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Abstract 

This paper describes an improved approach to Boolean network 

optimization using internal don’t-cares. The improvements concern 

the type of don’t-cares computed, their scope, and the computation 

method. Instead of the traditionally used compatible observability 

don’t-cares (CODCs), we introduce and justify the use of complete 

don’t-cares (CDC).  To ensure the robustness of the don’t-care 

computation for very large industrial networks, a optional 

windowing scheme is implemented that computes substantial subsets 

of the CDCs in reasonable time. Finally, we give a SAT-based don’t-

care computation algorithm that is more efficient than BDD-based 

algorithms. Experimental results confirm that these improvements 

work well in practice. Complete don’t-cares allow for a reduction in 

the number of literals compared to the CODCs. Windowing 

guarantees robustness, even for very large benchmarks on which 

previous methods could not be applied. SAT reduces the runtime and 

enhances robustness, making don’t-cares affordable for a variety of 

other Boolean methods applied to the network.

1 Introduction

Optimization of Boolean networks using don’t-cares plays an 

important role in technology-independent logic synthesis and 

incremental re-synthesis of mapped netlists. Traditionally, only 

satisfiability don’t-cares (SDCs) and compatible observability don’t-

cares (CODCs) have been used [20]. The classical algorithm to 

compute CODCs [22] implemented in SIS [24] is used for many 

industrial tools. Later improvements dealt with (a) a more robust 

implementation [21], (b) independence from the local function 

representation [2], (c) generalization to multi-valued networks [7], 

and (d) approximations [23]. 

CODCs form a subset of the complete don’t-cares (or complete 

flexibility) [12] projected onto a node by its context in the multi-

level network. It was shown experimentally [11] that the 

computation of CDCs is comparable in runtime and memory 

requirements while, as expected, the amount of don’t-cares 

computed is larger than for CODCs. The presentation in [11][12] 

considers the most general case of non-deterministic multi-valued 

networks, leaving open questions about efficiency when applied to 

binary deterministic networks. 

The first contribution of this paper is in developing a specialized 

efficient version of the multi-valued don’t-care computation 

algorithm [11][12], to work on binary networks, and in showing that, 

compared to CODCs, this algorithm leads to an increase in 

optimization quality, due to the additional freedom provided by the 

CDCs. 

The second contribution concerns the computation of don’t-cares 

in large industrial designs. The traditional don’t-care optimization in 

SIS is performed using the whole network as the context for each 

node. This restricts the use of don’t-cares to small or medium-sized 

networks. To apply the same method to larger networks, the network 

can be partitioned with the scope of computation limited to one 

partition at a time. Although not published, such methods are 

probably part of some industrial tools.  However, we suspect that 

partitioning for don’t care computation is difficult, ad hoc, and 

implementation dependent. We propose a non-partitioning scheme, 

called windowing, which efficiently trades quality for runtime in 

network optimization. Windowing captures the maximal flexibility 

within a context limited by a fixed number of logic levels 

surrounding the node in question. The reconvergent paths 

surrounding the node are included into the window and excluded as 

in [23]. Windowing is fast because construction of a window for a 

node involves a limited number of surrounding nodes visited without 

traversing the whole network. Windowing is not a partitioning 

scheme because each node has its own window that may overlap 

with windows computed for other nodes. Finally, windowing is 

dynamic and can be performed “on the fly”, without duplicating or 

otherwise modifying the network or its parts. The latter quality 

makes windowing useful for applications that frequently update the 

network, e.g. decomposition-mapping [13]. 

The third contribution concerns the use of Boolean satisfiability 

[9][16] rather than BDDs or SOPs, for the computation of don’t-

cares. We show that SAT is responsible for a speed-up making 

CDCs easy to compute and affordable enough. As a result, many 

procedures that previously relied on algebraic methods can now be 

extended to use Boolean methods based on CDCs. 

In combination, these contributions provide improved efficiency, 

quality, and ruggedness for technology-independent logic synthesis.  

The paper is structured as follows: Section 2 establishes the 

background. Section 3 defines CDCs and compares them with 

CODCs. Section 4 presents windowing. Section 5 describes and 

compares BDD-based and SAT-based approaches to CDC 

computation. Section 6 gives experimental results, and Section 7 

concludes the paper.

2 Background  

Definition. A completely specified Boolean function (CSF) is a 

mapping from n-dimensional (n  0) Boolean space into a single-

dimensional one: {0,1}n  {0,1}.

