. The support of A∞ is again
{0, ∂} with

Pk (A∞ = 0) =
Γ (2 (u1 + u2))

Γ (2u1)

Γ (2u1 + k)

Γ (2 (u1 + u2) + k)
,

decreasing with k.

Process (As; s ≥ 0) could be prolonged after T∂ and stopped when it hits 1 for the
first time (time to MRCA with mutation for the k−subsample). The Kingman
coalescent with mutations till MRCA can be seen as follows: let (El; l = 2, .., k)
be independent random variables each exponentially distributed with parameter(

l
2

)
+ lu2. The random variables (El; l = 2, .., k) are the times it takes for Kingman

tree with mutation rate u2 and k leaves to pass from state l to l − 1 as a result of

a coalescence. Kingman’s tree length with k leaves till MRCA is L (k)
d
=
∑k

l=2 lEl.
Mutations occur at rate u1 on the edges of this tree according to a Poisson point
process given its edge lengths. Given L (k), the number M of mutations at rate
u1 is thus Poisson distributed (with mean L (k)) with shifted harmonic average:

E (M) = u1

∑k
l=2

1
u2+(l−1)/2 .

Assume again (σ, u1, u2) > 0. Consider now the logistic birth and death process
(Bs; s ≥ 0) on N satisfying B0 = k and with backward conservative generator:

GBψ (b) =

[(
b

2

)
+ bu2

]
(ψ (b− 1) − ψ (b)) + bσ (ψ (b+ 1) − ψ (b)) .
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This generator is the one of (As; s ≥ 0) except that no killing occurs; the overall

rate of change of (Bs; s ≥ 0) is ρ =
(

b
2

)
+ b (u2 + σ) and the chain’s increment is +1

with probability (bσ) /ρ and −1 with probability
[(

b
2

)
+ bu2

]
/ρ. We have:

Ek
(
xAs

)
= Ek

(
xBse−u1

∫
s

0
Bτ dτ

)
,

killing (Bs; s ≥ 0) at rate u1Bs to recover (As; s ≥ 0) . It can be checked that the
birth and death process (Bs; s ≥ 0) (and a fortiori (As; s ≥ 0)) does not blow up at
∞ in finite time; it hits b = 0 in finite time, almost surely (where it gets absorbed).
Letting TB = inf (s > 0 : Bs = 0), we obtain the Laplace-Stieltjes transform of∫ TB

0
Bτdτ under the form of the k−th moment of x∞:

Ek
(
e−u1

∫ TB
0 Bτ dτ

)
= C

∫ 1

0

y2u2+k−1 (1 − y)
2u1−1

e−2σydy.

The random variable
∫ TB

0 Bτdτ is the area under the profile of (Bs; s ≥ 0) on the

time interval [0, TB], givenB0 = k. Note that Ek
(
e−u1

∫ TB
0 Bτ dτ

)
= Pk (A∞ = 0) =

Pk (T0 < T∂), the probability that (As; s ≥ 0) started at k gets absorbed before it
gets killed.

Ancestral graph for WF with dominance. Let (σ > 0, h ∈ (1/2, 1)) be parameters.
Let h := 1 − h. Consider now the integral-valued process (Cs; s ≥ 0) satisfying
C0 = k and with conservative backward generator GCψ (b) given by:
(
b

2

)
(ψ (b− 1) − ψ (b))+bσh (ψ (b+ 1) − ψ (b))+bσ

(
1 − 2h

)
(ψ (b+ 2) − ψ (b+ 1)) ,

for all suitable bounded ψ : N → C. For such a process in state b ∈ N, particles
merge at rate

(
b
2

)
, split (branch) at rate bσh and overall intput/output occurs

at rate bσ
(
1 − 2h

)
. Let Ps := (P (Cs = 1) , ...,P (Cs = b) , ..) be its row vector of

probabilities. This Markov chain can also be described by its Chapman-Kolmogorov
equation:

d

ds
Ps = PsQ+ Ps (Q+ −Q−) , P0 =

(
0, .., 0, 1

→k←
, 0, ..

)
.

