
HAL Id: hal-00181549
https://hal.science/hal-00181549

Submitted on 24 Oct 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

SAT-Based Complete Don’t-Care Computation for
Network Optimization

Alan Mishchenko, Robert K. Brayton

To cite this version:
Alan Mishchenko, Robert K. Brayton. SAT-Based Complete Don’t-Care Computation for Network
Optimization. DATE’05, Mar 2005, Munich, Germany. pp.412-417. �hal-00181549�

https://hal.science/hal-00181549
https://hal.archives-ouvertes.fr

SAT-Based Complete Don’t-Care Computation for Network Optimization

Alan Mishchenko and Robert K. Brayton

Department of EECS

University of California, Berkeley

{alanmi, brayton}@eecs.berkeley.edu

Abstract

This paper describes an improved approach to Boolean network

optimization using internal don’t-cares. The improvements concern

the type of don’t-cares computed, their scope, and the computation

method. Instead of the traditionally used compatible observability

don’t-cares (CODCs), we introduce and justify the use of complete

don’t-cares (CDC). To ensure the robustness of the don’t-care

computation for very large industrial networks, a optional

windowing scheme is implemented that computes substantial subsets

of the CDCs in reasonable time. Finally, we give a SAT-based don’t-

care computation algorithm that is more efficient than BDD-based

algorithms. Experimental results confirm that these improvements

work well in practice. Complete don’t-cares allow for a reduction in

the number of literals compared to the CODCs. Windowing

guarantees robustness, even for very large benchmarks on which

previous methods could not be applied. SAT reduces the runtime and

enhances robustness, making don’t-cares affordable for a variety of

other Boolean methods applied to the network.

1 Introduction

Optimization of Boolean networks using don’t-cares plays an

important role in technology-independent logic synthesis and

incremental re-synthesis of mapped netlists. Traditionally, only

satisfiability don’t-cares (SDCs) and compatible observability don’t-

cares (CODCs) have been used [20]. The classical algorithm to

compute CODCs [22] implemented in SIS [24] is used for many

industrial tools. Later improvements dealt with (a) a more robust

implementation [21], (b) independence from the local function

representation [2], (c) generalization to multi-valued networks [7],

and (d) approximations [23].

CODCs form a subset of the complete don’t-cares (or complete

flexibility) [12] projected onto a node by its context in the multi-

level network. It was shown experimentally [11] that the

computation of CDCs is comparable in runtime and memory

requirements while, as expected, the amount of don’t-cares

computed is larger than for CODCs. The presentation in [11][12]

considers the most general case of non-deterministic multi-valued

networks, leaving open questions about efficiency when applied to

binary deterministic networks.

The first contribution of this paper is in developing a specialized

efficient version of the multi-valued don’t-care computation

algorithm [11][12], to work on binary networks, and in showing that,

compared to CODCs, this algorithm leads to an increase in

optimization quality, due to the additional freedom provided by the

CDCs.

The second contribution concerns the computation of don’t-cares

in large industrial designs. The traditional don’t-care optimization in

SIS is performed using the whole network as the context for each

node. This restricts the use of don’t-cares to small or medium-sized

networks. To apply the same method to larger networks, the network

can be partitioned with the scope of computation limited to one

partition at a time. Although not published, such methods are

probably part of some industrial tools. However, we suspect that

partitioning for don’t care computation is difficult, ad hoc, and

implementation dependent. We propose a non-partitioning scheme,

called windowing, which efficiently trades quality for runtime in

network optimization. Windowing captures the maximal flexibility

within a context limited by a fixed number of logic levels

surrounding the node in question. The reconvergent paths

surrounding the node are included into the window and excluded as

in [23]. Windowing is fast because construction of a window for a

node involves a limited number of surrounding nodes visited without

traversing the whole network. Windowing is not a partitioning

scheme because each node has its own window that may overlap

with windows computed for other nodes. Finally, windowing is

dynamic and can be performed “on the fly”, without duplicating or

otherwise modifying the network or its parts. The latter quality

makes windowing useful for applications that frequently update the

network, e.g. decomposition-mapping [13].

The third contribution concerns the use of Boolean satisfiability

[9][16] rather than BDDs or SOPs, for the computation of don’t-

cares. We show that SAT is responsible for a speed-up making

CDCs easy to compute and affordable enough. As a result, many

procedures that previously relied on algebraic methods can now be

extended to use Boolean methods based on CDCs.

