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Abstract 

While loop restructuring based code  optimization for 

array intensive applications has been successful in the 

past, it has several problems such as the requirement of 

checking dependences (legality issues) and transformation 

of all of the array references within the loop body 

indiscriminately (while some of the references can benefit 

from the transformation, others may not). As a result, data 

transformations, i.e., transformations that modify memory 

layout of array data instead of loop structure have been 

proposed. One of the problems associated with data 

transformations is the difficulty of selecting a memory 

layout for an array that is acceptable to the entire program 

(not just to a single loop). In this paper, we formulate the 

problem of determining the memory layouts of arrays as a 

constraint network, and explore several methods of 

solution in a systematic way. Our experiments provide 

strong support in favor of employing constraint 

processing, and point out future research directions. 

1. Introduction 

Data locality of array-based computations has been an 

exciting research area for the last decade or so. Most of 

the prior proposals to the problem are based on loop 

transformations [8][11][10][16], i.e., modifying the order 

of loop iterations to make data access pattern more cache 

friendly. Loop transformations have several key 

advantages that make them appealing to compiler writers 

and users alike. First, there is a comprehensive theory 

behind them developed over the years [16] and supported 

through several commercial implementations. Second, 

they are proven to be effective in enhancing both 

temporal and spatial locality. Third, and maybe most 

importantly, transformation of a loop nest is independent 

of transformations of other nests in the same application 
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code. In other words, its impact is localized to the nest in 

question. Consequently, for each loop nest, one can use 

the best loop transformation from the data locality 

perspective without worrying about the interactions 

between neighboring loop nests. 

However, recent research has revealed several 

drawbacks of loop transformations such as the 

requirement of checking dependences (legality issues) 

and transformation all of the references within the loop 

body indiscriminately (while some of the references can 

benefit from the transformation, others may not). As a 

result, data transformations [1][6][12], i.e., 

transformations that modify memory layout of array data 

instead of loop structure have been proposed. While data 

transformations do not have the problems associated with 

loop transformations, it has proven to be difficult to 

implement robust data transformation frameworks, mainly 

because of the fact that a memory layout modification 

affects all references to the array in question in all the 

loop nests of the application (i.e., localized optimization 

is not possible). In other words, its impact is global and 

difficult to capture. Therefore, prior efforts mainly 

concentrated on heuristic approaches whose results could 

not have been validated in formal terms.  

In this work, we focus on data transformations from a 

different perspective, and treat them within the paradigm 

of constraint processing. In more specific terms, we 

formulate the problem of determining the memory layouts 

of arrays for a given application as a constraint network 

[3], and explore several methods of solution in a 

systematic way. In doing so, our ultimate goal is two-fold. 

First, we want to show that constraint processing provides 

an attractive approach to implement a data transformation 

framework. Second, using the solutions returned by this 

framework, we want to take a fresh look at previously 

proposed heuristic solutions to the problem, and check 

how they compare to our constraint network based 

approach. This paper reports on our experience with this 

constraint processing based solution, and presents an 

empirical evaluation. Specifically, we designed and 

implemented a constraint network specialized for solving 
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memory layout problems. Our experiments provide strong 

support in favor of employing constraint processing, and 

point out future research directions.  

The rest of this paper is organized as follows. The next 

section discusses our memory layout representation based 

on linear algebra. Section 3 describes our constraint 

network and gives a formal definition of the problem. 

Section 4 discusses backtracking and backjumping based 

solutions to the problem. An experimental evaluation of 

our approach is presented in Section 5, and we conclude 

the paper in Section 6.  

