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Graph dominators provide a general mechanism for identifying re-converging paths in circuits. This is useful in a number of CAD applications including computation of signal probabilities for test generation, switching activities for power and noise analysis, statistical timing analysis, cut point selection in equivalence checking, etc. Single-vertex dominators are too rare in circuit graphs to handle re-converging paths in a practical way. This paper addresses the problem of finding double-vertex dominators, which occur more frequently. First, we introduce a data structure, called dominator chain, which allows representing all possible O(n 2 ) double-vertex dominators of a given vertex in O(n) space, where n is the number of vertices of the circuit graph. Dominator chains can be efficiently manipulated, e.g. it takes constant time to look-up whether a given pair of vertices is a double-vertex dominator. Second, we present an efficient algorithm for finding double-vertex dominators. The experimental results show that the presented algorithm is an order of magnitude faster than existing algorithms for finding double-vertex dominators. Thus, it is suitable for running in an incremental manner during logic synthesis.

Introduction

This paper considers the problem of finding dominators in circuit graphs. A vertex v is said to dominate another vertex u if every path from u to the output of the circuit contains v [START_REF] Lengauer | A fast algorithm for finding dominators in a flowgraph[END_REF]. For example, in the circuit graph in Figure 1, vertex n dominates vertex e; vertex p dominates vertex h. Dominators provide a general mechanism for identifying reconverging paths in circuits. If a vertex v is the origin of a reconverging path, then the immediate dominator of v is the earliest point at which such a path converges. For example, in Figure 1, the re-converging path originated at e ends at n; the re-converging path originated at g ends at f . Knowing the precise starting and ending points of a reconverging path is useful in a number of applications including computation of signal probabilities for test generation, switching activities for power and noise analysis, statistical timing analysis, cut point selection in equivalence checking, etc.

The signal probability of a net in a combinational circuit is the probability that a randomly generated input vector will produce the value one on this net [START_REF] Parker | Probabilistic treatment of general combinational networks[END_REF]. Efficient signal probability analysis allows to improve the coverage of test generation for biased random simulation. The average switching activity in a combinational circuit is the probability of its net values to change from 0 to 1 or vice versa. It correlates directly with the average power dissipation of the circuit [START_REF] Najm | Transition density: A new measure of activity in digital circuits[END_REF], thus its analysis is useful for guiding logic optimization methods targeting low power.

Computation of signal probabilities and switching activities based on topologically processing the circuit from inputs to outputs and evaluating the gate functions generally produces incorrect results due to higher-order exponents introduced by correlated signals. For example, if the functions f and g have variables in common, then P[ f ∧ g] = P[ f ] • P[g], where P is the signal probability. Dominators provide the earliest points during topological processing at which the re-converging paths meet and thus the signals cease to be correlated. Therefore, the computation of signal probabilities and switching activities can be efficiently partitioned along the dominator points [START_REF] Krenz | Fast algorithm for computing spectral transforms of Boolean and multiple-valued functions on circuit representation[END_REF][START_REF] Seth | PREDICT-probabilistic estimation of digital circuit testability[END_REF][START_REF] Costa | Switching activity estimation using limited depth reconvergent path analysis[END_REF]. At the origin of a reconverging path, v, an auxiliary variable is introduced. At the end of the path, the immediate dominator of v, this variable is eliminated. As a result, the computation is carried out using a minimum set of variables.

Single-vertex dominators can be found in time linear in the number of vertices of the graph [START_REF] Harrel | A linear time algorithm for finding dominators in flow graphs and related problems[END_REF][START_REF] Alstrup | Dominators in linear time[END_REF][START_REF] Buchsbaum | A new, simpler linear-time dominators algorithm[END_REF]. However, they are quite rare in circuits. It is more common that a vertex is dominated by a set of vertices. For example, in Figure 1, primary input b is dominated by the set {e, h}. To be able to deal with re-converging paths in a practical way, an efficient algorithm for computing multipledominators of a small size is needed. Small size is important because usually 2 k combinations of values of a k-vertex dominator have to be manipulated [START_REF] Krenz | Fast algorithm for computing spectral transforms of Boolean and multiple-valued functions on circuit representation[END_REF].