In combination, these contributions provide improved efficiency,

quality, and ruggedness for technology-independent logic synthesis.

The paper is structured as follows: Section 2 establishes the

background. Section 3 defines CDCs and compares them with

CODCs. Section 4 presents windowing. Section 5 describes and

compares BDD-based and SAT-based approaches to CDC

computation. Section 6 gives experimental results, and Section 7

concludes the paper.

2 Background

Definition. A completely specified Boolean function (CSF) is a

mapping from n-dimensional (n 0) Boolean space into a single-

dimensional one: {0,1}n {0,1}.

A don’t-care for a logic function allows it to have either 0 or 1 as

a possible value. If for at least one input combination, the output of a

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

function is a don’t-care, this function is called an incompletely

specified Boolean function (ISF).

An assignment of n Boolean variables to particular values is called

a minterm. A CSF has negative (positive) minterms that correspond

to the assignments, for which it takes values 0 (1). The positive and

negative minterms are called the care minterms. An ISF has don’t-

care minterms, which correspond to the assignments where the

function can be either 0 or 1.

A CSF is compatible with an ISF (implements the ISF), if the CSF

can be derived from the ISF by assigning either 0 or 1 to each don’t-

care minterm. One ISF is said to be larger than another if it has

more don’t-care minterms.

Definition. A Boolean network is a directed acyclic graph (DAG)

with nodes represented by Boolean functions. The sources of the

graph are the primary inputs (PIs) of the network; the sinks are the

primary outputs (POs).

The same name is used for a node and its output signal. The output

of a node may be an input to other nodes called its fanouts. The

inputs of a node are called its fanins. If there is a path from node A

to B, then A is in the transitive fanin of B and B in the transitive

fanout of A. The transitive fanin of B, TFI(B), includes node B and

the nodes in its transitive fanin, including the PIs. The transitive

fanout of B, TFO(B), includes node B and the nodes in its transitive

fanout, including the POs.

The functionality of a node in terms of its immediate fanins is its

local function. Its functionality in terms of the primary inputs of the

network is its global function.

3 Complete don’t-cares

Consider an individual node represented by a local CSF. It is not

possible to change the node’s function without changing the node’s

behavior. However, the situation is different when the node is

considered in its context in the network. Then, often the node’s

function can be substantially modified without changing the

behavior of the network. This is because other nodes prevent some

combinations of inputs from reaching the node (non justification) as

well as hiding the node’s output from the POs under some

conditions (non propagation).

The flexibility allowed in the implementation of a node can be

represented as an ISF. A don’t-care minterm of the ISF represents a

combination of the node’s input variables, for which the value of the

node’s output is not required for the POs of the network to produce

the correct values.

Definition. The complete don’t-cares (CDCs), or complete

flexibility (CF), of a node in the binary network, is the largest ISF,

whose don’t-care minterms represent conditions when the output of

the node does not influence the values produced by the POs of the

network.

CDCs are important for network optimization because replacing a

node’s function by any CSF compatible with its CDC, does not

change the network’s output.

A key observation is that CDCs are not compatible, unlike CODCs

[22]. That is, some POs of the network may produce incorrect values

if CDCs are derived for several nodes and used independently.

However, if a CDC is computed for a node and used immediately to

optimize and replace that node before computing the CDC of

another node, compatibility is not required. In this case, whenever a

CDC is computed and used for a node, all prior changes to the other

nodes are reflected in the computation. Heuristically, we found that

visiting the nodes in topological order from the POs to the PIs gives

the best literal reduction in a CDC-based optimization scheme.

CDCs have two major parts, the satisfiability don’t-cares (SDCs)

arising because some combinations are not produced as the inputs of

the node, and the observability don’t-cares (ODCs) arising because

under some conditions the output value of the node does not matter.

In Figure 1, node F has SDCs in the local space (x = 0, y = 1) due to

limited controllability, while node G has ODCs in the global space

(a = 1, b = 1) due to limited observability.

Figure 1. Example of SDCs and ODCs.

Don’t-care computations are traditionally performed in the context

of the entire Boolean network, as exemplified by SIS [24]. In the

case of CDCs, this approach guarantees that the don’t-cares

computed are the largest set of don’t-cares possible for a node. Since

these computations can be expensive, we developed an optional

windowing method that limits the scope of the don’t-care

computation to only a few logic levels on the fanin/fanout side of the

node. A key observation is that re-convergence is a prime reason for

don’t cares. Therefore, along with the near TFI and TFO of a node, a

window should contain all re-convergent paths that begin and

terminate in these nodes. Previous approaches to windowing for

don’t-care computation [23] considers only the TFI and TFO of the

node without considering re-convergence.

