
HAL Id: hal-00181684
https://hal.science/hal-00181684

Submitted on 24 Oct 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Constraint Network Based Approach to Memory
Layout Optimization

G. Chen, M. Kandemir, M. Karakoy

To cite this version:
G. Chen, M. Kandemir, M. Karakoy. A Constraint Network Based Approach to Memory Layout
Optimization. DATE’05, Mar 2005, Munich, Germany. pp.1156-1161. �hal-00181684�

https://hal.science/hal-00181684
https://hal.archives-ouvertes.fr

1

A Constraint Network Based Approach to Memory Layout Optimization*

G. Chen and M. Kandemir

Computer Science and Engineering Department
The Pennsylvania State University, University Park

 PA 16802, USA
{guilchen, kandemir}@cse.psu.edu

M. Karakoy

Department of Computing
Imperial College

London, SW7 2AZ, UK
m.karakoy@ic.ac.uk

Abstract

While loop restructuring based code optimization for

array intensive applications has been successful in the

past, it has several problems such as the requirement of

checking dependences (legality issues) and transformation

of all of the array references within the loop body

indiscriminately (while some of the references can benefit

from the transformation, others may not). As a result, data

transformations, i.e., transformations that modify memory

layout of array data instead of loop structure have been

proposed. One of the problems associated with data

transformations is the difficulty of selecting a memory

layout for an array that is acceptable to the entire program

(not just to a single loop). In this paper, we formulate the

problem of determining the memory layouts of arrays as a

constraint network, and explore several methods of

solution in a systematic way. Our experiments provide

strong support in favor of employing constraint

processing, and point out future research directions.

1. Introduction

Data locality of array-based computations has been an

exciting research area for the last decade or so. Most of

the prior proposals to the problem are based on loop

transformations [8][11][10][16], i.e., modifying the order

of loop iterations to make data access pattern more cache

friendly. Loop transformations have several key

advantages that make them appealing to compiler writers

and users alike. First, there is a comprehensive theory

behind them developed over the years [16] and supported

through several commercial implementations. Second,

they are proven to be effective in enhancing both

temporal and spatial locality. Third, and maybe most

importantly, transformation of a loop nest is independent

of transformations of other nests in the same application

 *This work is supported in part by NSF Career Award

#0093082.

code. In other words, its impact is localized to the nest in

question. Consequently, for each loop nest, one can use

the best loop transformation from the data locality

perspective without worrying about the interactions

between neighboring loop nests.

However, recent research has revealed several

drawbacks of loop transformations such as the

requirement of checking dependences (legality issues)

and transformation all of the references within the loop

body indiscriminately (while some of the references can

benefit from the transformation, others may not). As a

result, data transformations [1][6][12], i.e.,

transformations that modify memory layout of array data

instead of loop structure have been proposed. While data

transformations do not have the problems associated with

loop transformations, it has proven to be difficult to

implement robust data transformation frameworks, mainly

because of the fact that a memory layout modification

affects all references to the array in question in all the

loop nests of the application (i.e., localized optimization

is not possible). In other words, its impact is global and

difficult to capture. Therefore, prior efforts mainly

concentrated on heuristic approaches whose results could

not have been validated in formal terms.

In this work, we focus on data transformations from a

different perspective, and treat them within the paradigm

of constraint processing. In more specific terms, we

formulate the problem of determining the memory layouts

of arrays for a given application as a constraint network

[3], and explore several methods of solution in a

systematic way. In doing so, our ultimate goal is two-fold.

First, we want to show that constraint processing provides

an attractive approach to implement a data transformation

framework. Second, using the solutions returned by this

framework, we want to take a fresh look at previously

proposed heuristic solutions to the problem, and check

how they compare to our constraint network based

approach. This paper reports on our experience with this

constraint processing based solution, and presents an

empirical evaluation. Specifically, we designed and

implemented a constraint network specialized for solving

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

2

memory layout problems. Our experiments provide strong

support in favor of employing constraint processing, and

point out future research directions.

The rest of this paper is organized as follows. The next

section discusses our memory layout representation based

on linear algebra. Section 3 describes our constraint

network and gives a formal definition of the problem.

Section 4 discusses backtracking and backjumping based

solutions to the problem. An experimental evaluation of

our approach is presented in Section 5, and we conclude

the paper in Section 6.