General algorithms for finding multiple-vertex dominators have exponential worst case complexity [START_REF] Gupta | Generalized dominators and post-dominators[END_REF]. Multiple-vertex dominators of a fixed size k can be computed in O(n k ) time, where n is the number of vertices of the circuit graph [START_REF] Dubrova | On relation between non-disjoint decomposition and multiple-vertex dominators[END_REF]. This paper presents an algorithm for finding double-vertex dominators (k = 2), which is significantly faster than the algorithm [START_REF] Dubrova | On relation between non-disjoint decomposition and multiple-vertex dominators[END_REF]. The efficiency of our algorithm is due to a number of interesting properties of double-vertex dominators. The most important one is that the set of all possible double-vertex dominators of a given vertex can be represented by a unique dominator chain of linear size which can be looked-up in constant time.

Being able to efficiently represent and manipulate all doublevertex dominators for a given vertex is important, because it makes the computation of common dominators easy. As we show in the paper, double-vertex dominators for a set of vertices can be derived from the dominator chains of individual vertices.

The paper is organized as follows. Section 2 presents the notation. Section 3 summarizes the previous work. Sections 4 and 5 introduce the new data structure and the dominator algorithm, respectively. The experimental results are shown in Section 6. 

Properties of Dominators

Let C = (V, E, root) denote a single-output directed acyclic circuit graph, where V represents the set of gates and primary inputs and E ⊆ V ×V describes the nets connecting the gates. A particular vertex root ∈ V is marked as the circuit output.

A vertex v dominates another vertex u if every path from u to the root contains v [START_REF] Lengauer | A fast algorithm for finding dominators in a flowgraph[END_REF]. Vertex v is the immediate dominator of u, if v dominates u and every other dominator of u dominates v. For example, in Figure 1, vertex n is the immediate dominator of j, e and k; vertex f is the immediate dominator of n and p. Every vertex v ∈ V except root has a unique immediate dominator, idom(v) [START_REF] Lowry | Object code optimization[END_REF]. The edges {(idom(v), v) | v ∈ V -{root}} form a directed tree T (C) rooted at root, called the dominator tree of C. Figure 1(b) shows the dominator tree for the circuit in Figure 1(a). Dominators provide a general mechanism for identifying reconverging paths in circuit graphs. Every edge of the dominator tree (idom(v), v) ∈ T (C) represents the starting and the ending points of a path. If the fanout degree of v, Fanout(v) = {u |(v, u) ∈ E}, is one, then the re-converging path is trivial (i.e. an edge). Otherwise, vertex v is the origin of a re-converging path and vertex idom(v) is the earliest point at which such a path converges. For example, in Figure 1(a), the re-converging path originated at e ends at idom(e) = n; the re-converging path originated at b ends at idom(b) = f . Many graphs do not have any single-vertex dominators except root. It is more common that a vertex is dominated by a set of vertices. Below we give a general definition for a set of vertices being dominated by another set. When the sizes of both sets are one, this definition reduces to the above mentioned definition from [START_REF] Lengauer | A fast algorithm for finding dominators in a flowgraph[END_REF].

Definition 1 A set of vertices {v 1 ,...,v k } is a common multiple- vertex dominator of size k for a set of vertices {u 1 ,...,u l } ⊂ V - {v 1 ,...,v k }, if
1. every path from any u j , p ∈ {1,...,l}, to root contains some v i , i ∈ {1,...,k} 2. for every v i , there exists at least one path from some u p , p ∈ {1,... ,l}, to root which contains v i and does not contain any other v j , i, j ∈ {1,... ,k}, i = j.

In the paper, we omit the word "common" when l = 1, i.e. when a set dominates a single vertex.

The second condition of the Definition 1 is needed to remove redundancies. For example, in Figure 1(a), all paths from e to f pass through the set of vertices { j, n}. However, vertex j is redundant, because n is a single-vertex dominator of e.