For the special case when the inputs to the window have disjoint

supports in terms of the PIs and all outputs of the window are POs,

the CDC computed for the window is equal to the CDC when the

whole network is considered.

4 Windowing

This section contains a detailed discussion of the windowing

algorithm introduced in [13].

Definition. Given a DAG and two non-overlapping subsets of

nodes, one set is called the leaf set and the other the root set, if

every path from the sources of the DAG to any node in the root set

passes through some node in the leaf set.

Definition. Given two subsets in the leaf/root relationship, its

window is the subset of nodes of the DAG that contains the roots

plus all nodes on paths between the leaf set and the root set. The

nodes in the leaf set are not included in the window.

Definition. A path between a pair of nodes is distance-k if it spans

exactly k edges between the pair.

Definition. Two nodes are distance-k from each other if the

shortest path between them is distance-k.

The pseudo-code in Figure 2 and the example in Figure 3 describe

the flow of a window construction algorithm. Procedure Window

takes a node and two integers that define the number of logic levels

on the fanin/fanout sides of the node to be included in the window. It

returns the leaf set and the root set of the window. With

modifications, this procedure can compute a window for a set of

F

a bG

x y

b ca

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

nodes that, in general, need not be adjacent nor in the fanin/fanout

relationship.

(nodeset, nodeset) Window(node N, int nFanins, int nFanouts)

{

 nodeset I1 = CollectNodesTFI({N}, nFanins);

 nodeset O1 = CollectNodesTFO({N}, nFanouts);

 nodeset I2 = CollectNodesTFI(O1, nFanins + nFanouts);

 nodeset O2 = CollectNodesTFO(I1, nFanins + nFanouts);

 nodeset S = I2 O2;

 nodeset L = CollectLeaves(S);

 nodeset R = CollectRoots(S);

 return (L, R);

}

Figure 2. Computation of a window for a node.

The procedure CollectNodesTFI takes a set S of nodes and an

integer m 0, and returns a set of nodes on the fanin side that are

distance-m or less from the nodes in S. An efficient implementation

of this procedure for small m (for most applications, m 10) iterates

through the nodes that are distance-k (0 k m) from the given set.

The distance-0 nodes are the original nodes. The distance-(k+1)

nodes are found by collecting the fanins of the distance-k nodes not

visited before. The procedure CollectNodesTFO is similar.

Figure 3. Example of a 1 x 1 window.

Procedures CollectLeaves and CollectRoots take the set of the

window’s internal nodes and determine the leaves and roots of this

window. The leaves are the nodes that do not belong to the given set

but are fanins of at least one of the nodes in the set. The roots are the

nodes that belong to the given set and are also fanins of at least one

node not in the set. Note that some of the roots thus computed are

not in the TFO cone of the original node(s), for which the window is

being computed, and therefore can be dropped without violating the

definition of the window and undermining the usefulness of the

window for the don’t-care computation.

We typically refer to the window constructed for a node by

including n TFI logic levels and m TFO logic levels as an n m

window.

Example: Figure 3 shows a 1 1 window for node N in a DAG.

The nodes labeled I1, O1, S, L, and R are in correspondence with the

pseudo-code in Figure 2. The window’s roots (top) and leaves

(bottom) are shaded. Note that the nodes labeled by P do not belong

to the TFI and TFO cones of node N, but represent the reconvergent

paths in the vicinity of node N. The left-most root and right-most

root are not in the TFO of N and can be dropped, as explained

above.

5 Don’t-care computation

The network optimization discussed in this paper iterates through

all the nodes of the network. For each node, a CDC is computed and

used to simplify and replace the node before optimizing the next

node. The computation of the CDC for a node can be performed in

the context of the whole network, if the network is small; otherwise,

a window is used. Without limiting the generality of the CDC

computation, we discuss these methods as applied to a node in the

whole network. If a window is used, the network is the sub-network

defined by the window used for the node.

The general approach to computing the CDC of a node in a non-

deterministic multi-valued network [11][12] relies on the use of an

additional variable z for the output of the node, and the computation

of a Boolean relation in terms of z and the PI and PO variables.