2. Hyperplane-Based Memory Layout 

Representation

Our memory layout representation is based on linear 

algebra and makes use of spatial locality in memory 

space. In a k-dimensional space, a hyperplane is defined 

as a set of tuples (x1 x2 … xk) that satisfy the equation 

x1y1+x2y2+…+xkyk = c, where (y1 y2 … yk) represents 

hyperplane coefficients (also called hyperplane vector) 

and c is the hyperplane constant. Note that (y1 y2 …yk) 

represents a hyperplane family, each member of which 

has a different constant (c value) [7]. Two points 

represented by column vectors, d1 and d2, are said to 

belong to the same hyperplane if: 

(y1 y2…yk)•d1 = (y1 y2…yk) •d2,

where • denotes point multiplication.1 As an example, in a 

two-dimensional data space, the hyperplane vector (1 0) 

indicates that two array elements belong to the same 

hyperplane as long as they have the same value for the 

row index.  

Let us now focus explicitly on a two-dimensional space 

(an extension to higher dimensional spaces will be 

discussed later). Note that, a hyperplane family can be 

used to partially describe the memory layout of an array. 

For example, if we do not care about the relative order of 

hyperplanes, we can use hyperplane vector (1 0) to denote 

                                                                

1 The point multiplication of two vectors (x1 x2 x3 … xk) and (y1

y2 y3 … yk)
T is x1y1+x2y2+x3y3+… +xkyk.

row-major memory layout in a two-dimensional space. 

This is because two array elements d1 = (d11 d12)
T and d2 = 

(d21 d22)
T belong to the same row if and only if:  

(1  0) • (d11  d12)
T = (1  0) • (d21  d22)

T;

that is, if and only if d11 = d21. In other words, as long as 

the two array elements have the same row index, they 

belong to the same hyperplane, which corresponds to a 

row in a two-dimensional array. Note that, while all the 

rows of the array have the same hyperplane vector, their 

hyperplane coefficients (c values) are different from each 

other (in fact, a hyperplane coefficient in this example 

corresponds to the row number). Figure 1(a) depicts such 

a row-major layout and shows hyperplanes explicitly. 

Figures 1(b) through 1(d), on the other hand, illustrate 

different memory layouts and give their hyperplane 

vectors. Let us briefly concentrate on the diagonal layout 

shown in Figure 1(c). In this layout, the two data elements 

d1 = (d11 d12)
T and d2 = (d21 d22)

T are stored in the same 

diagonal if and only if (1  -1) • (d11 d12)
T = (1  -1) • (d21

d22)
T, which means d11 - d12 = d21 - d22. For example, (5  

3)T and (7  5) T are stored in the same diagonal, whereas 

(5  3) T and (5  4) T are on two different diagonals. Note 

that, there are other possible diagonal layouts as well. For 

example, hyperplane vectors (1  -2) and (2   -1) also 

indicate diagonal layouts (which are different from (1   -

1)).

An important point to note here is that, in order to have 

good data locality, data access pattern should be along the 

same direction with the hyperplane vector. Let us focus 

on a row-major memory layout for illustrative purposes 

(see Figure 1(a)). In order to have good spatial locality, 

two successive loop iterations, denoted by I and In (not 

that in a nest with multiple loops I and In are vectors), 

should access the array elements d1 and d2 such that (1 0) 

• d1 =  (1 0) • d2.

In this paper, however, we are interested in determining 

the best memory layout for a given data access pattern. 

Therefore, our problem is to choose a hyperplane vector 

(y1 y2) such that: 

(y1  y2) • d1 = (y1 y2) • d2,

assuming that d1 and d2 are the array elements accessed by 

I and In.  As an example, consider the nested loop shown 

in Figure 2. In this nest, we have two references to two 

different arrays (Q1 and Q2). Assuming that I = (i1 i2)
T and 

In = (i1 i2+1)T are two successive loop iterations that do 

not cross loop bounds, for array Q1, we should find a 

(1  0)

(a)

(0  1) (1  -1) (1  1)

(b) (c) (d)

Figure 1 Different memory layouts for a two-

dimensional array (data space) and the corresponding

hyperplane vectors.

for (i1=0;i1<N;i1++)

   for(i2=0;i2<N;i2++)

       …Q1[i1+i2][i2]…Q2[i1+i2][i1]… 

Figure 2. An example loop nest.  
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hyperplane vector (y1 y2) representing its memory layout 

such that the following equality should be satisfied: 

(y1  y2)•(i1+i2  i2)
T = (y1  y2)•(i1+i2+1  i2+1)T,

which means (y1 y2) = (1  -1), i.e., the diagonal layout.2

Similarly, for array Q2, we need to satisfy:  

(y1 y2)•(i1+i2  i1)
T = (y1  y2)•(i1+i2+1  i1)

T,

which gives us (y1  y2) = (0  1), i.e., the column-major 

layout.  