Note, that the notion of dominator is more general than the notion of min-cut in circuit partitioning [START_REF] Kernighan | An efficient heuristic procedure for partitioning of electrical circuits[END_REF]. A min-cut is required to dominate all vertices in its transitive fanin.

A number of properties are specific for multiple-vertex dominators. First, in single-vertex case, any vertex v ∈ V -{root} is dominated by at least one vertex, root. Multiple-vertex dominators may not exist for some vertices. For example, a tree-like circuit does not have any multiple-vertex dominators. In a tree structure the condition (2) of the Definition 1 is not satisfied for any subset {v 1 ,...,v k }, k > 1, since the individual vertices v i , i ∈ {1,... ,k}, dominate all vertices in their transitive fanins.

Second, the immediate k-vertex dominators are not unique for k > 2. We define immediate k-vertex dominators as follows.

Definition 2 The set W = {v 1 ,...,v k } in an immediate common k- vertex dominator of {u 1 ,...,u l }, if W is a common k-vertex domi- nator of {u 1 ,...,u l }
and there is no other common k-vertex dominator of {u 1 ,...,u l }, W , such that each vertex of W is either dominated by W or belongs to W . 

Previous Work

The problem of finding single-vertex dominators was first considered in global flow analysis and program optimization. Lorry and Medlock [START_REF] Lowry | Object code optimization[END_REF] presented an O(n 4 ) algorithm for finding all immediate single-vertex dominators in a flowgraph with n vertices. Successive improvements of this algorithm were done by Aho and Ullman [START_REF] Aho | The Theory of Parsing, Translating, and Compiling[END_REF], Purdom and Moore [START_REF] Purdom | Immediate predominators in a directed graph[END_REF], and Tarjan [START_REF] Tarjan | Finding dominators in a directed graphs[END_REF], culminating in Lengauer and Tarjan's [START_REF] Lengauer | A fast algorithm for finding dominators in a flowgraph[END_REF] O(eα(e, n)) algorithm, where e is the number of edges and α is the standard functional inverse of the Ackermann function which grows slowly with e and n.

The asymptotic time complexity of finding single-vertex dominators was reduced to linear by Harel [START_REF] Harrel | A linear time algorithm for finding dominators in flow graphs and related problems[END_REF], Alstrup et al. [START_REF] Alstrup | Dominators in linear time[END_REF] and Buchsbaum et al. [START_REF] Buchsbaum | A new, simpler linear-time dominators algorithm[END_REF]. However, these improvements in asymptotic complexity did not contribute much to reducing the actual runtime. For example, the algorithm [START_REF] Buchsbaum | A new, simpler linear-time dominators algorithm[END_REF] runs 10% to 20% slower than Lengauer and Tarjan's [START_REF] Lengauer | A fast algorithm for finding dominators in a flowgraph[END_REF]. Lengauer and Tarjan algorithm appears to be the fastest of algorithms for single-vertex dominators on graphs of large size.

While it is possible to compute all single-vertex dominators in linear time, algorithms for finding all multiple-vertex dominators for a directed graph have exponential worst case complexity [START_REF] Gupta | Generalized dominators and post-dominators[END_REF]. In [START_REF] Dubrova | On relation between non-disjoint decomposition and multiple-vertex dominators[END_REF], it was shown that it is possible to compute multiple-vertex dominators of a fixed size k in polynomial time. The algorithm presented in [START_REF] Dubrova | On relation between non-disjoint decomposition and multiple-vertex dominators[END_REF] finds the set of all possible kvertex dominators for a circuit graph C = (V, E, root) by iteratively restricting C with respect to one of its vertices, v ∈ V . The restriction is done by removing from V all vertices dominated by v, S(v). Dominators of size k -1 are computed for the resulting restricted graph C = (V , E , root), with V = V -S(v) and

E = E -{(u, w)|u ∈ S(v) ∨ w ∈ S(v)},
by applying the same technique recursively. Once k is reduced to 1, a single-vertex dominator algorithm is used. Since single-vertex dominators can be computed in linear time, the overall complexity of the algorithm [START_REF] Dubrova | On relation between non-disjoint decomposition and multiple-vertex dominators[END_REF] is bounded by O(|V | k ).

