
HAL Id: hal-00181653
https://hal.science/hal-00181653

Submitted on 24 Oct 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Unified Modeling of Complex Real-Time Control
Systems

He Hai, Zhong Yi-Fang, Cai Chi-Lan

To cite this version:
He Hai, Zhong Yi-Fang, Cai Chi-Lan. Unified Modeling of Complex Real-Time Control Systems.
DATE’05, Mar 2005, Munich, Germany. pp.498-499. �hal-00181653�

https://hal.science/hal-00181653
https://hal.archives-ouvertes.fr

Unified Modeling of Complex Real-Time Control Systems

He Hai, Zhong Yi-fang, Cai Chi-lan

National CAD Support Software Engineering Research Center,

Huazhong University of Science & Technology,Wuhan,China

hehai_2000@yahoo.com.cn

Abstract

Complex real-time control system is a software

dense and algorithms dense system, which needs

modern software engineering techniques to design.

UML is an object-oriented industrial standard

modeling language, used more and more in real-time

domain. This paper first analyses the advantages and

problems of using UML for real-time control systems

design. Then, it proposes an extension of UML-RT to

support time-continuous subsystems modeling. So we

can unify modeling of complex real-time control

systems on UML-RT platform, from requirement

analysis, model design, simulation, until generation

code.

1. Introduction

Object-oriented (OO) modeling languages, tools,

and methods more and more attract the interest of real-

time control system developers. UML is an object-

oriented industrial standard modeling language,

offering many advantages for modeling complex

control systems: (1) UML is a standard language,

which can be easily understood by customers, software

engineers and control engineers. (2) well-known

software engineering principles such as information

hiding and reusing of software components are

supported by the OO paradigm [1]. (3) There are many

commercial UML modeling tools for user to choose.

UML-RT is an extension of UML for real-time domain,

aiming at modeling event-driven real-time systems [2].

But complex real-time control systems contain both

time-discrete and time-continuous blocks and

additional software components. Presently, modeling

these kinds of systems needs use several tools together,

such as UML and Simulink. M. Kühl proposes a

universal object-oriented modeling method, which

translates Simulink into UML, then moves to an UML

based toolsuite for real-time code generation [3]. In

this case, lots of objects and classes may be generated,

and some information may be lost. L. Bichler presents

an interesting method which extends capsules for

containing two kinds of ports (data ports and signal

ports), and associating each state with an arbitrary

number of directed equations [4]. Because UML is a

foundational discrete language, so this method doesn’t

work efficiently. This paper introduces some new

stereotypes and shows how to extend UML-RT service

library framework for supporting time-continuous

dataflow model, so that complex control systems can

unify modeling on a UML-RT platform.

2. UML-RT extensions for control systems

Complex real-time control systems are hybrid

systems of time-discrete and time-continuous, whose

behaviors can be described by difference equations and

differential equations respectively. In UML-RT,

difference equations can be integrated into capsule’s

actions (e.g. transition, entry, exit state). But to

differential equations, this kind of integration is

infeasible, because these equations must be continuous

computed, and UML-RT has a “run-to-complete”

semantic. In this paper, we assign event-driven capsule

and time-continuous dataflow to different threads. This

method separating algorithms from states, making the

architecture of software very sound, is a good design

pattern, shown in Figure 1.

State

+AlgorithmInterface()

Strategy

+AlgorithmInterface()

ConcreteStrategyA

+AlgorithmInterface()

ConcreteStrategyB

+AlgorithmInterface()

ConcreteStrategyC

Capsule

1

*

Streamer

1

*

* *

-state

*

-strategy

*

Figure 1. Class diagram of state and algorithms

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

Table 1. New stereotypes comparing with UML-RT

UML-RT Extension

capsule streamer

port DPort, SPort

connect flow, relay

protocol flow type

state machine, state slover, strategy

Time service Time

This paper introduces eight new stereotypes, listed

in Table 1. Streamers have some same characteristics

as capsules. As such, streamers have ports through

which they communicate with other objects, and they

can contain any number of sub-streamers. Streams are

distinguished from capsules by their behaviors, which

is implemented by a solver through computing

equations. Streamers have two kinds of ports: data

ports (DPorts) and signal ports (SPorts), which

denoted by circle and square respectively. Data ports

carrying dataflow, have some kind of data type (flow

type). To connect two DPorts, the output DPorts’ flow

type must be a subset of the input DPorts flow type.

Relay is used as a relay point which generates two

similar flows from a flow. SPorts convey signal

message, which associated with a protocol. Streamers

can communicate with capsules through SPorts. In a

streamer, there is a solver responsible for receiving

signal from SPorts and data from DPorts and operating

system services, modifying parameters, computing

equations, and sending out the results. Timing in

UML-RT is unpredictable. In this paper, we introduce

a Time stereotype, which is a continuous variable, can

be used as simulation clock. Figure 2 shows the

abstract syntax of streamers.

Top streamer

DPort

Sub streamer

slover
SPort

Sub streamer

Sub streamer

flow
relay

Figure 2. Abstract syntax of streamers

To make modeling intuitionistic, some extensions

are introduced to capsules, making them also have

DPorts and SPorts. But in capsules, DPorts are only

used as relay ports. No data will be processed by

capsules. According to same principle, this paper

assumes capsules can contain streamers, but streamers

don’t contain any capsule. In the model, we can use

any number of streamers, which are assigned to one or

several threads during implementation. The structure

of the extension shows in figure 3.

Sub capsule streamer1

streamer2

Top capsule

Figure 3. Structure of extensions

During implementation, capsules and streamers are

assigned to different threads. Communication between

capsules and streamers is realized by communication

mechanism of threads. Streamer also can use operating

system services to get and send data from devices.

Behavior of capsules is described by state machine,

and behavior of streamers is carried out by solvers

through computing the equations.

3. Conclusions

This paper proposes an extension for UML-RT

services library framework to support time-continuous

dataflow modeling. It assigns event-driven part and

time-continuous part of systems to different threads,

and makes use of operating system communication

mechanism as a channel between capsules and

streamers. As we can see, this method makes the

architecture of complex control system very sound,

and easy to realize on existing UML-RT platforms.

4. References

[1] L. Bichler, A. Radermacher, and A. Schürr. Integrating

Data Flow Equations with UML/Realtime.Real-Time

Systems, n. 26, 2004, pp. 107-125.

[2] B. Selic and J. Rumbaugh, Using UML for Modeling

Complex Real-Time Systems ,ObjecTime Ltd.,

http://www.objectime.com/, March 11,1998.

[3] M. Kühl; C. Reichmann; B. Spitzer; K.D. Müller-

Glaser: Universal Object-Oriented Modeling for Rapid

Prototyping of Embedded Electronic Systems, RSP,

Monterey, USA, 2001.

[4] L. Bichler, A. Radermacher, and A. Schürr. Integrating

Data Flow Equations with UML/Realtime.Real-Time

Systems, n. 26, 2004, pp. 107-125.

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