When the same array is accessed in multiple nests, 

however, the problem of determining memory layouts 

program-wide becomes a complex problem (e.g., different 

loop nests may require different memory layouts). In 

Section 3, we discuss our constraint processing based 

solution to the problem of memory layout determination.  

It is to be noted that, if a loop restructuring is applied to 

the nest being optimized, one can have a different data 

access pattern from the original one, and this can affect 

the memory layout selection as well. For example, if the 

two loops shown in Figure 2 are interchanged, the best 

memory layouts for arrays Q1 and Q2 would be (0  1) and 

(1  -1), respectively.  

We now briefly discuss how we handle arrays with 

more than two dimensions. In such cases, to define a 

memory layout, instead of a hyperplane vector/family, we 

use an ordered set of hyperplane vectors/families. For 

example, two data elements in a three dimensional array 

stored as column-major have spatial locality with respect 

to (0  0  1) and (0  1  0); that is, if they have the same 

indices except for the first dimension. Therefore, to 

represent such a layout, we use a matrix with two rows: 

Y1 = (0  0  1) and Y2 = (0  1  0). Then, the two data 

elements, d1 and d2, map on the same column if and only 

if both of the following equalities are satisfied: 

Y1 • d1 = Y1 • d2     and     Y2 • d1 = Y2 • d2.

The idea is easily generalized to higher 

dimensionalities as well. 

3. Constraint Network Formulation 

A constraint network (CN) can be described as a triple 

CN = <P,M,S>, where P is a finite set of variables, M is a 

list of possible values for each variable, and S is a set of 

constraints on P [3]. In our context, P = {Q1, Q2, …, Qz} 

is the set of arrays manipulated by the application code to 

be optimized. M, which represents the domain for 

variables, contains the set of memory layouts for each 

array (variable). Specifically, for every array Qi where 1 

≤ i ≤ z, we have a set Mi = {hi1, hi2, …, hif(i)}, which 

                                                                

2 While one can claim that we could have used (2   -2) or other 

similar vectors as well instead of (1   -1), this would increase 

the resulting data space size as some elements of the 

transformed data space would not be used. 

contains the hyperplane vectors that can be assumed by 

Qi.  Here, f(i) is the number of potential layouts for array 

Qi. The set S, on the other hand, contains s constraints. 

Each Sij ∈ S contains a set of (hyperplane) pairs that 

capture the allowable layouts for arrays Qi and Qj from 

the locality viewpoint. Each pair represents the best 

layout choice under a given loop restructuring. In the rest 

of our discussion, when there is no confusion, we use the 

terms “array” and “variable” interchangeably. As an 

example, consider the following constraint network that 

captures layout information for a program that 

manipulates four different arrays (Q1,Q2,Q3,Q4):  

CN = <P,M,S>, where 

P={Q1,Q2,Q3,Q4}

M={M1,M2,M3,M4}, where

       M1={(1  0), (0  1), (1  1)};

       M2={(1  -1), (1  1)};

       M3={(0  1), (1  1), (1  2)};

       M4={(1  0), (0  1), (1  1)};

S={S12,S13,S14,S23,S24,S34}, where 

       S12={[(1  0), (1  1)], [(0  1), (1  -1)]} 

       S13={[(1  0), (0  1)], [(0  1), (1  1)], [(1  1), (1  2)]} 

       S14={[(1  0), (1  0)], [(0  1), (0  1)]} 

       S23={[(1  1), (0  1)], [(1  -1), (1  1)]} 

       S24={[(1  0), (0  1)], [(1  1), (1  0)]} 

       S34={[(0  1), (1  0)]}. 