A don’t-care for a logic function allows it to have either 0 or 1 as 

a possible value. If for at least one input combination, the output of a 
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function is a don’t-care, this function is called an incompletely 

specified Boolean function (ISF).

An assignment of n Boolean variables to particular values is called 

a minterm. A CSF has negative (positive) minterms that correspond 

to the assignments, for which it takes values 0 (1). The positive and 

negative minterms are called the care minterms. An ISF has don’t-

care minterms, which correspond to the assignments where the 

function can be either 0 or 1.  

A CSF is compatible with an ISF (implements the ISF), if the CSF 

can be derived from the ISF by assigning either 0 or 1 to each don’t-

care minterm. One ISF is said to be larger than another if it has 

more don’t-care minterms. 

Definition. A Boolean network is a directed acyclic graph (DAG) 

with nodes represented by Boolean functions. The sources of the 

graph are the primary inputs (PIs) of the network; the sinks are the 

primary outputs (POs). 

The same name is used for a node and its output signal. The output 

of a node may be an input to other nodes called its fanouts. The 

inputs of a node are called its fanins. If there is a path from node A

to B, then A is in the transitive fanin of B and B in the transitive

fanout of A. The transitive fanin of B, TFI(B), includes node B and 

the nodes in its transitive fanin, including the PIs. The transitive

fanout of B, TFO(B), includes node B and the nodes in its transitive 

fanout, including the POs.  

The functionality of a node in terms of its immediate fanins is its

local function. Its functionality in terms of the primary inputs of the 

network is its global function.

3 Complete don’t-cares 

Consider an individual node represented by a local CSF. It is not 

possible to change the node’s function without changing the node’s 

behavior. However, the situation is different when the node is 

considered in its context in the network. Then, often the node’s 

function can be substantially modified without changing the 

behavior of the network. This is because other nodes prevent some 

combinations of inputs from reaching the node (non justification) as 

well as hiding the node’s output from the POs under some 

conditions (non propagation). 

The flexibility allowed in the implementation of a node can be 

represented as an ISF. A don’t-care minterm of the ISF represents a 

combination of the node’s input variables, for which the value of the 

node’s output is not required for the POs of the network to produce 

the correct values. 

Definition. The complete don’t-cares (CDCs), or complete 

flexibility (CF), of a node in the binary network, is the largest ISF, 

whose don’t-care minterms represent conditions when the output of 

the node does not influence the values produced by the POs of the 

network.

CDCs are important for network optimization because replacing a 

node’s function by any CSF compatible with its CDC, does not 

change the network’s output. 

A key observation is that CDCs are not compatible, unlike CODCs 

[22]. That is, some POs of the network may produce incorrect values 

if CDCs are derived for several nodes and used independently. 

However, if a CDC is computed for a node and used immediately to 

optimize and replace that node before computing the CDC of 

another node, compatibility is not required. In this case, whenever a 

CDC is computed and used for a node, all prior changes to the other 

nodes are reflected in the computation. Heuristically, we found that 

visiting the nodes in topological order from the POs to the PIs gives 

the best literal reduction in a CDC-based optimization scheme. 

CDCs have two major parts, the satisfiability don’t-cares (SDCs) 

arising because some combinations are not produced as the inputs of 

the node, and the observability don’t-cares (ODCs) arising because 

under some conditions the output value of the node does not matter. 

In Figure 1, node F has SDCs in the local space (x = 0, y = 1) due to 

limited controllability, while node G has ODCs in the global space 

(a = 1, b = 1) due to limited observability. 

Figure 1. Example of SDCs and ODCs.

Don’t-care computations are traditionally performed in the context 

of the entire Boolean network, as exemplified by SIS [24]. In the 

case of CDCs, this approach guarantees that the don’t-cares 

computed are the largest set of don’t-cares possible for a node. Since 

these computations can be expensive, we developed an optional 

windowing method that limits the scope of the don’t-care 

computation to only a few logic levels on the fanin/fanout side of the 

node. A key observation is that re-convergence is a prime reason for 

don’t cares. Therefore, along with the near TFI and TFO of a node, a 

window should contain all re-convergent paths that begin and 

terminate in these nodes. Previous approaches to windowing for 

don’t-care computation [23] considers only the TFI and TFO of the 

node without considering re-convergence. 

For the special case when the inputs to the window have disjoint 

supports in terms of the PIs and all outputs of the window are POs, 

the CDC computed for the window is equal to the CDC when the 

whole network is considered. 

