
HAL Id: hal-00181558
https://hal.science/hal-00181558

Submitted on 24 Oct 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Context-Aware Scheduling Analysis of Distributed
Systems with Tree-Shaped Task-Dependencies

Rafik Henia, Rolf Ernst

To cite this version:
Rafik Henia, Rolf Ernst. Context-Aware Scheduling Analysis of Distributed Systems with Tree-Shaped
Task-Dependencies. DATE’05, Mar 2005, Munich, Germany. pp.480-485. �hal-00181558�

https://hal.science/hal-00181558
https://hal.archives-ouvertes.fr


Context-Aware Scheduling Analysis of Distributed Systems with Tree-shaped
Task-Dependencies

Rafik Henia, Rolf Ernst
Technical University of Braunschweig

Institute of Computer and Communication Network Engineering (IDA)
D-38106 Braunschweig, Germany
{henia, ernst}@ida.ing.tu-bs.de

Abstract

In this paper we present a new technique which exploits
timing-correlation between tasks for scheduling analysis
in multiprocessor and distributed systems with tree-shaped
task-dependencies. Previously developed techniques also
allow capturing and exploiting timing-correlation in dis-
tributed systems. However, they are only suitable for linear
systems, where tasks cannot trigger more than one succeed-
ing task. The new technique presented in this paper, allows
capturing timing-correlation between tasks in parallel paths
in a more accurate way, enabling its exploitation to calculate
tighter bounds for the worst-case response time analysis for
tasks scheduled under a static priority preemptive scheduler.

1. Introduction

For simplicity, most formal scheduling analysis techniques
ignore correlations between task execution times or commu-
nication timing. This avoids the growing analysis complex-
ity, in particular when it comes to heterogeneous multipro-
cessor systems. However, such correlations can have a large
influence on system timing as has been shown for special
system topologies [6] [4]. This paper extends the analysis to
more general structures.

Observe the system in figure 1. The system consists of
five tasks mapped on three resources. Due to the data-
dependency between the tasks, their activating events are
time-correlated. We call the information about such cor-
relation inter event stream context [1]. However, a typical
scheduling analysis would ignore the available inter event
stream context and would assume that all tasks are indepen-
dent and that in the worst-case they are activated simulta-
neously [7]. This may lead to a greater calculated maxi-
mum number of interrupts of a lower-priority task by higher-
priority tasks, resulting in a longer calculated worst-case re-
sponse time of the lower priority task.

Methods exploiting inter event stream contexts for the
worst-case response time calculation already exist. How-
ever, they are either limited to linear systems and tasks in

Figure 1. Distributed system with timing-
correlation between tasks in parallel paths

single paths [6] [4], e. g. the correlation between T2 and T5

on R2, or enable to capture the complete timing-correlation
between tasks in parallel paths [2] [3], e. g. the correlation
between T3 and T4 on R3, in an accurate way. All this meth-
ods only consider the external events (produces by source)
as references to capture timing-correlation between tasks.

In this paper, we present a new technique to capture the
inter event stream context information for tasks in parallel
paths and exploit it for the worst-case static priority schedul-
ing analysis to calculate tighter response time bounds.

In the following section, we will more deeply review the
existing approaches from literature to exploit inter event
stream contexts for worst-case response time calculation in
distributed systems. In Section 3, we introduce our com-
putational model, then we present some inter event stream
context preliminaries in section 4. In section 5, we show the
limits of existing techniques in exploiting inter event stream
contexts for tasks in parallel paths and introduce the idea of
relative offset and relative jitter. An algorithm for the worst-
case response time calculation considering relative offset and
jitter information is presented in section 6. Experiments are
carried out in section 7. We interpret the experimental re-
sults, before we draw our conclusions.

2. Related Work

Inter event stream contexts capture the timing correlation
between events in a way that can be exploited by schedul-

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05) 
1530-1591/05 $ 20.00 IEEE 



ing analysis. Tindell introduced this idea for tasks scheduled
by a static priority preemptive scheduler [6]. In his paper,
each set of time-correlated tasks is grouped into a so called
transaction. Each transaction is activated by a periodic se-
quence of external events. Each task belonging to a transac-
tion is activated when a relative time, called offset, elapses
after the arrival of the external event. An activation of a task
releases the execution of one instantiation of that task, called
job. However, Tindell’s technique did not allow offsets to be
larger than the transaction period.