2. Hyperplane-Based Memory Layout

Representation

Our memory layout representation is based on linear

algebra and makes use of spatial locality in memory

space. In a k-dimensional space, a hyperplane is defined

as a set of tuples (x1 x2 … xk) that satisfy the equation

x1y1+x2y2+…+xkyk = c, where (y1 y2 … yk) represents

hyperplane coefficients (also called hyperplane vector)

and c is the hyperplane constant. Note that (y1 y2 …yk)

represents a hyperplane family, each member of which

has a different constant (c value) [7]. Two points

represented by column vectors, d1 and d2, are said to

belong to the same hyperplane if:

(y1 y2…yk)•d1 = (y1 y2…yk) •d2,

where • denotes point multiplication.1 As an example, in a

two-dimensional data space, the hyperplane vector (1 0)

indicates that two array elements belong to the same

hyperplane as long as they have the same value for the

row index.

Let us now focus explicitly on a two-dimensional space

(an extension to higher dimensional spaces will be

discussed later). Note that, a hyperplane family can be

used to partially describe the memory layout of an array.

For example, if we do not care about the relative order of

hyperplanes, we can use hyperplane vector (1 0) to denote

1 The point multiplication of two vectors (x1 x2 x3 … xk) and (y1

y2 y3 … yk)
T is x1y1+x2y2+x3y3+… +xkyk.

row-major memory layout in a two-dimensional space.

This is because two array elements d1 = (d11 d12)
T and d2 =

(d21 d22)
T belong to the same row if and only if:

(1 0) • (d11 d12)
T = (1 0) • (d21 d22)

T;

that is, if and only if d11 = d21. In other words, as long as

the two array elements have the same row index, they

belong to the same hyperplane, which corresponds to a

row in a two-dimensional array. Note that, while all the

rows of the array have the same hyperplane vector, their

hyperplane coefficients (c values) are different from each

other (in fact, a hyperplane coefficient in this example

corresponds to the row number). Figure 1(a) depicts such

a row-major layout and shows hyperplanes explicitly.

Figures 1(b) through 1(d), on the other hand, illustrate

different memory layouts and give their hyperplane

vectors. Let us briefly concentrate on the diagonal layout

shown in Figure 1(c). In this layout, the two data elements

d1 = (d11 d12)
T and d2 = (d21 d22)

T are stored in the same

diagonal if and only if (1 -1) • (d11 d12)
T = (1 -1) • (d21

d22)
T, which means d11 - d12 = d21 - d22. For example, (5

3)T and (7 5) T are stored in the same diagonal, whereas

(5 3) T and (5 4) T are on two different diagonals. Note

that, there are other possible diagonal layouts as well. For

example, hyperplane vectors (1 -2) and (2 -1) also

indicate diagonal layouts (which are different from (1 -

1)).

An important point to note here is that, in order to have

good data locality, data access pattern should be along the

same direction with the hyperplane vector. Let us focus

on a row-major memory layout for illustrative purposes

(see Figure 1(a)). In order to have good spatial locality,

two successive loop iterations, denoted by I and In (not

that in a nest with multiple loops I and In are vectors),

should access the array elements d1 and d2 such that (1 0)

• d1 = (1 0) • d2.

In this paper, however, we are interested in determining

the best memory layout for a given data access pattern.

Therefore, our problem is to choose a hyperplane vector

(y1 y2) such that:

(y1 y2) • d1 = (y1 y2) • d2,

assuming that d1 and d2 are the array elements accessed by

I and In. As an example, consider the nested loop shown

in Figure 2. In this nest, we have two references to two

different arrays (Q1 and Q2). Assuming that I = (i1 i2)
T and

In = (i1 i2+1)T are two successive loop iterations that do

not cross loop bounds, for array Q1, we should find a

(1 0)

(a)

(0 1) (1 -1) (1 1)

(b) (c) (d)

Figure 1 Different memory layouts for a two-

dimensional array (data space) and the corresponding

hyperplane vectors.

for (i1=0;i1<N;i1++)

 for(i2=0;i2<N;i2++)

 …Q1[i1+i2][i2]…Q2[i1+i2][i1]…

Figure 2. An example loop nest.

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

3

hyperplane vector (y1 y2) representing its memory layout

such that the following equality should be satisfied:

(y1 y2)•(i1+i2 i2)
T = (y1 y2)•(i1+i2+1 i2+1)T,

which means (y1 y2) = (1 -1), i.e., the diagonal layout.2

Similarly, for array Q2, we need to satisfy:

(y1 y2)•(i1+i2 i1)
T = (y1 y2)•(i1+i2+1 i1)

T,

which gives us (y1 y2) = (0 1), i.e., the column-major

layout.