Dominator Chain

In this section, we introduce a data structure called dominator chain which allows representing all possible O(|V | 2 ) doublevertex dominators of a given vertex in O(|V |) space.

Definition 3 For any u ∈ V , the dominator chain D(u) is a vector of type

{V 11 ,V 21 }, {V 12 ,V 22 },...,{V 1m ,V 2m } whose elements V i j , i ∈ {1, 2}, j ∈ {1,... ,m}, 0 ≤ m < |V |/2
, are vectors of vertices of V . Every pair {V 1 j ,V 2 j } satisfies the following properties:

1. For every v ∈ V i j , there exists a matching vector W = w 1 ,...,w s , which is a sub-vector (i.e. linear interval) of

V k j , k ∈ {1, 2}, k = i, such that
• for all r ∈ {1,... ,s}, {v, w r } is a double-vertex dominator of u;

• no other pair of vertices {v, v }, v ∈ V -W , is a doublevertex dominator of u;

• the order of the elements of the matching vector W is given by: if {v, w r } is a double-vertex dominator of w t , then t < r, for all r,t ∈ {1,... ,s}, r = t.

2. The immediate double-vertex dominator of u is the first elements of V 11 and V 21 . For all j ∈ {2,...,m}, the immediate common double-vertex dominator of the last elements of V 1 j-1 and V 2 j-1 is the first elements of V 1 j and V 2 j . There is no common double-vertex dominator of the last elements of V 1m and V 2m .

No pair

{V 1 j ,V 2 j }, ∀ j ∈ {1,... ,m}, can be partitioned into two pairs {V 1 j 1 ,V 2 j 1 } and {V 1 j 2 ,V 2 j 2 }, where V 1 j 1 ∪ V 1 j 2 = V 1 j , V 1 j 1 ∩V 1 j 2 = Ø, V 2 j 1 ∪V 2 j 2 = V 2 j , V 2 j 1 ∩V 2 j 2 = Ø, which
satisfy properties 1 and 2.

As an example, consider the circuit shown in Figure 2. The set of all double-vertex dominators for u is: {a, b}, {a, c}, {a, d}, {e, c}, {e, d}, {h, c}, {h, d}, {h, g}, {k, l}, {m, l}, {k, n}, {m, n}. The dominator chain for u is

{V 11 ,V 21 }, {V 12 ,V 22 } = { a, e, h , b, c, d, g }, { k, m , l, n }
The matching vector W of any vertex v in the dominator chain contains all vertices w such that {v, w} is a double-vertex dominator of u. In Figure 2, the matching vector for vertex a is b, c, d ; the matching vector for d is a, e, h . The first elements of V 11 and V 21 , {a, b}, are the immediate double-vertex dominator of u. The first elements of V 12 and V 22 , {k, l}, are the immediate common double-vertex dominator of the last elements of V 11 and V 21 , {h, g}. The pair {m, n} does not have any common double-vertex dominator.

To prove that the dominator chain contains all possible doublevertex dominators of a vertex, we first show several fundamental properties of double-vertex dominators. Let Dom(u) denote the set of all possible double-vertex dominators of u. The first Lemma says that, if two dominators have a vertex in common, then one of them dominates the non-common vertex of the other one.

Lemma 1 If {v 1 , v 2 } ∈ Dom(u) and {v 2 , v 3 } ∈ Dom(u), then ei- ther {v 1 , v 2 } ∈ Dom(v 3 ) or {v 2 , v 3 } ∈ Dom(v 1 ).
Proof: Suppose v 3 is not dominated by {v 1 , v 2 }. Since {v 2 , v 3 } ∈ Dom(u), there exists a path from u to root, p u→root , which contains v 3 and does not contain v 2 . Since {v 1 , v 2 } ∈ Dom(u), p u→root contains v 1 . Furthermore, v 1 precedes v 3 in p u→root , because, by assumption, {v 1 , v 2 } ∈ Dom(v 3 ) and thus there exists a path p v 3 →root which does not contain neither v 1 nor v 2 .