Tindell’s work was later generalized by Palencia and Har-
bour [4]. They presented the WCDO (Worst Case Dy-
namic Offsets) algorithm which extends the analysis pre-
sented by Tindell, by allowing the task offsets to be larger
than the transaction period and extending the technique for
distributed systems to dynamic offsets, which vary from one
job to another. In [5], Palencia and Harbour presented a new
analysis technique for tasks with precedence relations in dis-
tributed systems. The presented technique called WCDOPS
(Worst Case Dynamic Offsets with Priority Schemes) ex-
tended the WCDO algorithm by exploiting precedence rela-
tions among tasks during analysis. However, the WCDOPS
algorithms only took into account tasks in linear transac-
tions, where each task is allowed to have at most one suc-
cessor.

In recent works, Redell extended the WCDOPS algorithm
by considering precedence relations between tasks in so
called tree-shaped transactions [2] [3], by allowing tasks to
have more than one successor. However even though the
algorithm he proposed (the WCDOPS+ algorithm) allows
exploiting the inter context information for tasks in parallel
paths, it was based on the inter context capturing technique
presented by Palencia and Harbour, which was developed for
linear systems. Therefore, as we will show, not all available
timing-correlation was exploited.

3. Computational Model

The model that we consider is composed of tasks execut-
ing in a distributed system consisting of computation and
communication resources. Tasks are allowed to have more
than one immediate successor. Each task is assumed to have
exactly one input and is activated due to one activating event.
After finishing its execution, a task produces exactly one
event at each of its outputs. The possible timing of events
is described using event models. Event models are described
using two parameters: the period and the jitter, noted P and
J . These parameters state that each event generally occurs
periodically with a period P , but that it can jitter around its
exact position within a jitter interval J . If the jitter is larger
than the period, then two or more events can occur at the
same time, leading to bursts. Tasks are also assigned priori-
ties. An execution of a lower priority task can be interrupted
by the execution of a higher priority task mapped on the same
resource. The response time R of a task is defined as the dif-
ference between its completion and its activation time.

4. Transactions

In this section, we review preliminaries about capturing
the inter event stream context information and exploiting it
for the worst-case response time calculation, as presented
in [6] and [4]. Each set of time-correlated tasks in the dis-
tributed system is grouped into one transaction. In addition,
each task belonging to a transaction is identified by an off-
set parameter which indicates the earliest activation time af-
ter the arrival of the associated external event activating the
transaction. In the following, we call this offset global offset.

To calculate the worst-case response time of a lower pri-
ority task Tl, we must calculate the maximum contribution
from all the transactions to its busy period. The busy period
of Tl is a time-interval during which the resource is busy pro-
cessing Tl or another task from hp(Tl), where hp(Tl) is the
set of higher or equal priority tasks sharing a same resource
with Tl. The instant that starts the busy period is called crit-
ical instant and is noted tc. In [6] and [4], it was shown that
the maximum contribution of a transaction Γ to the busy pe-
riod is obtained when the critical instant tc coincides with the
activation time of some task Tc ∈ hpΓ(Tl) (hpΓ(Tl) is the
set of tasks belonging to hp(Tl) and Γ) when Tc is delayed
by its maximum jitter. In order to perform an exact analysis,
it is necessary to check all possible critical instants created
by all tasks from hpΓ(Tl) and choose the one that leads to
the worst-case response time of Tl.

Figure 2 shows execution timing of a task Ti which be-
longs to hpΓ(Tl). The downward arrows indicate the ex-
ternal events activating the transaction. The upward arrows
indicate the offset Φi of Ti. Assuming that Ti is activated by
the event model (Pi, Ji), its activation can occur between the
instants t0 + Φi and t0 + Φi + Ji, where t0 is the instant at
which the associated external event arrived.

