
HAL Id: hal-00181550
https://hal.science/hal-00181550

Submitted on 24 Oct 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Bound Set Selection and Circuit Re-Synthesis for
Area/Delay Driven Decomposition

Andres Martinelli, Elena Dubrova

To cite this version:
Andres Martinelli, Elena Dubrova. Bound Set Selection and Circuit Re-Synthesis for Area/Delay
Driven Decomposition. DATE’05, Mar 2005, Munich, Germany. pp.430-431. �hal-00181550�

https://hal.science/hal-00181550
https://hal.archives-ouvertes.fr

Bound Set Selection and Circuit Re-Synthesis for Area/Delay Driven
Decomposition

Andrés Martinelli Elena Dubrova
Royal Institute of Technology, IMIT/KTH, 164 46 Kista, Sweden

[andres,elena]@imit.kth.se

Abstract

This paper addresses two problems related to disjoint-
support decomposition of Boolean functions. First, we
present a heuristic for finding a subset of variables,
X , which results in the disjoint-support decomposi-
tion f(X, Y) = h(g(X), Y) with a good area/delay
trade-off. Second, we present a technique for re-synthesis of
the original circuit implementing f(X, Y) into a circuit im-
plementing the decomposed representation h(g(X), Y).
Preliminary experimental results indicate that the pro-
posed approach has a significant potential.

1. Introduction

Disjoint-support decomposition of a Boolean
function f : {0, 1}n → {0, 1} is a representa-
tion of the form f(X, Y) = h(g(X), Y) where
X ∩ Y = Ø, g : {0, 1}|X| → {0, 1, ..., k − 1}
and h : {0, 1, ..., k − 1} × {0, 1}|Y | → {0, 1}.
The k-valued function g can be encoded as
f(X, Y) = h(g1(X), g2(X), . . . , g�log

2
k�(X), Y) giv-

ing a decomposition with all functions being Boolean.
Every set of variables X for which such a decompo-
sition exists is called a bound set for f . This paper
addresses two problems related to disjoint-support de-
composition. First, we present a heuristic for finding
a bound set which results in a disjoint-support achiev-
ing a good area/delay trade-off. Choosing a suitable bound
set is important because disjoint-support decomposi-
tion does not necessarily simplify the function.

Second, we present a technique for transforming the
original circuit implementing f(X, Y) into a circuit imple-
menting the decomposed representation h(g(X), Y). Previ-
ous algorithms computed circuits for the decomposed repre-
sentation from Binary Decision Diagrams (BDDs) of g and
h, by applying various BDD-to-circuit transformation tech-
niques. The algorithm presented in this paper uses BDDs

only for analysis of the decomposition. The actual synthe-
sis of the circuits for g and h is done by restricting the orig-
inal circuit with respect to a given assignment of input vari-
ables. This guarantees that the sizes of the circuits of g and
h are strictly smaller than the size of the original circuit.

2. Bound Set Selection

To find a suitable bound set X for f , we examine all
linear intervals of variables of the BDD representing f . To
check whether a given linear interval is a bound set, we use
INTERVALCUT algorithm [1]. INTERVALCUT is very fast,
because it does not require expensive BDD re-ordering.

If a bound set X with the column multiplicity k < |X |
is found, it is stored together with the following three pa-
rameters characterizing the associated decomposition
f(X, Y) = h(g(X), Y):

1. the number of outputs having X as a bound set: s(X);

2. the number of outputs of g: c(X) = �log2 k�;

3. the difference in sizes of the bound set X and the free
set Y : d(X) = ||X | − |Y ||, d(X) ∈ {0, 1, . . . , n− 1}.

Let X be the set of bound sets computed by
INTERVALCUT. The best candidate is selected from
X as follows. First, a subset Xs of X containing all
bound sets with the maximum s(X) is chosen. Maxi-
mizing of s(X) increases the sharing of common logic
among different outputs of the circuit. Next, a sub-
set Xc of Xs containing all bound sets with the mini-
mum c(X) is selected. Minimizing of c(X) promotes the
selection of bound sets with the smallest column multi-
plicity (more precisely, smallest log2 k). Finally, a subset
Xd of Xc containing largest bound sets with the min-
imum d(X) is obtained. Minimizing of d(X) allows
balancing the partitioning of logic between the func-
tions g and h.

Any element of Xd is considered to be a ”best” bound set
for f , i.e. the one which produces a decomposition with the
best area/delay trade-off. The original circuit implementing

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

f is transformed into the circuit implementing h(g(X), Y)
by applying the algorithm described in the next section.