In this constraint network, M1 indicates that array Q1 

can assume three different memory layouts, represented 

by hyperplane vectors (1  0), (0  1), and (1  1), which 

correspond to row-major, column-major, and anti-

diagonal layouts, respectively. Other domain sets can be 

interpreted in a similar fashion. S12 indicates that, as far 

as arrays Q1 and Q2 are concerned, there are two 

preferable memory layout combinations. The first 

combination is that Q1 has layout (1  0) and Q2 has 

layout (1 1), whereas the second combination is that Q1 

and Q2 have layouts (0  1) and (1  -1), respectively. Note 

that this is similar to the situation given in Figure 2. Other 

constraints can be interpreted similarly. Note that, based 

on the way that it is encoded above, this constraint 

network is a binary constraint network [3] as each 

constraint is defined on a pair of variables. While a non-

binary formulation is also possible, there are also 

techniques that can be used to convert non-binary 

formulations to binary ones. However, since it is not the 

main focus of this paper, we do not elaborate on this issue 

any further.  

A solution to a constraint network problem is to select a 

pair from each Sij such that all the selected pairs are 

consistent with each other, i.e., there is no contradiction 

when all the members of S are considered, meaning that 

each array has a single memory layout.  For our example 

above, we obtain a solution by selecting hyperplanes (1  

0), (1  1), (0  1), and (1  0) for arrays Q1, Q2, Q3 and Q4, 
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respectively. The next section discusses our strategy for 

finding solutions for a given constraint network (when a 

solution exists). 

4. Proposed Solutions 

In this section, we first discuss a backtracking based 

solution to the problem of memory layout determination. 

After that, we discuss how we can shorten the solution 

time by enhancing the backtracking based solution with 

several heuristics. Before moving into the discussion of 

backtracking however, let us make an important 

definition: consistent partial instantiation.  

In a constraint network, a partial instantiation of a 

subset of variables is an assignment to each variable from 

its domain. A consistent partial instantiation, on the other 

hand, is a partial instantiation that satisfies all the 

constraints that involve only the instantiated variables [3]. 

A backtracking algorithm traverses the state space of 

partial instantiations in a depth-first manner. It starts with 

an assignment of a variable (e.g., randomly selected) and 

then increases the number of partial instantiations. When 

it is found that no solution can exist based on the current 

partial instantiation, it backtracks to the previous variable 

instantiated, and re-instantiates it with a different value 

from its domain.  Therefore, a backtracking algorithm has 

both forward (where we select the next variable and 

instantiate it with a value) and backward phases (where 

we return to the previously instantiated variable and 

assign a new value to it). In the rest of the paper, this 

backtracking based scheme is referred to as the base 

scheme.  

The base scheme makes random decisions at several 

points. The first random decision is to select the next 

variable (array) to instantiate during the forward phase. 

The second random decision occurs when selecting the 

value (layout) with which the selected variable is 

instantiated (again in the forward phase). In addition, in 

the base scheme, when we find out that the current 

instantiation cannot generate a solution, we always 

backtrack to the previously assigned variable, which may 

not necessarily be the best option. One can improve these 

three aspects of the base scheme as follows. As for the 

first random decision, we replace it with an improved 

approach that instantiates, at each step, the variable that 

maximally constrains the rest of the search space. The 

rationale behind this is to be able to detect a dead-end as 

early as possible during the search. Similarly, when 

selecting the values to be assigned to the instantiated 

variable, instead of selecting a value randomly, we can 

select the value that maximizes the number of options 

available for future assignments. The rationale behind this 

is to increase the chances for finding a solution quickly (if 

one exists). Finally, we can expedite our search by 

backjumping, i.e., instead of backtracking to the 

previously instantiated value, we can backtrack further 

when it is beneficial to do so. This can be best explained 

using the following scenario. Suppose that, in the 

previous step, we selected the layout hid for array Qi, and 

in the current step we selected the layout hje for array Qj. 