Figure 2. Transaction with executions of Tl and
jobs of Ti

The maximum contribution of Ti to the worst-case busy-
period of Tl is obtained, as shown in figure 2, when Ti is
activated if possible at, or as soon as possible after tc.

5. Relative Offset And Relative Jitter

5.1 Problem Formulation

Observe the system modeled in figure 1. We assume static
priority scheduling on R2 and R3. The priorities are as-
signed as follows: T2 > T5 and T3 > T4. The core execution
times, i.e. assuming no interrupts, are assumed to be [2,8] for
T1 and [2,2] for all other tasks. T1 is assumed to be activated
periodically by events sent by the source task source. Let the

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05) 
1530-1591/05 $ 20.00 IEEE 



activating event model of T1 be (P1 = 10, J1 = 0). At the
end of each execution, T1 produces exactly one event at each
of its outputs. Due to the data-dependency between T1, T2,
T3, T4 and T5, we group all tasks in one transaction. With-
out loss of generality, we assume that T1 has a global offset
Φ1 = 0. In the following, we will focus on the worst-case
response time of task T4.

Table 1 shows the input event models and offsets of T3 and
T4 after having analyzed the resources R1 and R2. Note that
the jitter is due to the response time variation of T1.

task input event model offset

T3 (P3 = 10, J3 = 6) Φ3 = 4
T4 (P4 = 10, J4 = 6) Φ4 = 2

Table 1. Offsets and input event models of T3

and T4

The worst-case response time of the lower priority task T4

calculated by the WCDO [4] and WCDOPS+ [2] [3] algo-
rithms is Rw

4 = 4. This worst case response time, as shown
in the gantt-chart in figure 3, is obtained when T4 starts the
critical instant, i.e. that T4 is activated after having arrived
as late as possible. The maximum contribution of T3 is ob-
tained by delaying its activation by 4 time units which causes
it to coincide with the critical instant. Therefore, one inter-
rupt of T4 by T3 is calculated.

Figure 3. worst-case response time calcula-
tion of T4 using WCDO and WCDOPS+

Now, let us take a closer look on our system. Since T1

produces one event at each output after each execution, T2

and T4 are always activated simultaneously. As both tasks
share different resources, there is no conflict between their
execution requests. Therefore, since T3 is activated after T2

finishes its execution (which takes 2 time units), an activation
of T3 always occurs 2 time units after an activation of T4. As
no former activation of T3 can be delayed by an amount of
jitter that cause it to delay or interrupt the execution of T4,
the true worst-case response time of T4 is Rw

4 = 2.
The pessimistic worst-case response time calculation of

the WCDO and WCDOPS+ is due to the fact that these al-
gorithms only consider the external events (here events pro-
duced by source) as references to capture timing correla-
tions between tasks in the system. I.e. they ignore that, other
references in the system could lead to an exacter calcula-
tion. In the example above, since events at both outputs of
T1 are produced simultaneously, it would be more accurate
to consider the completion time of T1 as a reference to cap-

ture the timing correlation between the tasks in the parallel
paths starting at T1.

5.2 Relative Offset and Relative Jitter Concept
To capture the timing correlation between tasks in parallel

paths, we introduce the concept of relative offset and relative
jitter.

Definition 1 (relative offset). A task Ti is said to be acti-
vated after an offset Φi(Tr) relative to a reference task Tr,
if Ti is activated at the earliest when a relative time Φi(Tr)
elapses after the completion time of Tr. Φi(Tr) is called
offset of Ti relative to Tr.

Definition 2 (relative jitter). The activation of a task Ti

relative to the completion time of a reference task Tr can
vary within a jitter interval of length Ji(Tr). Ji(Tr) is called
jitter of Ti relative to Tr.

The offset and jitter information of a task Ti relative to
task Tr shall be denoted: (Tr, Φi(r), Ji(r)).

The relative offset and relative jitter calculation extends
the global offset and jitter calculation by allowing any ref-
erence task not just external sources. I.e. the relative offset
corresponds to the minimum path latency starting from the
reference task and the relative jitter corresponds to the differ-
ence between the maximum and the minimum path latency
starting from the reference task.