4 Windowing  

This section contains a detailed discussion of the windowing 

algorithm introduced in [13]. 

Definition. Given a DAG and two non-overlapping subsets of 

nodes, one set is called the leaf set and the other the root set, if 

every path from the sources of the DAG to any node in the root set 

passes through some node in the leaf set.  

Definition. Given two subsets in the leaf/root relationship, its 

window is the subset of nodes of the DAG that contains the roots 

plus all nodes on paths between the leaf set and the root set. The 

nodes in the leaf set are not included in the window. 

Definition. A path between a pair of nodes is distance-k if it spans 

exactly k edges between the pair. 

Definition. Two nodes are distance-k from each other if the 

shortest path between them is distance-k.

The pseudo-code in Figure 2 and the example in Figure 3 describe 

the flow of a window construction algorithm. Procedure Window

takes a node and two integers that define the number of logic levels 

on the fanin/fanout sides of the node to be included in the window. It 

returns the leaf set and the root set of the window. With 

modifications, this procedure can compute a window for a set of 
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nodes that, in general, need not be adjacent nor in the fanin/fanout 

relationship.

(nodeset, nodeset) Window( node N, int nFanins, int nFanouts ) 

{

     nodeset  I1  = CollectNodesTFI( {N}, nFanins ); 

     nodeset  O1 = CollectNodesTFO( {N}, nFanouts ); 

     nodeset  I2  = CollectNodesTFI( O1, nFanins + nFanouts ); 

     nodeset  O2 = CollectNodesTFO( I1, nFanins + nFanouts); 

     nodeset S = I2 O2;

     nodeset L = CollectLeaves( S ); 

     nodeset R = CollectRoots( S ); 

     return (L, R); 

}

Figure 2. Computation of a window for a node. 

The procedure CollectNodesTFI takes a set S of nodes and an 

integer m  0, and returns a set of nodes on the fanin side that are 

distance-m or less from the nodes in S. An efficient implementation 

of this procedure for small m (for most applications, m  10) iterates 

through the nodes that are distance-k (0 k m) from the given set. 

The distance-0 nodes are the original nodes. The distance-(k+1) 

nodes are found by collecting the fanins of the distance-k nodes not 

visited before. The procedure CollectNodesTFO is similar. 

Figure 3. Example of a 1 x 1 window. 

Procedures CollectLeaves and CollectRoots take the set of the 

window’s internal nodes and determine the leaves and roots of this 

window. The leaves are the nodes that do not belong to the given set 

but are fanins of at least one of the nodes in the set. The roots are the 

nodes that belong to the given set and are also fanins of at least one 

node not in the set. Note that some of the roots thus computed are 

not in the TFO cone of the original node(s), for which the window is 

being computed, and therefore can be dropped without violating the 

definition of the window and undermining the usefulness of the 

window for the don’t-care computation. 

We typically refer to the window constructed for a node by 

including n TFI logic levels and m TFO logic levels as an n m

window.

Example: Figure 3 shows a 1  1 window for node N in a DAG. 

The nodes labeled I1, O1, S, L, and R are in correspondence with the 

pseudo-code in Figure 2. The window’s roots (top) and leaves 

(bottom) are shaded. Note that the nodes labeled by P do not belong 

to the TFI and TFO cones of node N, but represent the reconvergent 

paths in the vicinity of node N. The left-most root and right-most 

root are not in the TFO of N and can be dropped, as explained 

above.

5 Don’t-care computation  

The network optimization discussed in this paper iterates through 

all the nodes of the network. For each node, a CDC is computed and 

used to simplify and replace the node before optimizing the next 

node. The computation of the CDC for a node can be performed in 

the context of the whole network, if the network is small; otherwise, 

a window is used. Without limiting the generality of the CDC 

computation, we discuss these methods as applied to a node in the 

whole network. If a window is used, the network is the sub-network 

defined by the window used for the node.  

The general approach to computing the CDC of a node in a non-

deterministic multi-valued network [11][12] relies on the use of an 

additional variable z for the output of the node, and the computation 

of a Boolean relation in terms of z and the PI and PO variables.  

For a Boolean (binary deterministic) network, this approach can 

be simplified. The computation can be performed without using z or 

Boolean relations. In both BDD-based and SAT-based 

implementations, we consider two instances of the same network 

that differ only in an inverter at the output of the given node in the 

second copy (Figure 4). This duplication is an imaginary 

construction, done for the sake of the presentation and not actually 

implemented in software. 