Here Q is a tri-diagonal stochastic (selection) matrix defined by its entries Qb,a =

−
[(

b
2

)
+ bσh

]
if a = b, Qb,a =

(
b
2

)
if a = b − 1, Qb,a = bσh if a = b + 1

and Qb,a = 0 otherwise. Matrix Q+ is an input (creation) matrix satisfying

(Q+)b,a = 0 except for a = b + 2 for which (Q+)b,b+2 = bσ
(
1 − 2h

)
. Matrix Q−

is an output (killing) matrix satisfying (Q−)b,a = 0 except for a = b + 1 for which

(Q−)b,b+1 = bσ
(
1 − 2h

)
. Note that, for each b :

∑
a (Q+Q+ −Q−)b,a = 0 so that

Ps is indeed a conserved probability vector satisfying
∑

b P (Cs = b) = 1 for each s
(as a result of GC (1) = 1). The probability mass adjunction at rate Q+ is balanced
by mass loss at rate Q−. The birth and death process with selection governed by Q
undergoes an additional transition at rate 2bσ

(
1 − 2h

)
. When creating mass (Q+)

with probability 1/2, it passes from state b to b+2 where it is duplicated in starting
afresh independent copies. Conversely, when loosing mass (Q−) with probability
1/2, it passes from state b to b+ 1 where it is killed.
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With x ∈ (0, 1), let φk (s, x) = Ek
(
xCs
)

=
∑k

a=1 x
aPk (Cs = a) be the generat-

ing function of the process (Cs; s ≥ 0). From the Chapman-Kolmogorov formula
corresponding to GC , the dynamics of φk (s, x) reads:

∂sφk (s, x) =
[
−σx (1 − x)

(
h− x

(
2h− 1

))]
∂xφk (s, x) +

1

2
x (1 − x) ∂2

xφk (s, x) ,

with initial condition φk (0, x) = xk.

Consider WF model (xs; s ≥ 0) with under-dominant selection for which we have
(σ > 0, h ∈ (1/2, 1)) , f (x) = σx (1 − x) (h− x (2h− 1)) and g2 (x) = x (1 − x).
Recall (xs; s ≥ 0) is also a WF model with dominance the new drifts are f (x) =

−σx (1 − x)
(
h− x

(
2h− 1

))
and g2 (x) = x (1 − x). From the dynamics of φk (s, x),

we get:

Ex
(
xk

s∧τ(x)

)
= Ek

(
xCs
)
,

relating moments of the Wright-Fisher process (xs; s ≥ 0) to the generating function
of (Cs; s ≥ 0). Process (Cs; s ≥ 0) represents the ancestral lines of the ancestral
selection graph of a WF model with dominance parameters

(
−σ < 0, 0 < h < 1

2

)
.

For this parameter range, as s → ∞, xs∧τ(x)
d
→ x∞ where the law of x∞, is

given by x∞ = 0 with probability
∫

x

0
eσ(1−2h)(y−x∗)2dy

∫
1
0

eσ(1−2h)(y−x∗)2dy
, x∞ = 1 with complementary

probability. In this case, Cs
d
→ C∞ ∈ {1, 2, ..} with absolutely monotone generating

function Ek
(
xC∞

)
=

∫
x

0
eσ(1−2h)(y−x∗)2dy

∫
1
0

eσ(1−2h)(y−x∗)2dy
, x ∈ [0, 1] . The law of C∞ is the invariant

measure for (Cs; s ≥ 0).

5. Concluding Remarks

We have presented a series of elementary stochastic models arising from popula-
tion genetics, with emphasis on the diffusion method. After some generalities on
one-dimensional Markovian diffusions, focus was put on the specific Wright-Fisher
neutral diffusion and some of its variations including various drifts of interest in
genetics, specifically: mutation, selection, with and without dominance. Using sim-
ilar diffusion techniques, we have discussed a general selection of paths procedure
leading, when applied to WF models, to puzzling questions of biological interest.
Some statistical characteristics of the underlying transformed processes were ex-
hibited. WF diffusions describes the forward evolution of some descendant process
which is the scaling limit of some discrete-time branching process with constant
population size. Some aspects of their dual coalescents obtained while running the
diffusion process backward in time have also been investigated. This led us to birth
and death Markov processes supplying statistical insight into the ancestral lineages
of the WF models presenting the drifts under study.
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