In the example in figure 1, since T2 and T4 are activated
immediately after the execution completion of T1, the offset
and jitter information of T2 and T4 relative to T1 is: (T1, 0,
0). Since T3 is activated immediately after T2 finishes its
execution, which takes 2 time units in both best- and worst-
case, the offset and jitter information of T3 relative to T1 is:
(T1, 2, 0).

Depending on the system topology a task may have an off-
set and jitter relative to several reference tasks. This is shown
in figure 4 which represents an extension of the system in fig-
ure 1. T5, T6 and T8 have an offset and jitter relative to T1

and T3 while T7, T9 and T10 have an offset and jitter relative
to T1 and T4.

Figure 4. System showing tasks having offset
and jitter relative to several references

6. Worst Case Response Time Analysis
In this section, we derive the worst-case response time cal-

culation for a lower priority task Tl considering the relative

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05) 
1530-1591/05 $ 20.00 IEEE 



offset and jitter information for higher or equal priority tasks
belonging to the same transaction Γ.

The worst-case scenario for the task under analysis is ob-
tained by constructing a critical instant tc that leads to the
worst-case busy period. Let us assume that tc is started by
some task Tc ∈ hpΓ(Tl). Without loss of generality, we set
the origin of time at tc. We will first show the maximum con-
tribution of tasks belonging to hpΓ(Tl) to the busy-period,
by considering global offsets only. Then we will addition-
ally consider the relative offset and jitter.

We assign indexes to each external event, e, activating the
transaction Γ as shown in figure 2. The first external event
that occurs before or at tc is denoted e0. Previous exter-
nal events are assigned negative indexes. Following external
events are assigned positive indexes. For each task Ti be-
longing to hpΓ(Tl), each job is assigned the index of the
associated external event. A job of Ti with an index k is
denoted Ti,k. The activation instant of Ti,k is denoted ti,k.

The earliest job of Ti that can be delayed enough to be
activated at the critical instant is denoted ni. In Figure 2,
ni is −2. In [6] and [4], it was proven that the maximum
contribution of a job Ti,k, with k ≥ ni, to the busy period
is obtained by delaying its activation by a certain amount of
jitter to coincide with tc, or to activate it without any delay if
its earliest activation time occurs after tc: e.g. in figure 2, the
maximum contribution of Ti to the busy period is obtained
by activating Ti,−1 and Ti,−2 at tc and all the following jobs
without any delay. Note that jobs with an index smaller than
ni are not considered since they cannot be delayed enough
to be activated at tc.

So far, to calculate the maximum contribution of a job Ti,k

to the worst-case busy period, we determined its activation
instant depending on its global offset and jitter only. How-
ever, if a relative offset and jitter information is available,
an other dependency could exist between Ti,k and jobs trig-
gered by the associated external event ek, i.e. jobs having the
same index k, and belonging to other tasks from hpΓ(Tl).
Recall the example in section 5.1. By exploiting the avail-
able offset and jitter information relative to T1, we found out
that an activation of T4 precedes the activation of T3 trig-
gered by the same associated external event, by 2 time units.
I.e. although each job can be delayed to coincide with tc, it
is impossible to activate them simultaneously at tc.

Let Tj be a task which also belongs to hpΓ(Tl). We as-
sume that both Ti and Tj have an offset and jitter informa-
tion relative to a reference task Tr. Let (Tr, Φi(Tr), Ji(Tr))
be this information for Ti and (Tr, Φj(Tr), Jj(Tr)) for Tj .
Consider the jobs Ti,k and Tj,k, with k ≥ ni, k ≥ nj and
k ≤ 0. Without loss of generality, let us assume that due
to the available relative offset and jitter information, the ac-
tivation of Ti,k always precedes the activation of Tj,k. If
we assume a maximum contribution of Ti,k to the busy pe-
riod by activating it at tc, Tj,k will be activated after tc, and
thus its activation may occur outside the busy period. On the
other hand, if we assume a maximum contribution of Tj,k to