The part p u→v 1 of the path p u→root does not contain v 2 and v 3 . Each path p v 1 →root contains either v 2 nor v 3 , because otherwise the existence of the path p u→v

1 p v 1 →root would contradict {v 2 , v 3 } ∈ Dom(v 1 ). Thus, by Definition 1, {v 2 , v 3 } ∈ Dom(v 1 ). Similarly we can show that {v 2 , v 3 } ∈ Dom(v 1 ) implies {v 1 , v 2 } ∈ Dom(v 3 ).

2

The second Lemma covers the case of two dominators with no vertices in common. 

, v 2 } ∈ Dom(v 3 ) implies that v 1 is a single-vertex dominator of v 3 . Thus, {v 3 , v 4 } ∈ Dom(u) implies that {v 1 , v 4 } ∈ Dom(u). (b) Suppose that v 3 precedes v 2 in p v 2 →v 3 . Then, {v 3 , v 4 } ∈ Dom(v 2 ) implies that v 4 is a single-vertex dominator of v 2 . Thus, {v 1 , v 2 } ∈ Dom(u) implies that {v 1 , v 4 } ∈ Dom(u).
- tor. Since v 2 is common, it should hold that {v 1 , v 2 } ∈ Dom(v 3 ) and {v 2 , v 3 } ∈ Dom(v 1 ). This contradicts Lemma 1, which says that either {v 1 , v 2 } ∈ Dom(v 3 ) or {v 2 , v 3 } ∈ Dom(v 1 )
. case 2: By Lemma 2, either (1) {v 1 , v 2 } dominates both vertices in {v 3 , v 4 } (or vice versa), or (2) there exists two other dominators of u, each having a vertex in common with both {v 1 , v 2 } and {v 3 , v 4 }. In the first case, one of the dominators does not satisfy Definition 2. In the second case, case 1 applies to show that only one of the overlapping dominators can be immediate.

2

Now we give the main result of the paper. The proof is based on Lemmata 1 and 2 and Theorem 1.

Theorem 2

The dominator chain exists for any u ∈ V . It contains all possible double-vertex dominators of u. All pairs {V 1 j ,V 2 j }, j ∈ {1,... ,m}, are uniquely defined. For each i ∈ {1, 2}, the overall number of vertices ∑ m j=1 |V i j | is smaller than the longest path from u to root.

For vertices with no double-vertex dominators, e.g. root, the dominator chain is an empty vector.

The following Lemma shows that different vectors V i j 's of a dominator chain do not intersect.

Lemma 3 Any two distinct vectors V i j and V kl in the dominator chain do not have vertices in common:

V i j ∩V kl = V i j = V k j , if i = k and j = l,

Ø, otherwise

for all i, k ∈ {1, 2}, j, l ∈ {1, 2,... ,m}.

It follows from Lemma 3 that the dominator chain can be represented in an O(|V |) space. To make possible constant-time lookup in the dominator chain D(u), three parameters are assigned to vertices:

• For all v ∈ V : f lag(v) ∈ {1, 2}, distinguishing whether v belongs to V 1 j or to V 2 j . In the example in Figure 2, vertices b, c, d and g belong to V 21 , hence their f lag equals 2.

• For all v ∈ D(u): index(v) ∈ {1, 2,... ,∑ m j=1 |V i j |} indicating the position of v in the vector V i1 ,V i2 ,...,V im , i = f lag(v). By Lemma 3, index(v) is uniquely defined (up to permutation of vectors V 1 j and V 2 j in the pairs {V 1 j ,V 2 j }). In the example in Figure 2 Then, checking whether {v 1 , v 2 } dominates u can be done as follows:

1. Check whether f lag(v 1 ) is not equal to f lag(v 2 ). If yes, go to step 2. Otherwise, {v 1 , v 2 } ∈ D(u).

Check whether min

(v 1 ) ≤ index(v 2 ) ≤ max(v 1 ). If yes, the {v 1 , v 2 } ∈ D(u). Otherwise, {v 1 , v 2 } ∈ D(u).
For example, suppose we check whether {d, h} dominates u in the example in Figure 2

. Vertex d is in V 21 , therefore f lag(d) = 2. Vertex h is in V 11 , i.e. f lag(h) = 1. Since f lag(d) = f lag(h),
we continue to the step 2. We have min(d) = 1, max(d) = 3 and index(h) = 2. Since 1 ≤ 2 ≤ 3 holds, we conclude that {d, h} dominates u.