For a Boolean (binary deterministic) network, this approach can

be simplified. The computation can be performed without using z or

Boolean relations. In both BDD-based and SAT-based

implementations, we consider two instances of the same network

that differ only in an inverter at the output of the given node in the

second copy (Figure 4). This duplication is an imaginary

construction, done for the sake of the presentation and not actually

implemented in software.

The first network isthe original one, while the second has an

invertor inserted at the node’s output. The functionalities of these

networks are compared to detect when the change in the node’s

behavior influences the values at the POs. To this end, the two

networks are transformed into a “miter” [1] derived by combining

the pairs of PIs with the same names and feeding the pairs of POs

with the same names into EXOR gates ORed to produce the only

output of the miter (Figure 4).

5.1 Computation using BDDs

We use x to represent the PIs of the network and y to represent the

immediate fanins of the node to be minimized. The BDD-based

CDC computation begins by deriving the global functions of the

POs of the two networks, {fi(x)} and {fi’(x)}. Next, the output

function of the miter, C(x), is derived, which represents the care set

in the global space:

C(x) = i [fi(x) fi’(x)].

The ODC of the node in the global space is the complement of the

care set:

ODC(x) = ()xC = i [fi(x) fi’(x)],

Next, the local CDC is computed by imaging the global ODC into

the local space using the mapping M(x,y) (inferred from the

network) that relates the global and local spaces:

() [(,) ()] [(,) ()]x xCDC y M x y ODC x M x y ODC x .

This computation adds the SDC, (,)M x y , to the already computed

ODC. Thus a don’t-care minterm y is, for all assignments of the PI

variables x, either an SDC or an ODC. If external don’t-cares are

available, they are simply added to the ODC.

5.2 Computation using SAT

The use of SAT [9][16] in the CDC computation is similar to the

use of SAT in combinational equivalence checking [4]. A solution

of the SAT problem corresponding to the miter in Figure 4 gives a

satisfying assignment for all network signals when a 1 is the output

of the miter. The values of variables y (the fanins of the node) in this

N

O1O1

S

S

S

S

I1

I1

I1

RS
R

L L L L L

S

S

SS

SS

S

P

P

P

P

RR

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

solution form a care set minterm in the local space of the node. This

is because, for them, we know there exist values of the PI variables

x, such that at least one pair of POs produces different values.

Figure 4. Illustration of a miter used in CDC computation.

All the care set minterms in terms of variables y are collected by

enumerating through the satisfying assignments of the SAT problem

and adding breaking clauses for each of them. A similar method of

generating the satisfying assignments is described in [10], except

that we do not undo the implication graph when a new satisfying

assignment is found. We treat satisfying assignments similar to

conflicts. In both cases, non-chronological backtracking is

performed to the highest level determined using the new clause.

The SAT-based CDC computation is summarized in Figure 5. The

top-level procedure CompleteDC takes node N and its context S

given by the network, or by a window constructed for node N.

Procedure ConstructMiter applies structural hashing [8] to the miter

of the two copies of S shown in Figure 4. The resulting compact

AND-INV graph G is constructed in one DFS traversal of the nodes

in S, without actual duplication.

For efficiency, random simulation is used to derive part of the care

set, F1. The CNF P is the conjunction of clauses derived from G and

the complement of F1. The CNF of G is derived using a technique

that adds three CNF clauses for each AND gates. For example, the

clauses added for the gate ab = c are: c + a, c + b, a + b + c. The

only other clause added to the CNF is the clause asserting that the

PO of the miter is equal to 1.

The SAT solver enumerates through the satisfying solutions, F2, of

the resulting problem representing the remaining part of the care set.

In practice, it often happens that the SAT problem has no solutions

(F2 = 0). In such cases, SAT is only useful to prove the

completeness of the care set derived by random simulation.

function CompleteDC(node N , context S)

{

 aig G = ConstructMiter(S, N);

 function F1 = RandomSimulation(G);

 cnf P = CircuitToCNF(G) FunctionToCNF(1F);

 function F2 = SatSolutions(P);

 return 1 2F F ;

}

Figure 5. Pseudo-code of SAT-based CDC computation.

This approach solves the SAT problem by enumerating through

the satisfying assignments that represent local minterms of the care

set of the given node. Therefore, it should be limited to nodes with

roughly 10 inputs or less, which is typically the case for most

Boolean networks. It could also be enforced by decomposing large

nodes first. To make the approach appropriate for networks nodes

with a larger number of inputs, the implementation of the SAT

solver should be further modified to return incomplete satisfying

assignments corresponding to cubes rather than minterms of the

local care set.