When the same array is accessed in multiple nests,

however, the problem of determining memory layouts

program-wide becomes a complex problem (e.g., different

loop nests may require different memory layouts). In

Section 3, we discuss our constraint processing based

solution to the problem of memory layout determination.

It is to be noted that, if a loop restructuring is applied to

the nest being optimized, one can have a different data

access pattern from the original one, and this can affect

the memory layout selection as well. For example, if the

two loops shown in Figure 2 are interchanged, the best

memory layouts for arrays Q1 and Q2 would be (0 1) and

(1 -1), respectively.

We now briefly discuss how we handle arrays with

more than two dimensions. In such cases, to define a

memory layout, instead of a hyperplane vector/family, we

use an ordered set of hyperplane vectors/families. For

example, two data elements in a three dimensional array

stored as column-major have spatial locality with respect

to (0 0 1) and (0 1 0); that is, if they have the same

indices except for the first dimension. Therefore, to

represent such a layout, we use a matrix with two rows:

Y1 = (0 0 1) and Y2 = (0 1 0). Then, the two data

elements, d1 and d2, map on the same column if and only

if both of the following equalities are satisfied:

Y1 • d1 = Y1 • d2 and Y2 • d1 = Y2 • d2.

The idea is easily generalized to higher

dimensionalities as well.

3. Constraint Network Formulation

A constraint network (CN) can be described as a triple

CN = <P,M,S>, where P is a finite set of variables, M is a

list of possible values for each variable, and S is a set of

constraints on P [3]. In our context, P = {Q1, Q2, …, Qz}

is the set of arrays manipulated by the application code to

be optimized. M, which represents the domain for

variables, contains the set of memory layouts for each

array (variable). Specifically, for every array Qi where 1

≤ i ≤ z, we have a set Mi = {hi1, hi2, …, hif(i)}, which

2 While one can claim that we could have used (2 -2) or other

similar vectors as well instead of (1 -1), this would increase

the resulting data space size as some elements of the

transformed data space would not be used.

contains the hyperplane vectors that can be assumed by

Qi. Here, f(i) is the number of potential layouts for array

Qi. The set S, on the other hand, contains s constraints.

Each Sij ∈ S contains a set of (hyperplane) pairs that

capture the allowable layouts for arrays Qi and Qj from

the locality viewpoint. Each pair represents the best

layout choice under a given loop restructuring. In the rest

of our discussion, when there is no confusion, we use the

terms “array” and “variable” interchangeably. As an

example, consider the following constraint network that

captures layout information for a program that

manipulates four different arrays (Q1,Q2,Q3,Q4):

CN = <P,M,S>, where

P={Q1,Q2,Q3,Q4}

M={M1,M2,M3,M4}, where

 M1={(1 0), (0 1), (1 1)};

 M2={(1 -1), (1 1)};

 M3={(0 1), (1 1), (1 2)};

 M4={(1 0), (0 1), (1 1)};

S={S12,S13,S14,S23,S24,S34}, where

 S12={[(1 0), (1 1)], [(0 1), (1 -1)]}

 S13={[(1 0), (0 1)], [(0 1), (1 1)], [(1 1), (1 2)]}

 S14={[(1 0), (1 0)], [(0 1), (0 1)]}

 S23={[(1 1), (0 1)], [(1 -1), (1 1)]}

 S24={[(1 0), (0 1)], [(1 1), (1 0)]}

 S34={[(0 1), (1 0)]}.

In this constraint network, M1 indicates that array Q1

can assume three different memory layouts, represented

by hyperplane vectors (1 0), (0 1), and (1 1), which

correspond to row-major, column-major, and anti-

diagonal layouts, respectively. Other domain sets can be

interpreted in a similar fashion. S12 indicates that, as far

as arrays Q1 and Q2 are concerned, there are two

preferable memory layout combinations. The first

combination is that Q1 has layout (1 0) and Q2 has

layout (1 1), whereas the second combination is that Q1

and Q2 have layouts (0 1) and (1 -1), respectively. Note

that this is similar to the situation given in Figure 2. Other

constraints can be interpreted similarly. Note that, based

on the way that it is encoded above, this constraint

network is a binary constraint network [3] as each

constraint is defined on a pair of variables. While a non-

binary formulation is also possible, there are also

techniques that can be used to convert non-binary

formulations to binary ones. However, since it is not the

main focus of this paper, we do not elaborate on this issue

any further.