As another example, let us check whether {g, a} dominates u. On step 1, f lag(g) = 2 and f lag(a) = 1. Since f lag(g) = f lag(a), we continue to the step 2. We have min(g) = max(g) = 3, and index(a) = 1. Since 3 ≤ 1 ≤ 3 does not hold, we conclude that {g, a} does not dominate u.

The problem of computing common double-vertex dominators for a set of vertices u 1 , u 2 ,...,u k can be transformed to the problem of computing double-vertex dominators for a single vertex using the following technique. We add a "fake" vertex u as a predecessor of u 1 , u 2 ,...,u k . Clearly, each {v 1 , v 2 } ∈ D(u) is a common dominator for the set u 1 , u 2 ,...,u k as well. Thus, Definition 3 can be extended to the set of vertices D(u 1 , u 2 ,...,u k ) with a small modification that the first elements of V 11 and V 21 represent the immediate common double-vertex dominator of the set u 1 , u 2 ,...,u k . Similarly, all presented theorems and lemmata can be extended to common double-vertex dominators.

Dominator chain D(u 1 , u 2 ,...,u k ) can be computed directly from the dominator chains of individual vertices

D(u i ) in O(k • min{|D u 1 |, |D u 2 |,...,|D u k |) time, i ∈ {1,...,k}.

Dominator Algorithm

The presented algorithm takes as its input a Boolean circuit C = (V, E, root) and a vertex u ∈ V . It returns the dominator chain D(u). The pseudo-code is shown in Figure 3. 

Experimental Results

This section compares the performance of the presented algorithm to the algorithm [START_REF] Dubrova | On relation between non-disjoint decomposition and multiple-vertex dominators[END_REF]. Table 1 summarizes the results for 30 largest benchmarks from IWLS'02 benchmark set. Columns 1, 2 and 3 show the name of the function, the number of primary inputs and primary outputs, respectively. Column 5 shows the total sum of double-vertex dominators which dominate at least one primary input. This number is the same for the presented algorithm and the algorithm [START_REF] Dubrova | On relation between non-disjoint decomposition and multiple-vertex dominators[END_REF], because they both compute all possible double-vertex dominators for a given vertex. For a comparison, we also show in Column 4 the total sum of single-vertex dominators which dominate at least one primary input, computed using Lengauer and Tarjan's algorithm [START_REF] Lengauer | A fast algorithm for finding dominators in a flowgraph[END_REF]. In both cases, common dominators are counted only once. Every output is treated as a separate function. The numbers shown in Columns 4 and 5 are the total sum for all outputs of the circuit.

Columns 7 and 8 show runtime, in seconds, measured using the Unix command time (user time). The experiments were performed on a PC with a 650 MHz Pentium3 CPU and 256 MByte main memory. One can see that, on average, the presented algorithm is 27 times faster than the algorithm [START_REF] Dubrova | On relation between non-disjoint decomposition and multiple-vertex dominators[END_REF]. Some circuits may have less double-vertex dominators than single-vertex ones (C2670, des). Usually these are circuits with many single-vertex dominators. Recall that the definition of multiple-vertex dominator excludes redundancies. Therefore, in the extreme case of a tree-like circuit with n vertices "N single doms" would be n and "N double doms" would 0. No pair of vertices in a tree-like circuit satisfies the Definition 1.

Conclusion

This paper has two main contributions. First, we introduce a data structure for representing double-vertex dominators, which has a linear size and can be efficiently manipulated. Second, we design an algorithm for finding double-vertex dominators, which is, on average, an order of magnitude faster than the algorithm [START_REF] Dubrova | On relation between non-disjoint decomposition and multiple-vertex dominators[END_REF]. The speed of the presented algorithm makes it suitable for running in an incremental manner during logic synthesis.