If, at this point, we see that there cannot be any solution 

based on these assignments, the base approach returns to 

array Qi and assigns a new layout (say hil) to it (assuming 

that we tried all alternatives for Qj). However, it must be 

noted that, if there is no constraint in the network in 

which both Qi and Qj (i.e., their layouts) appear together, 

assigning a new value (layout) to Qi would not generate a 

solution, as Qi is not the culprit for reaching the dead-end. 

Instead, backjumping skips Qi and determines an array 

(say Qk) among the arrays that have already been 

instantiated that co-appears with Qj in a constraint, and 

assigns a new value (layout) to it (i.e., different from its 

current value).  In this way, backjumping can prevent 

Qi QjQk

Instantiated Variables Uninstantiated Variables

Backtracking

Qi QjQk

Instantiated Variables Uninstantiated Variables

Backjumping

(a)

(b)

Figure 3. (a) Backtracking. (b) Backjumping.

Table 1. Benchmark codes.

Benchmark Brief

Description

Domain

Size 

Data Size 

Med-Im04 medical image 

reconstruction

258 825.55KB

MxM triple matrix 

multiplication 

34 1,173.56KB

Radar radar imaging 422 905.28KB

Shape pattern

recognition and 

shape analysis 

656 1,284.06KB

Track visual tracking 

control

388 744.80KB
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useless assignments and, as a result, expedite our search. 

Figure 3 gives an illustration that compares backtracking 

and backjumping. In the remainder of the paper, the 

solution scheme supported by these three improvements is 

referred to as the enhanced scheme. The next section 

presents experimental data for both the base and enhanced 

schemes. Before going into our experimental analysis 

though, we need to make one point clear. If a solution 

exists to the problem under consideration, both the base 

and enhanced schemes will find it. However, if multiple 

solutions exist, they can find different solutions. 

5. Empirical Analysis 

In this section, we present an experimental analysis of 

our constraint processing based approach to the memory 

layout determination problem. To conduct such an 

analysis, we used five array-based embedded 

benchmarks, whose important properties are given in 

Table 1. The third column gives the total search space 

size (i.e., the sum of the domain sizes of the arrays in the 

corresponding application). The last column of this table 

gives the total data size manipulated by each application.  

We implemented our constraint network using C++. 

Excluding the libraries linked and comment lines, the 

network code itself is about 1700 C++ lines. 

In our experimental evaluation, our focus is on two 

metrics: solution time and quality of solution. The first of 

these gives the time it takes for determining the memory 

layouts of arrays, and the second one gives the execution 

time of the resulting optimized code (or percentage 

improvement brought by the optimized code over the 

original one). To be fair in our evaluation, we also 

compare our approach to a previously proposed heuristic 

solution to memory layout optimization approach. This 

previous approach [9] is linear algebra based and can be 

summarized as follows. First, the loop nests in the 

program are ordered according to an importance criterion 

(e.g., time taken by each nest). After that, the heuristic 

approach processes each nest in turn, starting with the 

most important one (as determined by the previous step). 

For each loop nest being processed, it determines a good 

combination of loop transformation and memory layouts 

(for the arrays accessed by that nest). It then propagates 

these layouts to the second most important nest, and 

proceeds the same way as in the first nest except that it 

only determines the layouts of the arrays which are not 

accessed in the first nest (but accessed in the current one). 

In this way, it keeps propagating the memory layouts 

across the nests until all the layouts have been 

determined. Notice that, since the loop nests are ordered 

beforehand, this approach tends to give priority to 

satisfying the layout requirements of costly nests. 