A solution to a constraint network problem is to select a

pair from each Sij such that all the selected pairs are

consistent with each other, i.e., there is no contradiction

when all the members of S are considered, meaning that

each array has a single memory layout. For our example

above, we obtain a solution by selecting hyperplanes (1

0), (1 1), (0 1), and (1 0) for arrays Q1, Q2, Q3 and Q4,

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

4

respectively. The next section discusses our strategy for

finding solutions for a given constraint network (when a

solution exists).

4. Proposed Solutions

In this section, we first discuss a backtracking based

solution to the problem of memory layout determination.

After that, we discuss how we can shorten the solution

time by enhancing the backtracking based solution with

several heuristics. Before moving into the discussion of

backtracking however, let us make an important

definition: consistent partial instantiation.

In a constraint network, a partial instantiation of a

subset of variables is an assignment to each variable from

its domain. A consistent partial instantiation, on the other

hand, is a partial instantiation that satisfies all the

constraints that involve only the instantiated variables [3].

A backtracking algorithm traverses the state space of

partial instantiations in a depth-first manner. It starts with

an assignment of a variable (e.g., randomly selected) and

then increases the number of partial instantiations. When

it is found that no solution can exist based on the current

partial instantiation, it backtracks to the previous variable

instantiated, and re-instantiates it with a different value

from its domain. Therefore, a backtracking algorithm has

both forward (where we select the next variable and

instantiate it with a value) and backward phases (where

we return to the previously instantiated variable and

assign a new value to it). In the rest of the paper, this

backtracking based scheme is referred to as the base

scheme.

The base scheme makes random decisions at several

points. The first random decision is to select the next

variable (array) to instantiate during the forward phase.

The second random decision occurs when selecting the

value (layout) with which the selected variable is

instantiated (again in the forward phase). In addition, in

the base scheme, when we find out that the current

instantiation cannot generate a solution, we always

backtrack to the previously assigned variable, which may

not necessarily be the best option. One can improve these

three aspects of the base scheme as follows. As for the

first random decision, we replace it with an improved

approach that instantiates, at each step, the variable that

maximally constrains the rest of the search space. The

rationale behind this is to be able to detect a dead-end as

early as possible during the search. Similarly, when

selecting the values to be assigned to the instantiated

variable, instead of selecting a value randomly, we can

select the value that maximizes the number of options

available for future assignments. The rationale behind this

is to increase the chances for finding a solution quickly (if

one exists). Finally, we can expedite our search by

backjumping, i.e., instead of backtracking to the

previously instantiated value, we can backtrack further

when it is beneficial to do so. This can be best explained

using the following scenario. Suppose that, in the

previous step, we selected the layout hid for array Qi, and

in the current step we selected the layout hje for array Qj.

If, at this point, we see that there cannot be any solution

based on these assignments, the base approach returns to

array Qi and assigns a new layout (say hil) to it (assuming

that we tried all alternatives for Qj). However, it must be

noted that, if there is no constraint in the network in

which both Qi and Qj (i.e., their layouts) appear together,

assigning a new value (layout) to Qi would not generate a

solution, as Qi is not the culprit for reaching the dead-end.

Instead, backjumping skips Qi and determines an array

(say Qk) among the arrays that have already been

instantiated that co-appears with Qj in a constraint, and

assigns a new value (layout) to it (i.e., different from its

current value). In this way, backjumping can prevent

Qi QjQk

Instantiated Variables Uninstantiated Variables

Backtracking

Qi QjQk

Instantiated Variables Uninstantiated Variables

Backjumping

(a)

(b)

Figure 3. (a) Backtracking. (b) Backjumping.

Table 1. Benchmark codes.

Benchmark Brief

Description

Domain

Size

Data Size

Med-Im04 medical image

reconstruction

258 825.55KB

MxM triple matrix

multiplication

34 1,173.56KB

Radar radar imaging 422 905.28KB

Shape pattern

recognition and

shape analysis

656 1,284.06KB

Track visual tracking

control

388 744.80KB

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

5

useless assignments and, as a result, expedite our search.