Future work includes exploring new applications of the presented algorithm, e.g. statistical timing analysis.

Figure 1 :

 1 Figure 1: (a) Example circuit; (b) Its dominator tree.
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 1 Figure 1 gives an example. Vertex b has two immediate 3vertex dominators: {e, l, m} and {h, j, k}. In Section 4 we show that immediate k-vertex dominators are unique for k = 2.
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  , index(b) = 1, index(c) = 2, index(l) = 5 and index(n) = 6. • For all v ∈ D(u): a pair (min(v), max(v) = (index(w 1 ), index(w |W | )), where w 1 and w |W | are the first and the last vertices of the matching vector W of v. In the example in Figure 2, (min(b), max(b)) = (1, 1), (min(c), max(c)) = (1, 3), (min(d), max(d)) = (1, 3) and (min(g), max(g)) = (3, 3).

case 2 :

 2 If there is no path p v 2 →v 3 , then, similarly to (a), {v 1 , v 2 } ∈ Dom(v 3 ) implies that v 1 is a single-vertex dominator of v 3 . Thus,{v 3 , v 4 } ∈ Dom(u) implies that {v 1 , v 4 } ∈ Dom(u).2 Next, we prove that immediate double-vertex dominators are unique. As we showed in Section 2, this property does not extend to dominators of larger size. For every vertex u ∈ V , the immediate double-vertex dominator, if it exists, is unique. By contradiction. Suppose u has two immediate doublevertex dominators: {v 1 , v 2 } and {v 3 , v 4 }. Two cases are possible:(1) {v 1 , v 2 } and {v 3 , v 4 } have one common vertex, and (2) {v 1 , v 2 } and {v 3 , v 4 } do not have common vertices. case 1: Suppose v 2 is the common vertex, i.e. the second immediate dominator is {v 2 , v 3 }. By Definition 2, every vertex of an immediate dominator cannot be dominated by any other domina
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				N	N		runtime, sec	
				single	double	[11]	new	impr.
	name	in	out	doms	doms	t 1	t 2	t 1 /t 2
	C1355	41	32	6	10512	3.5	0.45	7.78
	C1908	33	25	636	5696	1.5	0.36	4.17
	C2670	233	140	2091	410	1.55	0.23	6.74
	C3540	50	22	727	5657	6.85	0.42	16.31
	C432	36	7	195	2127	0.3	0.17	1.76
	C499	41	32	960	9968	2.3	0.45	5.11
	C5315	178	123	4093	11068	5.5	0.71	7.75
	C6288	32	32	480	3366	58.89	0.88	66.92
	C7552	207	108	4604	14728	7.27	1.16	6.27
	C880	60	26	432	1309	0.26	0.18	1.44
	alu2	10	6	48	55	0.81	0.16	5.06
	alu4	14	8	77	214	3.36	0.16	21.00
	apex5	114	88	800	8107	3.21	0.61	5.26
	apex6	135	99	525	1169	0.42	0.24	1.75
	apex7	49	37	140	476	0.17	0.15	1.13
	cmb	16	4	38	60	0.16	0.09	1.78
	comp	32	3	8	439	0.16	0.12	1.33
	cordic	23	2	38	65	0.12	0.1	1.20
	des	256	245	3361	2349	8.19	0.77	10.63
	frg2	143	139	1502	3609	1.76	0.44	4.00
	i8	133	81	2068	3296	2.87	0.5	5.74
	i9	88	63	876	1827	0.95	0.3	3.17
	i10	257	224	6446	30608	16.32	1.57	10.39
	pair	173	137	2459	9196	1.82	0.63	2.89
	rot	135	107	1657	4617	1.49	0.38	3.92
	term1	34	10	46	453	0.31	0.16	1.94
	too large	38	3	971	1467	423.73	0.69	614.1
	x1	51	35	366	1297	0.99	0.22	4.50
	x3	135	99	495	1801	0.68	0.22	3.09
	x4	94	71	305	2250	0.41	0.18	2.28
	average	95	67	1215	4607	18.5	0.42	27.65
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algorithm DOMINATORCHAIN (V, E, root, u) v = u; k = 1; last index 1 = 0; last index 2 = 0; while 1 do idom(v) = SINGLEIDOM (v,V, E, root); /* defines the end of search region */ S = {v}; while 1 do i = 1; j = 1; V 1k = Ø; V 2k = Ø; {w 1 , w 2 } = DOUBLEIDOM (S,V, E, idom(v)); if {w 1 , w 2 } = Ø then break ; /* w 1 and w 2 become the 1st elements of V 1k and V 2k */ index(w 1 ) = last index 1 + 1; index(w 2 ) = last index 2 + 1; The outer while-loop partitions the circuit graph into regions using single-vertex dominators of u as cut points. Double-vertex dominators of u are searched within these regions.