6 Experimental results

The methods for computing CDCs of a node in the context of both

a window and the whole network have been implemented in the

MVSIS environment [19].

The SAT-based part was implemented using MiniSat [3], an

“extensible SAT solver”. Despite its small size (600 lines of C++

code written without STL), MiniSat is very efficient. In our

experiments, it outperformed several popular SAT solvers.

Moreover, the implementation of MiniSat is easy to understand and

modify, which was the original intention of its developers.

Two experiments were performed. In both cases, the

measurements were done on a Windows XP computer with a

1.6GHz CPU and 1Gb RAM, although less than 256Mb of RAM are

needed for the largest benchmarks in Table 2.

The resulting networks were verified using a SAT-based verifier

in MVSIS designed along the lines of [4][6].

6.1 Experiment 1: Comparing CODCs vs. CDCs

We compared the optimization potential of CODCs and CDCs.

The BDD-based don’t-care computation flow was used in both

cases. We considered the largest MCNC benchmarks [25], for which

BDDs could be constructed. Table 1 compares the runtime and

number of literals produced by the CODC-based command

full_simplify of SIS, and the new CDC-based command mfs

implemented in MVSIS and later ported to SIS. The SIS version was

used in this experiment. Both full_simplify and mfs perform Boolean

resubstitution followed by SOP minimization as part of a don’t-care-

based optimization. Network sweep in SIS is performed before and

after both commands.

The first column in Table 1 lists the benchmark names, followed

by five columns containing the number of literals: (1) after initial

sweeping only (“sweep”) (which is the starting point of the other

columns), (2) after full_simplify (“fs”), (3) after mfs without the

“advanced features” (“mfs”), (4) after mfs with 2 x 2 windowing

without the “advanced features” (“mfsw”), and (5) after mfs with the

advanced features enabled (“MFS”). The advanced features include

on-the-fly merging of nodes with functionality equivalence up to

complementation and phase-assignment, performed as part of

optimization. In columns (2) and (3) these features are disabled to

have a fair comparison with full_simplify. Some benchmarks could

not be processed by full_simplify because of the large BDD sizes

(indicated by the dash in the table).

The last three columns give the runtimes in seconds. The bottom

line shows the average of the ratios of the improvements in the

number of literals, achieved by each command, compared to the

number of literals in the original (swept) benchmarks. The asterisk

in Table 1 indicates that, to compare against fs, the averages of the

ratios are taken only over the 11 examples where fs could complete.

fi(x) fi’(x)

x x

y y

C(x)

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

Table 1. Comparing CODCs vs. CDCs.

Literals in factored forms Runtime, sec Name

sweep fs mfs mfsw MFS fs mfs mfsw

dalu 2976 2140 1741 2250 1747 64.8 2.1 0.8
des 6101 5677 5616 5920 5334 8.1 3.7 3.7
frg2 2010 1454 1440 1477 1409 5.1 0.6 0.5
i10 4355 - 3809 3853 3694 - 82.2 1.2
k2 2928 2889 2663 2878 2641 6.2 3.9 3.3
pair 2420 2179 2143 2151 2139 3.5 2.9 0.4
c1355 992 984 992 992 992 22.8 86.7 0.2
c1908 1058 869 870 869 754 12.4 10.9 0.3
c2670 1570 1189 1215 1411 1195 4.9 2.8 0.3
c432 335 298 288 299 288 2.2 0.9 0.3
c499 576 568 576 576 576 1.0 13.0 0.1
c5315 3531 3184 3168 3176 2951 31.5 7.3 0.9
c7552 4750 - 4057 4079 3594 - 50.0 1.4
c880 648 625 624 625 624 1.2 7.2 0.1
Ave 1.00 0.88* 0.86 0.90 0.83 1.00 0.87 0.07

Although full_simplify was expected to be faster than mfs, this was

not the case possibly because of the differences in the

implementation and use of different BDD variable ordering

heuristics in SIS and MVSIS. Comparing literals, Table 1 shows that

the CDCs outperform CODCs in the context of the whole network

(columns “fs” vs. “mfs”). In those rare cases when CODCs give

better literal counts, the improvement is attributed to finding a better

ordering of nodes. Our experiments have shown that, on average

over all considered benchmarks, CDCs typically contain 20% more

don’t-care minterms in the local spaces of the nodes, compared to

the CODCs.