The first network isthe original one, while the second has an 

invertor inserted at the node’s output. The functionalities of these 

networks are compared to detect when the change in the node’s 

behavior influences the values at the POs. To this end, the two 

networks are transformed into a “miter” [1] derived by combining 

the pairs of PIs with the same names and feeding the pairs of POs 

with the same names into EXOR gates ORed to produce the only 

output of the miter (Figure 4). 

5.1 Computation using BDDs 

We use x to represent the PIs of the network and y to represent the 

immediate fanins of the node to be minimized. The BDD-based 

CDC computation begins by deriving the global functions of the 

POs of the two networks, {fi(x)} and {fi’(x)}. Next, the output 

function of the miter, C(x), is derived, which represents the care set 

in the global space: 

C(x) = i [fi(x)  fi’(x)].

The ODC of the node in the global space is the complement of the 

care set: 

ODC(x) = ( )xC = i [fi(x)  fi’(x)], 

Next, the local CDC is computed by imaging the global ODC into 

the local space using the mapping M(x,y) (inferred from the 

network) that relates the global and local spaces: 

( ) [ ( , ) ( )] [ ( , ) ( )]x xCDC y M x y ODC x M x y ODC x .

This computation adds the SDC, ( , )M x y , to the already computed 

ODC. Thus a don’t-care minterm y is, for all assignments of the PI 

variables x, either an SDC or an ODC. If external don’t-cares are 

available, they are simply added to the ODC. 

5.2 Computation using SAT  

The use of SAT [9][16] in the CDC computation is similar to the 

use of SAT in combinational equivalence checking [4]. A solution 

of the SAT problem corresponding to the miter in Figure 4 gives a 

satisfying assignment for all network signals when a 1 is the output 

of the miter. The values of variables y (the fanins of the node) in this 
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solution form a care set minterm in the local space of the node. This 

is because, for them, we know there exist values of the PI variables 

x, such that at least one pair of POs produces different values. 

Figure 4. Illustration of a miter used in CDC computation. 

All the care set minterms in terms of variables y are collected by 

enumerating through the satisfying assignments of the SAT problem 

and adding breaking clauses for each of them. A similar method of 

generating the satisfying assignments is described in [10], except 

that we do not undo the implication graph when a new satisfying 

assignment is found. We treat satisfying assignments similar to 

conflicts. In both cases, non-chronological backtracking is 

performed to the highest level determined using the new clause. 

The SAT-based CDC computation is summarized in Figure 5. The 

top-level procedure CompleteDC takes node N and its context S

given by the network, or by a window constructed for node N.

Procedure ConstructMiter applies structural hashing [8] to the miter 

of the two copies of S shown in Figure 4. The resulting compact 

AND-INV graph G is constructed in one DFS traversal of the nodes 

in S, without actual duplication.  

For efficiency, random simulation is used to derive part of the care 

set, F1. The CNF P is the conjunction of clauses derived from G and 

the complement of F1. The CNF of G is derived using a technique 

that adds three CNF clauses for each AND gates. For example, the 

clauses added for the gate ab = c are: c + a, c  + b, a + b + c. The 

only other clause added to the CNF is the clause asserting that the 

PO of the miter is equal to 1. 

The SAT solver enumerates through the satisfying solutions, F2, of 

the resulting problem representing the remaining part of the care set. 

In practice, it often happens that the SAT problem has no solutions 

(F2 = 0). In such cases, SAT is only useful to prove the 

completeness of the care set derived by random simulation.  

function CompleteDC( node N , context S )

{

     aig G = ConstructMiter( S, N ); 

     function F1 = RandomSimulation( G ); 

     cnf P = CircuitToCNF( G ) FunctionToCNF( 1F ); 

     function F2 = SatSolutions( P ); 

     return 1 2F F ;

}

Figure 5. Pseudo-code of SAT-based CDC computation. 

This approach solves the SAT problem by enumerating through 

the satisfying assignments that represent local minterms of the care 

set of the given node. Therefore, it should be limited to nodes with 

roughly 10 inputs or less, which is typically the case for most 

Boolean networks. It could also be enforced by decomposing large 

nodes first. To make the approach appropriate for networks nodes 

with a larger number of inputs, the implementation of the SAT 

solver should be further modified to return incomplete satisfying 

assignments corresponding to cubes rather than minterms of the 

local care set.  

6 Experimental results  

The methods for computing CDCs of a node in the context of both 

a window and the whole network have been implemented in the 

MVSIS environment [19].  