The immediate double-vertex dominator for a given set S is obtained by DoubleIDom(S,V, E, idom(v)) by computing the maximum flow between the multiple sources defined by S and the sink idom(v). Each vertex in the V except the source and sink vertices is assigned a unit capacity. The source and sink vertices are assigned infinite capacity. The capacity limits the amount of flow through a vertex. According to min-cut maxflow theorem [START_REF] Ford | Maximum flow through a network[END_REF], the maximum possible flow is equal to the capacity of the min-cut disconnecting the source and the sink. In our case, the maximalvolume min-cut of size two corresponds to the immediate doublevector dominator for S. If the size of the cut is larger than two, DOUBLEIDOM returns an empty set.

Maximum flow is computed by constructing augmenting paths from the sources to the sink [START_REF] Ford | Maximum flow through a network[END_REF]. The algorithm repeatedly seeks an augmenting path and uses it to increase the maximum flow. At the same time, the capacitance of all edges involved in the path gets reduced by a unit. The algorithm stops when no such augmenting path exists. Our version of the augmenting path algorithm uses vertex capacitances instead of edge capacitances. Edges are used to direct possible path construction only.

If the double-vertex dominator {w 1 , w 2 } computed by DOUBLEIDOM is not an empty set, then w 1 is added to V 1k and w 2 is added to V 2k as first elements. ADDVECTOR(V ak , a,W, v) modifies V ak to accommodate the matching vector W of v as a part of it. Then, indexes of vertices of V ak are updated by the function UPDATEINDEX(|V ak |,V ak ) (Figure 4). Besides, ADDVECTOR assigns (min(v), max(v)) = (index(w 1 ), index(w |W | )) in V ak , where w 1 and w |W | are the first and the last elements of W , respectively. Further, for all w i , i ∈ {1,...,|W |}, the value a assigned to f lag(w i ), and the values of min(w i ) and max(w i ) are updated as follows:

1. min(w i ) is assigned the minimal of values {min(w i ), index(v)}, 2. max(w i ) is assigned the maximal of values {max(w i ), index(v)}, 3. if min(w i ) and max(w i ) are not defined yet, (min(w i ), max(w i )) are set to (index(v), index(v)).

Next, the dominator chain is updated. UPDATECHAIN applies FINDMATCHINGVECTOR(v,V bk , root) to find the matching vector for v which is ith element of V ak . The resulting vector is added to V bk using ADDVECTOR.

FINDMATCHINGVECTOR(v,V bk , root) works as follows. First, we look-up V bk to find a vertex w with index(w) = min(v). Such a vertex w always exists. This vertex becomes the first element of W . Then, we compute the immediate single-vertex dominator of w for the restricted circuit C = (V , E , root), with V = Vv and E = E -{(y, v)|y ∈ V -{v}}. By restricting the circuit we exclude from consideration all paths from u to root (root is local to FINDMATCHINGVECTOR(v, root)) which contain v. The computed idom(w) together with v is a double-vertex dominator for u, thus idom(w) is appended to the end of W . While-loop continues until the local root is reached.

When the current pair {V 1k ,V 2k } is updated for all vertices, it is added to D(u) as next element. When root is reached, DOMINATORCHAIN terminates by returning the resulting dominator chain D(u) for u.