 Our experiments have been performed using the 

SimpleScalar infrastructure [13].  Specifically, we 

modeled an embedded processor that can issue and 

execute two instructions in parallel. The machine 

configuration we use includes separate L1 instruction and 

data caches; each is an 8KB, 2-way set-associative with a 

line size of 32 bytes, and a unified 64KB L2 cache (4-way 

associative with a 64 bytes line size). The L1 and L2 

latencies are 1 and 6 cycles respectively; and, the main 

memory latency is 70 cycles. 

Table 2 gives the solution times for different optimized 

versions (in seconds) obtained on a 500MHz Sun Sparc 

architecture. The second, third and fourth columns give 

the solution times taken by the heuristic, base and 

enhanced schemes, respectively. We see that our base 

scheme takes much more time compared to the heuristic 

method. However, the enhanced scheme reduces these 
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Figure 4.  Breakdown of benefits coming from the 

enhanced scheme.

Table 2.  Solution times taken by different versions.

Benchmark Heuristic Base Enhanced

Med-Im04 7.14sec 97.34sec 12.22sec

MxM 5.18sec 36.62sec 9.24sec

Radar 11.33sec 129.51sec 53.81sec

Shape 16.52sec 197.17sec 82.06sec

Track 10.09sec 155.02sec 68.50sec

Table 3. Execution times achieved by different versions.

Benchmark Original Heuristic Base Enhanced 

Med-Im04 204.27sec 128.14sec 82.55sec 81.07sec 

MxM 69.31sec 28.33sec 28.33sec 28.33sec 

Radar 192.44sec 110.78sec 83.92sec 85.15sec 

Shape 233.58sec 140.30sec 106.45sec 106.45sec 

Track 231.00sec 127.61sec 97.28sec 95.30sec 
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solution times dramatically, making them even 

comparable to those of the heuristic solution in two cases. 

Overall, we see that the solution times taken by our 

approaches are not excessive for an embedded system. 

To explain how the enhanced scheme improves the 

solution times over the base scheme, we give in Figure 4 

the percentage of reductions (in solution times) brought 

by each of the three enhancements discussed earlier in 

Section 4 (i.e., their individual contributions to the overall 

savings achieved by the enhanced scheme). The first 

enhancement is to do with the selection of the variable to 

instantiate next; the second one is related to the selection 

of the value to be assigned to the selected variable; and 

the last one is to employ backjumping instead of 

backtracking. We see the results from Figure 4 that, while 

most of the benefits come from backjumping, all three 

enhancements are very useful in general and contribute a 

lot to the overall reduction in solution times. 

Table 3 gives the execution times for our benchmarks 

achieved by the original codes, heuristic approach and our 

constraint based approach. We see from these results that, 

while the heuristic solution improves over the original 

codes significantly (42.49% on average), the savings 

brought by the base and enhanced schemes are much 

larger: 57.17% and 57.95% on average respectively. The 

additional improvements are due to more comprehensive 

search space traversal implemented by the constraint 

network based approach.  We also observe a small 

difference between the base and enhanced schemes. This 

difference is due to the fact that these two schemes can 

find “different solutions” if there are multiple solutions to 

the underlying network (as in the case of Med-Im04, 

Radar, and Track). 

6. Conclusions and Future Directions 

Recent years have witnessed, from both embedded 

system community and scientific computing community, 

a large number of studies targeting at improving data 

cache behavior of array based codes. Data 

transformations in particular have been found attractive as 

they do not have the drawbacks of commonly used loop 

transformations. This paper presents a novel constraint 

processing based approach to data transformations, where 

the problem of memory layout determination is captured 

as finding solutions in a constraint network. Our empirical 

analysis shows that the proposed approach is very 

effective in practice, and further enhancements are 

possible to expedite the search in the constraint graph.  

We plan to extend this work in two directions. First, we 

would like to give weights to constraints. This will help 

us distinguish between different solutions to a given 

network. Second, we would like to expand our constraint 

network formulation to accommodate dynamic memory 

layouts, i.e., the layouts that can change during execution 

based on the requirements of the different segments of the 

program.  
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