3. Transformation Algorithm

Let X be a bound set for f and let Gg and Gh be
BDDs representing the functions g and h in the decompo-
sition f(X, Y) = h(g(X), Y). These BDDs are computed
by INTERVALCUT.

3.1. Constructing the circuit for h

Suppose A is an assignment of variables of X leading
to the 0-terminal node in Gg . Then g(A) = 0, and thus
f(A, Y) = h(g(A), Y) = h(0, Y). Therefore, a circuit im-
plementing the co-factor h(0, Y) can be obtained from the
circuit implementing f by applying the assignment A to the
inputs X and propagating the constants through the circuit
using the usual reduction rules. Similarly, circuits imple-
menting co-factors h(i, Y), i ∈ {1, 2, . . . , k−1}, can be ob-
tained by propagating an assignment of variables of X lead-
ing to the i-terminal node of Gg . Recall, that g is a function
of type g : {0, 1}|X| → {0, 1, ..., k − 1}, so Gg is a multi-
terminal BDD with k terminal nodes.

To maximize the sharing of common logic of the i cir-
cuits implementing co-factors h(i, Y), i ∈ {0, 1, . . . , k−1},
i assignments A are chosen so that they differ in the fewest
number of bit positions.

The function h(g(X), Y) is obtained by combining the
co-factors in a Shannon expansion as follows:

h(g(X), Y) =

k−1∑
i=0

gi1
1 (X)gi2

2 (X) . . . gir

r (X)h(i, Y) (1)

where (i1, i2, . . . , ir) is the binary expansion of i, r =

�log2 k�, and the term g
ij

j is defined by

g
ij

j =

{
gj if ij = 1
gj otherwise

for j ∈ {1, 2, . . . , r}.

3.2. Constructing the circuit for g

Suppose that B is an assignment of variables of Y such
that h(i, B) �= h(j, B) for some i, j ∈ {0, 1, . . . , k − 1},
i �= j. Then f(X, B) = h(g(X), B) where the co-factor
h(g(X), B) is neither constant 0, nor constant 1, i.e. it de-
pends of g(X).

Since h is a function of type {0, 1, ..., k − 1} ×
{0, 1}|Y | → {0, 1}, the co-factor h(g(X), B) is a func-
tion of type {0, 1, ..., k − 1} → {0, 1}. Note that, for
k = 2, h(g(X), B) is either an identity, or a comple-
ment. Thus, at this step, the problem of constructing the

circuit for g(X) is solved for k = 2. For larger val-
ues of k, the following strategy is used.

The k-valued function g(X) can be expressed as

g(X) =
k−1∑
i=0

i · gi(X)

where gi : {0, 1, . . . , k − 1}|X| → {0, 1} are multiple-
valued literals defined as:

gi(X) =

{
1 if g(X) = i

0 otherwise

For a given encoding of k values of g(K), each of the
functions g1(X), g2(X), . . . , gr(X), r = �log2 k�, encod-
ing g(X), can be represented as a sum of some literals
gi(X)’s.

Consider a decomposition chart of h(g(X), Y) with
columns representing k values of g(X) and the rows rep-
resent all combinations of the variables of Y . Any non-
constant row of h(g(X), Y) represents a sum of some lit-
erals gi(X), i ∈ {0, 1, . . . , k − 1}.

In the best case, there exist rows in the decomposi-
tion chart corresponding directly to the encoded func-
tions g1(X), g2(X), . . . , gr(X). If h(g(X), A) = gj(X)
for some assignment A of the variables of Y , then the cir-
cuit implementing gj(X) can be obtained from the circuit
implementing f by applying the assignment A to the in-
puts Y and propagating the constants.

In the worst case, the literals gi(X), i ∈
{0, 1, . . . , k − 1}, need to be computed by AND-
ing selected rows of h(g(X), Y). Afterward, the functions
g1(X), g2(X), . . . , gr(X) are obtained as a combina-
tion of gi(X).

4. Conclusion and Future Work

This paper has two contributions: (1) a heuristic for find-
ing a bound set X which results in the disjoint-support de-
composition with a good area/delay trade-off; (2) an algo-
rithm which transforms the original circuit into the decom-
posed circuit.

Our preliminary experimental results on IWLS’02
benchmarks set show that the proposed technique usu-
ally results in a smoother trade-off between area and de-
lay compared to the one of SIS. More experiments are
needed to make a thorough evaluation.

References

[1] A. Martinelli, T. Bengtsson, E. Dubrova, and A. J. Sullivan,
“Roth-Karp decomposition of large Boolean functions with
application to logic design,” in Proceedings of NORCHIP’02,
(Copenhagen, Denmark), November 2002.

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