Figure 3 gives an illustration that compares backtracking

and backjumping. In the remainder of the paper, the

solution scheme supported by these three improvements is

referred to as the enhanced scheme. The next section

presents experimental data for both the base and enhanced

schemes. Before going into our experimental analysis

though, we need to make one point clear. If a solution

exists to the problem under consideration, both the base

and enhanced schemes will find it. However, if multiple

solutions exist, they can find different solutions.

5. Empirical Analysis

In this section, we present an experimental analysis of

our constraint processing based approach to the memory

layout determination problem. To conduct such an

analysis, we used five array-based embedded

benchmarks, whose important properties are given in

Table 1. The third column gives the total search space

size (i.e., the sum of the domain sizes of the arrays in the

corresponding application). The last column of this table

gives the total data size manipulated by each application.

We implemented our constraint network using C++.

Excluding the libraries linked and comment lines, the

network code itself is about 1700 C++ lines.

In our experimental evaluation, our focus is on two

metrics: solution time and quality of solution. The first of

these gives the time it takes for determining the memory

layouts of arrays, and the second one gives the execution

time of the resulting optimized code (or percentage

improvement brought by the optimized code over the

original one). To be fair in our evaluation, we also

compare our approach to a previously proposed heuristic

solution to memory layout optimization approach. This

previous approach [9] is linear algebra based and can be

summarized as follows. First, the loop nests in the

program are ordered according to an importance criterion

(e.g., time taken by each nest). After that, the heuristic

approach processes each nest in turn, starting with the

most important one (as determined by the previous step).

For each loop nest being processed, it determines a good

combination of loop transformation and memory layouts

(for the arrays accessed by that nest). It then propagates

these layouts to the second most important nest, and

proceeds the same way as in the first nest except that it

only determines the layouts of the arrays which are not

accessed in the first nest (but accessed in the current one).

In this way, it keeps propagating the memory layouts

across the nests until all the layouts have been

determined. Notice that, since the loop nests are ordered

beforehand, this approach tends to give priority to

satisfying the layout requirements of costly nests.

 Our experiments have been performed using the

SimpleScalar infrastructure [13]. Specifically, we

modeled an embedded processor that can issue and

execute two instructions in parallel. The machine

configuration we use includes separate L1 instruction and

data caches; each is an 8KB, 2-way set-associative with a

line size of 32 bytes, and a unified 64KB L2 cache (4-way

associative with a 64 bytes line size). The L1 and L2

latencies are 1 and 6 cycles respectively; and, the main

memory latency is 70 cycles.

Table 2 gives the solution times for different optimized

versions (in seconds) obtained on a 500MHz Sun Sparc

architecture. The second, third and fourth columns give

the solution times taken by the heuristic, base and

enhanced schemes, respectively. We see that our base

scheme takes much more time compared to the heuristic

method. However, the enhanced scheme reduces these

0%

20%

40%

60%

80%

100%

M
e
d
-I

m
0
4

M
x
M

R
a
d
a
r

S
h

a
p

e

T
ra

c
k

B
e

n
e

fi
t

B
re

a
k
d

o
w

n

Backjumping

Value Selection

Variable Selection

Figure 4. Breakdown of benefits coming from the

enhanced scheme.

Table 2. Solution times taken by different versions.

Benchmark Heuristic Base Enhanced

Med-Im04 7.14sec 97.34sec 12.22sec

MxM 5.18sec 36.62sec 9.24sec

Radar 11.33sec 129.51sec 53.81sec

Shape 16.52sec 197.17sec 82.06sec

Track 10.09sec 155.02sec 68.50sec

Table 3. Execution times achieved by different versions.

Benchmark Original Heuristic Base Enhanced

Med-Im04 204.27sec 128.14sec 82.55sec 81.07sec

MxM 69.31sec 28.33sec 28.33sec 28.33sec

Radar 192.44sec 110.78sec 83.92sec 85.15sec

Shape 233.58sec 140.30sec 106.45sec 106.45sec

Track 231.00sec 127.61sec 97.28sec 95.30sec

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

6

solution times dramatically, making them even

comparable to those of the heuristic solution in two cases.

Overall, we see that the solution times taken by our

approaches are not excessive for an embedded system.

To explain how the enhanced scheme improves the

solution times over the base scheme, we give in Figure 4

the percentage of reductions (in solution times) brought

by each of the three enhancements discussed earlier in

Section 4 (i.e., their individual contributions to the overall

savings achieved by the enhanced scheme). The first

enhancement is to do with the selection of the variable to

instantiate next; the second one is related to the selection

of the value to be assigned to the selected variable; and

the last one is to employ backjumping instead of

backtracking. We see the results from Figure 4 that, while

most of the benefits come from backjumping, all three

enhancements are very useful in general and contribute a

lot to the overall reduction in solution times.