For CDCs with windowing (column “mfsw”), Table 1 shows that

the literal count is close to that of CODCs in the context of the

whole network (column “fs”), but the runtime is only 7% of that of

”fs”. Thus, the improvement due to the CDCs is only marginally

outweighed by the degradation due to using a window instead of the

whole network in the case of CODCs. Additionally, window-based

optimization (mfsw) is applicable to very large circuits, well beyond

the scope of full_simplify in SIS or mfs without windowing.

6.2 Experiment 2: Cumulative effect of
improvements

Table 2 shows the results of network optimization using the SAT-

based flow for ITC’99 [5], ISCAS, and PicoJava benchmarks [17].

These benchmarks are relatively large. As a result, BDD-based

methods, full_simplify in SIS and mfs in MVSIS without windowing,

cannot be applied.

The first column of Table 2 lists the benchmark names. The

second column shows the number of inputs, outputs, and latches.

The next three columns contain the number of literals in the factored

forms in (1) the original benchmark after sweeping (“sweep”), (2)

after applying mfs with 2x2 windowing (“mfsw”), and (3) as part of

a script (“script”). The last two columns show the runtime in

seconds for mfsw and script. The script used in this experiment was

mvsis.rugged which is similar to script.rugged of SIS, except that

mvsis.rugged is implemented in MVSIS and the CODC-based SIS

command full_simplify is replaced by the CDC-based MVSIS

command mfs, using 2x2 windows (mfs –w 22) and SAT instead of

BDDs.

Table 2. Network optimization using CDCs, windowing and

SAT.

Literals in factored forms Runtime, sName In/Out/Latch

sweep mfsw script mfsw script

b14 32 / 54 / 245 17388 10664 7911 3.9 18.0

b15 36 / 70 / 449 16244 15056 10948 6.1 22.9

b17 37 / 97 / 1415 57311 49067 37877 35.7 104.8

b20 32 / 22 / 490 35149 21826 16813 7.6 55.0

b21 32 / 22 / 490 35908 22312 16932 9.3 51.1

b22 32 / 22 / 735 52276 33017 25174 13.5 59.8

s15850 14 / 87 / 597 7303 6350 4033 1.2 4.0

s35932 35 / 320 24408 20248 10986 4.2 16.7

s38417 28 / 106 18699 17327 13640 4.5 15.5

pj1 1769 / 1063/0 34828 30547 18076 9.5 37.0

pj2 690 / 429/0 7422 6464 3457 1.1 4.0

Ave 1.00 0.79 0.54 1.00 4.36

Table 2 shows that the proposed don’t-care-based optimization

flow can be applied to quite large circuits. This is because the don’t-

care computation is performed in a window, and therefore is local

and does not depend on the circuit size. The overall runtimes scale

well with the problem size and are predictable; a rule of the thumb is

for mfs –w 22, the computation takes about 1 second per 3000

literals.

The reader can refer to a workshop version of the paper [14] for

the detailed comparison of the performance of SAT and BDDs with

windows of different sizes. In summary, the SAT-based

computations are faster and scale better than the BDD-based ones.

Thus, for 1 1 windows, SAT is on average 20% faster; for 2 2

windows, it is over two times faster while for 4 4 windows, it is

over 7 times faster. This ratio increases further with the window

size.

Acknowledgements

The authors gratefully acknowledge the support of the California

MICRO program and our industrial sponsors, Intel, Fujitsu, Magma,

and Synplicity.

7 Conclusions

This paper contributes several improvements to the optimization

of logic networks using don’t-cares:

Complete don’t-cares are used instead of compatible don’t-

cares. Abandoning compatibility does not lead to any problems

in runtime but does increase the amount of don’t-cares

computed.

To ensure robust computation of don’t-cares, windowing is

used. This technique noticeably reduces the runtime while

computing a substantial subset of the complete don’t-cares for

each node.

A new implementation of the don’t-care computation using

Boolean satisfiability is used, taking advantage of the recent

improvements in the performance of SAT solvers [16]. The

same set of don’t-cares is computed as in the corresponding

BDD-based algorithm, but several times faster.

The experiments described in the paper show that the proposed

improvements enhance the optimization quality reduce the runtime

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

and provide robustness. The overall effect is that the computation of

internal don’t-cares becomes very affordable, even for very large

industrial networks.