The SAT-based part was implemented using MiniSat [3], an 

“extensible SAT solver”. Despite its small size (600 lines of C++ 

code written without STL), MiniSat is very efficient. In our 

experiments, it outperformed several popular SAT solvers. 

Moreover, the implementation of MiniSat is easy to understand and 

modify, which was the original intention of its developers. 

Two experiments were performed. In both cases, the 

measurements were done on a Windows XP computer with a 

1.6GHz CPU and 1Gb RAM, although less than 256Mb of RAM are 

needed for the largest benchmarks in Table 2.  

The resulting networks were verified using a SAT-based verifier 

in MVSIS designed along the lines of [4][6].  

6.1 Experiment 1: Comparing CODCs vs. CDCs  

We compared the optimization potential of CODCs and CDCs. 

The BDD-based don’t-care computation flow was used in both 

cases. We considered the largest MCNC benchmarks [25], for which 

BDDs could be constructed. Table 1 compares the runtime and 

number of literals produced by the CODC-based command 

full_simplify of SIS, and the new CDC-based command mfs

implemented in MVSIS and later ported to SIS. The SIS version was 

used in this experiment. Both full_simplify and mfs perform Boolean 

resubstitution followed by SOP minimization as part of a don’t-care-

based optimization. Network sweep in SIS is performed before and 

after both commands.  

The first column in Table 1 lists the benchmark names, followed 

by five columns containing the number of literals: (1) after initial 

sweeping only (“sweep”) (which is the starting point of the other 

columns), (2) after full_simplify (“fs”), (3) after mfs without the 

“advanced features” (“mfs”), (4) after mfs with 2 x 2 windowing 

without the “advanced features” (“mfsw”), and (5) after mfs with the 

advanced features enabled (“MFS”). The advanced features include 

on-the-fly merging of nodes with functionality equivalence up to 

complementation and phase-assignment, performed as part of 

optimization. In columns (2) and (3) these features are disabled to 

have a fair comparison with full_simplify. Some benchmarks could 

not be processed by full_simplify because of the large BDD sizes 

(indicated by the dash in the table). 

The last three columns give the runtimes in seconds. The bottom 

line shows the average of the ratios of the improvements in the 

number of literals, achieved by each command, compared to the 

number of literals in the original (swept) benchmarks. The asterisk 

in Table 1 indicates that, to compare against fs, the averages of the 

ratios are taken only over the 11 examples where fs could complete. 

fi(x) fi’(x)

x x

y y

C(x)
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Table 1. Comparing CODCs vs. CDCs. 

Literals in factored forms Runtime, sec Name

sweep   fs  mfs mfsw MFS fs mfs mfsw 

dalu 2976 2140 1741 2250 1747 64.8 2.1 0.8 
des 6101 5677 5616 5920 5334 8.1 3.7 3.7 
frg2 2010 1454 1440 1477 1409 5.1 0.6 0.5 
i10 4355 - 3809 3853 3694 - 82.2 1.2 
k2 2928 2889 2663 2878 2641 6.2 3.9 3.3 
pair 2420 2179 2143 2151 2139 3.5 2.9 0.4 
c1355 992 984 992 992 992 22.8 86.7 0.2 
c1908 1058 869 870 869 754 12.4 10.9 0.3 
c2670 1570 1189 1215 1411 1195 4.9 2.8 0.3 
c432 335 298 288 299 288 2.2 0.9 0.3 
c499 576 568 576 576 576 1.0 13.0 0.1 
c5315 3531 3184 3168 3176 2951 31.5 7.3 0.9 
c7552 4750 - 4057 4079 3594 - 50.0 1.4 
c880 648 625 624 625 624 1.2 7.2 0.1 
Ave 1.00 0.88* 0.86 0.90 0.83 1.00 0.87 0.07 

Although full_simplify was expected to be faster than mfs, this was 

not the case possibly because of the differences in the 

implementation and use of different BDD variable ordering 

heuristics in SIS and MVSIS. Comparing literals, Table 1 shows that 

the CDCs outperform CODCs in the context of the whole network 

(columns “fs” vs. “mfs”). In those rare cases when CODCs give 

better literal counts, the improvement is attributed to finding a better 

ordering of nodes. Our experiments have shown that, on average 

over all considered benchmarks, CDCs typically contain 20% more 

don’t-care minterms in the local spaces of the nodes, compared to 

the CODCs. 