Table 3 gives the execution times for our benchmarks

achieved by the original codes, heuristic approach and our

constraint based approach. We see from these results that,

while the heuristic solution improves over the original

codes significantly (42.49% on average), the savings

brought by the base and enhanced schemes are much

larger: 57.17% and 57.95% on average respectively. The

additional improvements are due to more comprehensive

search space traversal implemented by the constraint

network based approach. We also observe a small

difference between the base and enhanced schemes. This

difference is due to the fact that these two schemes can

find “different solutions” if there are multiple solutions to

the underlying network (as in the case of Med-Im04,

Radar, and Track).

6. Conclusions and Future Directions

Recent years have witnessed, from both embedded

system community and scientific computing community,

a large number of studies targeting at improving data

cache behavior of array based codes. Data

transformations in particular have been found attractive as

they do not have the drawbacks of commonly used loop

transformations. This paper presents a novel constraint

processing based approach to data transformations, where

the problem of memory layout determination is captured

as finding solutions in a constraint network. Our empirical

analysis shows that the proposed approach is very

effective in practice, and further enhancements are

possible to expedite the search in the constraint graph.

We plan to extend this work in two directions. First, we

would like to give weights to constraints. This will help

us distinguish between different solutions to a given

network. Second, we would like to expand our constraint

network formulation to accommodate dynamic memory

layouts, i.e., the layouts that can change during execution

based on the requirements of the different segments of the

program.

7. References

[1] F. Catthoor, K. Danckaert, C. Kulkarni, E. Brockmeyer, P.G.

Kjeldsberg, T. V. Achteren, and T. Omnes. “Data Access and

Storage Management for Embedded Programmable

Processors,” Kluwer Academic Publishers, 2002.

[2] T. M. Chilimbi, M. D. Hill, and J. R. Larus, “Cache

conscious structure layout,” In Proc. Programming Languages

Design and Implementation, May 1999.

[3] R. Dechter. “Constraint Processing”. Morgan Kaufmann,

San Francisco, 2003.

[4] P. Grun, N. Dutt, A. Nicolau, “Memory Architecture

Exploration for Programmable Embedded Systems,” Kluwer

Academic Press, Norwell, MA, 2003.

[5] M. Kandemir and I. Kadayif. “Compiler-directed selection of

dynamic memory layouts”. In Proc. the 9th International

Symposium on Hardware/Software Co-design, April 2001,

Denmark, pp.219-224.

[6] M. Kandemir, J. Ramanujam, and A. Choudhary. “A

compiler algorithm for optimizing locality in loop nests.” In

Proc. the ACM International Conference on Supercomputing,

Vienna, Austria, July 1997.

[7] B. Kolman. “Linear Algebra with Applications”, Prentice

Hall, 1997.

[8] M. Lam, E. Rothberg and M. E. Wolf, “The cache

performance and optimizations of blocked algorithms.” In

Proc. 4th International Conference on Architectural Support

for Programming Languages and Operating Systems, 1991,

pp. 63–74.

[9] S.-T. Leung and J. Zahorjan, “Optimizing data locality by

array restructuring,” Technical Report, Computer Science

Department, University of Washington, Seattle, WA, 1995.

[10] W. Li. Compiling for NUMA Parallel Machines. Ph.D.

Thesis, Computer Science Department, Cornell University,

Ithaca, NY, 1993.

[11] W. Li and K. Pingali, “A singular loop transformation

framework based on nonsingular matrices,” International

Journal of Parallel Programming, April 22(2):183-205, 1994

[12] M. O’Boyle and P. Knijnenburg. “Nonsingular data

transformations: definition, validity, and application” in Proc.

International Conference on Supercomputing, Vienna,

Austria, 1997.

[13] SimpleScalar Simulator. http://www. simplescalar.com

[14] Y. Song, R. Xu, C. Wang, and Z. Li. “Data locality

enhancement by memory reduction.” In Proc. 15th ACM

International Conference on Supercomputing, June, 2001.

[15] D. Wilde and S. Rajopadhye. “Memory reuse analysis in

the polyhedral model.” Parallel Processing Letters, 1997.

[16] M. Wolfe. “High Performance Compilers for Parallel

Computing.” Addison Wesley, CA, 1996.

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