Since such ideas make CDC computations quite affordable and

robust, we believe that they can be applied to other Boolean logic

optimization methods, reducing computational cost and improving

optimality. As a result, these Boolean methods become more

affordable and should eventually replace some sub-optimal algebraic

methods for a variety of tasks in logic synthesis.

References

[1] D. Brand. Verification of large synthesized designs. Proc.

ICCAD ’93, pp. 534 -537.

[2] R. K. Brayton. Compatible observability don’t-cares revisited.

Proc. IWLS ’01. pp. 121-126.

[3] N. Eén, N. Sörensson. An extensible SAT-solver. Proc. SAT

‘03. http://www.cs.chalmers.se/~een/Satzoo/

An_Extensible_SAT-solver.ps.gz

[4] E. Goldberg, M.Prasad, R.K.Brayton. Using SAT for

combinational equivalence checking. Proc. DATE ‘01, pp. 114

-121. http://eigold.tripod.com/

[5] ITC ’99 Benchmarks http://www.cad.polito.it/tools/itc99.html

[6] F. Lu, L. Wang, K. Cheng, R. Huang. A circuit SAT solver

with signal correlation guided learning. Proc. DATE ‘03, pp.

892-897.

[7] Y. Jiang, R. K. Brayton. Don’t-cares and multi-valued logic

network optimization. Proc. ICCAD’00, pp. 520-525.

http://www-cad.eecs.berkeley.edu/Respep/Research/mvsis/

[8] A. Kuehlmann, V. Paruthi, F. Krohm, M. K. Ganai. Robust

Boolean reasoning for equivalence checking and functional

property verification. IEEE Trans. CAD, Vol. 21, No. 12,

December 2002, pp. 1377-1394.

[9] J. P. Marques-Silva, K. A. Sakallah, GRASP: A search

algorithm for propositional satisfiability, IEEE Trans. Comp,

vol. 48, no. 5, pp. 506-521, May 1999.

[10] K. McMillan. Applying SAT methods in unbounded symbolic

model checking. Proc. CAV ‘02, LNCS, vol. 2404, pp. 250-264.

[11] A. Mishchenko, R. K. Brayton. Simplification of non-

deterministic multi-valued networks. Proc. ICCAD ‘02, pp.

557-562.

[12] A. Mishchenko, R. K. Brayton. A theory of non-deterministic

networks. Proc. ICCAD ’03, pp. 709-716.

[13] A. Mishchenko, X. Wang, T. Kam. A new enhanced

constructive decomposition and mapping algorithm. Proc. DAC

‘03, pp. 143-148.

[14] A. Mishchenko, R. K. Brayton. SAT-based complete don’t-care

computation for network optimization. Proc. IWLS ‘04, pp.

353-360.

[15] A. Mishchenko. EXTRA library of the DD procedures.

http://www.ee.pdx.edu/~alanmi/research/extra.htm

[16] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, S. Malik.

Chaff: engineering an efficient SAT solver. Proc. DAC ’01, pp.

530–535.

[17] SUN Microelectronics. PicoJava Microprocessor Cores.

http://www.sun.com/microelectronics/picoJava/

[18] F. Somenzi. BDD package “CUDD v. 2.3.0.”

http://vlsi.colorado.edu/~fabio/CUDD/cuddIntro.html

[19] MVSIS Group. MVSIS. UC Berkeley.

http://www-cad.eecs.berkeley.edu/mvsis/

[20] H. Savoj, R. K. Brayton. The use of observability and external

don’t-cares for the simplification of multi-level networks. Proc.

DAC’ 90. pp. 297-301.

[21] H. Savoj. Improvements in technology independent

optimization of logic circuits. Proc. IWLS ’97.

[22] H. Savoj. Don't cares in multi-level network optimization.

Ph.D. Dissertation, UC Berkeley, May 1992.

[23] N. Saluja, S. P. Khatri, A robust algorithm for approximate

compatible observability don't care computation, Proc. DAC

’04, pp. 422-427.

[24] E. Sentovich et al. SIS: A system for sequential circuit

synthesis. Tech. Rep. UCB/ERI, M92/41, ERL, Dept. of EECS,

UC Berkeley, 1992.

[25] S. Yang. Logic synthesis and optimization benchmarks. Version

3.0. Tech. Report. Microelectronics Center of North Carolina,

1991.

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