For CDCs with windowing (column “mfsw”), Table 1 shows that 

the literal count is close to that of CODCs in the context of the 

whole network (column “fs”), but the runtime is only 7% of that of 

”fs”. Thus, the improvement due to the CDCs is only marginally 

outweighed by the degradation due to using a window instead of the 

whole network in the case of CODCs. Additionally, window-based 

optimization (mfsw) is applicable to very large circuits, well beyond 

the scope of full_simplify in SIS or mfs without windowing.

6.2 Experiment 2: Cumulative effect of 
improvements  

Table 2 shows the results of network optimization using the SAT-

based flow for ITC’99 [5], ISCAS, and PicoJava benchmarks [17]. 

These benchmarks are relatively large. As a result, BDD-based 

methods, full_simplify in SIS and mfs in MVSIS without windowing, 

cannot be applied.  

The first column of Table 2 lists the benchmark names. The 

second column shows the number of inputs, outputs, and latches. 

The next three columns contain the number of literals in the factored 

forms in (1) the original benchmark after sweeping (“sweep”), (2) 

after applying mfs with 2x2 windowing (“mfsw”), and (3) as part of 

a script (“script”). The last two columns show the runtime in 

seconds for mfsw and script. The script used in this experiment was 

mvsis.rugged which is similar to script.rugged of SIS, except that 

mvsis.rugged is implemented in MVSIS and the CODC-based SIS 

command full_simplify is replaced by the CDC-based MVSIS 

command mfs, using 2x2 windows (mfs –w 22) and SAT instead of 

BDDs. 

Table 2. Network optimization using CDCs, windowing and 

SAT.

Literals in factored forms Runtime, sName In/Out/Latch 

sweep mfsw script mfsw script

b14 32 / 54 / 245 17388 10664 7911 3.9 18.0

b15 36 / 70 / 449 16244 15056 10948 6.1 22.9

b17 37 / 97 / 1415 57311 49067 37877 35.7 104.8

b20 32 / 22 / 490 35149 21826 16813 7.6 55.0

b21 32 / 22 / 490 35908 22312 16932 9.3 51.1

b22 32 / 22 / 735 52276 33017 25174 13.5 59.8

s15850 14 / 87 / 597 7303 6350 4033 1.2 4.0

s35932 35 / 320 24408 20248 10986 4.2 16.7

s38417 28 / 106 18699 17327 13640 4.5 15.5

pj1 1769 / 1063/0 34828 30547 18076 9.5 37.0

pj2 690 / 429/0 7422 6464 3457 1.1 4.0

Ave 1.00 0.79 0.54 1.00 4.36

Table 2 shows that the proposed don’t-care-based optimization 

flow can be applied to quite large circuits. This is because the don’t-

care computation is performed in a window, and therefore is local 

and does not depend on the circuit size. The overall runtimes scale 

well with the problem size and are predictable; a rule of the thumb is 

for mfs –w 22, the computation takes about 1 second per 3000 

literals. 

The reader can refer to a workshop version of the paper [14] for 

the detailed comparison of the performance of SAT and BDDs with 

windows of different sizes. In summary, the SAT-based 

computations are faster and scale better than the BDD-based ones. 

Thus, for 1 1 windows, SAT is on average 20% faster; for 2 2

windows, it is over two times faster while for 4 4 windows, it is 

over 7 times faster. This ratio increases further with the window 

size.
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7 Conclusions  

This paper contributes several improvements to the optimization 

of logic networks using don’t-cares: 

Complete don’t-cares are used instead of compatible don’t-

cares. Abandoning compatibility does not lead to any problems 

in runtime but does increase the amount of don’t-cares 

computed. 

To ensure robust computation of don’t-cares, windowing is 

used. This technique noticeably reduces the runtime while 

computing a substantial subset of the complete don’t-cares for 

each node. 

A new implementation of the don’t-care computation using 

Boolean satisfiability is used, taking advantage of the recent 

improvements in the performance of SAT solvers [16]. The 

same set of don’t-cares is computed as in the corresponding 

BDD-based algorithm, but several times faster. 

The experiments described in the paper show that the proposed 

improvements enhance the optimization quality reduce the runtime 
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and provide robustness. The overall effect is that the computation of 

internal don’t-cares becomes very affordable, even for very large 

industrial networks.  

Since such ideas make CDC computations quite affordable and 

robust, we believe that they can be applied to other Boolean logic 

optimization methods, reducing computational cost and improving 

optimality. As a result, these Boolean methods become more 

affordable and should eventually replace some sub-optimal algebraic 

methods for a variety of tasks in logic synthesis. 
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