the busy period by activating it at tc, Ti,k must be activated
before tc and thus, is not considered for the busy period. Fig-
ure 5 shows both activation scenarios for Ti,k and Tj,k. In
general, when considering the available relative offset and
jitter information, and in order to obtain the maximum con-
tribution to the busy period of jobs belonging to different
tasks and having the same index, we have to consider all ac-
tivation scenarios. In each scenario, a maximum contribution
to the busy period is assumed for one job by activating it at
tc. Depending on the activation instant of this job and all
available relative offset and jitter information, activation in-
stants for the other jobs are calculated. Note that this is very
similar to the global offset exploitation concept, where it is
necessary to check all possible critical instant construction
scenarios and choose the one that leads to the worst-case re-
sponse time [4]. In the following, the activation scenario of
jobs triggered by the external event ek is denoted Ak. When
a maximum contribution to the busy period is assumed for a
job with index k, we say that this job determines the activa-
tion scenario Ak.

Figure 5. Activation scenarios for Ti,k and Tj,k

In section 5, we stated that each task may have an offset
and jitter relative to several reference tasks. When construct-
ing an activation scenario, we choose a reference task which
is common to all tasks on the same resource and having rel-
ative offset and jitter information. If there are several com-
mon reference tasks, we choose the most “recent” task as
reference. In the example in figure 4, assuming that we are
constructing an activation scenario for T9 and T10 only, we
choose the task T4 as reference task among the set of com-
mon reference tasks T1, T4. When constructing an activation
scenario for T9, T10 and T11, the only common reference
task is T1.

After having constructed all activation scenarios for jobs
having the same index, we still need to combine them with
activation scenarios for jobs having other indexes. Assume
that k−1 ≥ ni and k−1 ≥ nj , i.e. the activations of Ti,k−1

and Tj,k−1 can also be delayed to coincide with tc. Figure 6
shows the activation scenarios Ak−1 and Ak involving jobs
of Ti and Tj , assuming a higher priority for Ti. Note that
since an activation of a job cannot precede the activation of

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05) 
1530-1591/05 $ 20.00 IEEE 



an anterior job belonging to the same task, Ti,k−1 and Tj,k

cannot respectively determine the activation scenarios Ak−1

and Ak at the same time. In general, if a job of some task
Ts determines an activation scenario, all activation scenar-
ios having higher indexes can only be determined by jobs
either belonging to Ts or belonging to tasks that precede Ts.
This allows a reduction of the number of activation scenar-
ios combinations we need to check. Note that the process
of combining activation scenarios is also very similar to the
process of combining critical instant candidates belonging to
different transactions, when exploiting global offsets [4].

Figure 6. Activation scenarios Ak−1 and Ak in-
volving jobs of Ti and Tj

In the following, we drop the assumption that an activa-
tion of Ti always precedes the activation of Tj . Let us now
assume that Ti,k determines the activation scenario Ak by
activating Ti,k at the instant ti,k = tc. Let δi,k be the de-
lay needed by the activation of Ti,k to occur at tc (see δi,k

in figure 5). The earliest occurrence of tj,k, tmin
j,k , can be

expressed by the following equation:

tmin
j,k = tc + Φj(Tr) − Φi(Tr) − min(δi,k, Ji(Tr)) (1)

Proof. Let us first calculate the earliest completion time of
Tr,k as a function of ti,k. The activation of Ti,k occurs af-
ter an offset Φi(Tr) after the completion time of Tr,k and
can experience a maximum delay of Ji(Tr). On the other
hand, this delay cannot exceed δi,k. Therefore, the max-
imum delay experienced by Ti,k, relative to Tr,k, corre-
sponds to min(δi,k, Ji(Tr)). The earliest completion time
of Tr,k occurs consequently at the instant ti,k − Φi(Tr) −
min(δi,k, Ji(Tr)). Now we can calculate the earliest oc-
currence of tj,k as a function of ti,k. Tj,k is activated at
the earliest after an offset Φj(Tr) after the completion time
of Tr,k. Therefore, the earliest activation instant of Tj,k is
ti,k +Φj(Tr)−Φi(Tr)−min(δi,k, Ji(Tr)). Since ti,k = tc,
equation 1 holds.

The latest occurrence of tj,k, tmax
j,k , can be expressed by

the following equation:

tmax
j,k = tc + Φj(Tr) − Φi(Tr) + Jj(Tr)

−max(0, δi,k + Ji(Tr) − Ji) (2)

Proof. Let us first calculate the latest completion time of
Tr,k as a function of ti,k. The activation of Ti,k occurs at
the earliest after an offset Φi(r) after the completion time
of Tr,k, i.e. without experiencing any delay. The delay δi,k

is thus, assumed to be generated only due execution time
variations of Tr,k and jobs of tasks preceding Tr and hav-
ing the index k. However, since this delay can not exceed
Ji − Ji(Tr), the minimum delay experienced by Ti,k rel-
ative to Tr,k corresponds to max(0, δi,k + Ji(Tr) − Ji).
Therefore, the latest completion time of Tr,k occurs at the
instant ti,k − Φi(Tr) − max(0, δi,k + Ji(Tr) − Ji). Now
we can calculate the latest occurrence of tj,k as a func-
tion of ti,k. Tj,k is activated at the latest after an offset
Φj(Tr) and a maximum delay Ji(Tr) after the completion
time of Tr,k. Therefore, the latest activation instant of tj,k is
ti,k+Φj(Tr)−Φi(Tr)+Jj(Tr)−max(0, δi,k+Ji(Tr)−Ji).
Since ti,k = tc, equation 2 holds.

Now we can calculate the instant tj,k which leads to a
maximum contribution of Tj,k to the busy period, under the
assumption that Ti,k determines Ak. Since the activation
of Tj,k cannot precede the activation of Tj,k−1, the maxi-
mum contribution of Tj,k to the busy period is obtained when
tj,k = max(tc, tj,k−1). In addition, tj,k belongs to the inter-
val [tmin

j,k , tmax
j,k ]. Therefore, we have to distinguish following

cases:

• max(tc, tj,k−1) < tmin
j,k : in this case, the maximum

contribution of Tj,k to the busy period is obtained
when it is activated as soon as possible after the instant
max(tc, tj,k−1). I.e. tj,k = tmin

j,k . In the example in
section 5.1, the maximum contribution of T3,0 to the
busy period is obtained when t3,0 = tc = 0. However,
since tmin

3,0 = 2 under the condition that T4,0 determines
the activation scenario A0, t3,0 = tmin

3,0 = 2.

• max(tc, tj,k−1) > tmax
j,k : We know that tmax

j,k is greater
or equal tj,k−1. Consequently, max(tc, tj,k−1) = tc.
Therefore, the instant tj,k occurs before tc. I.e. Tj,k

does not contribute to the busy period. In the example
in section 5.1, the maximum contribution of T4,0 to the
busy period is obtained when t4,0 = tc = 0. However,
since tmax

4,0 = −2 under the condition that T3,0 deter-
mines the activation scenario A0, t4,0 occurs before tc.

• max(tc, tj,k−1) ∈ [tmin
j,k , tmax

j,k ]: in this case, the maxi-
mum contribution of Tj,k to the busy period is obtained
when tj,k = max(tc, tj,k−1).

Now after having considered jobs with indexes lower or
equal 0, we will calculate the activation instants of jobs with

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05) 
1530-1591/05 $ 20.00 IEEE 



indexes greater than 0. In the following, we show that the
activation of Tj,1 cannot be delayed by the activation of pre-
vious jobs and thus, the maximum contribution to the busy
period of jobs with indexes greater than 0 is obtained when
they are activated, as before, without experiencing any delay.

The activation of Tj,1 cannot occur before the instant tc +
Φj . I.e. tmin

j,1 ≥ tc + Φj . On the other hand, as stated above,
depending on the relative offset and jitter information, tj,k,
with nj ≤ k ≤ 0, occurs either before tc, at tc, at tj,k−1 or
at tmin

j,k . We show that tj,k ≤ tc + Φj :

• tj,k ≤ tc: it is obvious that tj,k ≤ tc + Φj

• tj,k = tmin
j,k : using equation 1, we can state that tmin

j,k ≤
tc + Φj(Tr). Therefore, since Φj ≥ Φj(Tr), tmin

j,k ≤
tc + Φj .

• tj,k = tj,k−1: since tj,k−1 also occurs either before tc,
at tc, at tj,k−2 or at tmin

j,k−1, we can replace k − 1 by k
and repeat the same process described above.

Since no job having an index lower or equal 0 can delay
the activation of Tj,1, jobs with indexes greater than 0 can be
considered activated as before, without any delay. Therefore,
there is no need to exploit the potential relative offset and
jitter information for these jobs.

As explained above, to exploit relative offset and jitter for
the worst-case response time calculation we need to consider
all combinations of activation scenarios with indexes lower
or equal 0. Since for each task, the number of jobs that can be
delayed to coincide with tc is bounded, the relative offset and
jitter exploitation only adds a polynomial number of cases to
check to the global offset exploitation algorithm WCDO.

7. Experiments

We have performed a large number of experiments us-
ing randomly generated systems with tree-shaped task-
dependencies. Tasks mapping, event models, core execu-
tion times and priorities were also assigned randomly. We
have compared the results obtained using our technique con-
sidering relative offset an jitter with the results obtained by
the inter event stream context blind analysis (i.e. without
considering timing-correlation between tasks), WCDO, and
WCDOPS+.

Figure 7 shows the response time average ra-
tios Rblind/Rrelative, RWCDO/Rrelative and
RWCDOPS+/Rrelative as function of the system uti-
lization. The results show that a large improvement can be
obtained due to the relative offset and jitter exploitation: up
to 66% compared to the inter event stream context blind
analysis, up to 57% compared to the WCDO and up to
41% compared to WCDOPS+. It is also interesting to
note that in general, a larger improvement is obtained for
large system utilization. This is due to the fact that a large
system utilization leads to higher calculated worst-case
response times. This in turn leads to larger task global jitters
on which, the response times themselves depend. When

Figure 7. Response time average ratios as a
function of utilization

considering relative jitters, the effect of global jitters on
response times calculation can be reduced and thus, lower
response-times are calculated.

8. Conclusion
In this paper we presented a new technique to capture

timing-correlation between tasks in distributed systems with
tree-shaped task-dependencies. We have seen that consid-
ering the external system events activating tasks as unique
timing reference does not allow to capture the complete ex-
isting timing-correlation between tasks in parallel paths. Our
solution consists in considering tasks with several successors
as additional timing-references. We also developed an algo-
rithm to exploit this approach for the worst-case response
time analysis under a static priority scheduler. Through our
experiments, we showed that our technique allows to cal-
culate considerably tighter bounds compared to other tech-
niques. We consider that our approach is an important ex-
tension of the collection of analysis techniques exploiting
timing-correlation between tasks in distributed systems.

References

[1] M. Jersak, R. Henia, and R. Ernst. Context-aware performance
analysis for efficient embedded system design. In Proc. of De-
sign, Automation and Test in Europe (DATE’04), Paris, France,
Mar. 2004.

[2] O.Redell. Accounting for precedence constraints in the analy-
sis fo fixed priority scheduled tasks. Technical Report 2003:4,
TRITA-MMK, 2003.

[3] O.Redell. Analysis of tree-shaped transactions in distributed
real time systems. In Proc. of 16th Euromicro Conference on
Real-Time Systems, Catania, Italy, June 2004.

[4] J. C. Palencia and M. G. Harbour. Schedulablilty analysis for
tasks with static and dynamic offsets. In Proc. 19th IEEE Real-
Time Systems Symposium (RTSS98), 1998.

[5] J. C. Palencia and M. G. Harbour. Exploiting precedence re-
lations in the schedulablilty analysis of distributed real-time
systems. In Proc. 20th Real-Time Systems Symposium, 1999.

[6] K. W. Tindell. Adding time-offsets to schedulability analysis.
Technical Report YCS 221, Univ. of York, 1994.

[7] K. W. Tindell. An extendible approach for analysing fixed pri-
ority hard real-time systems. Journal of Real-Time Systems,
6(2):133–152, Mar 1994.

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05) 
1530-1591/05 $ 20.00 IEEE 


