Jae-Gon Lee
email: jglee@vslab.kaist.ac.kr

Moo-Kyoung Chung

Ki-Yong Ahn

Sang-Heon Lee
email: shlee@vslab.kaist.ac.kr

Chong-Min Kyung
email: kyung@vslab.kaist.ac.kr

A Prediction Packetizing Scheme for Reducing Channel Traffic in Transaction-Level Hardware/Software Co-emulation

This paper presents a scheme for efficient channel usage between simulator and accelerator where the accelerator models some RTL sub-blocks in the accelerator-based hardware/software co-simulation while the simulator runs transaction-level model of the remaining part of the whole chip being verified. With conventional simulation accelerator, evaluations of simulator and accelerator alternate at every valid simulation time, which results in poor simulation performance due to startup overhead of simulatoraccelerator channel access. The startup overhead can be reduced by merging multiple transactions on the channel into a single burst traffic. We propose a predictive packetizing scheme for reducing channel traffic by merging as many transactions into a burst traffic as possible based on 'prediction and rollback.' Under ideal condition with 100% prediction accuracy, the proposed method shows a performance gain of 1500% compared to the conventional one.

1 Experimental results obtained with iPROVE TM tested with Pentium-4 2.8 GHz with 512 Mbytes of RAM and 32-bit PCI bus running at 33 MHz.

Introduction 1.Transaction-Level Modeling

Transaction-level modeling (TLM), usually described in SystemC, is a modeling style for SoC design with its focus on the external functional behavior of each block and interblock communications without imposing excessive implementation details [START_REF] Grotker | System Design with SystemC TM[END_REF][START_REF]Functional Specification for SystemC TM 2[END_REF]. According to the modeling of time, TLM is divided into two categories: architectural TLM and micro-architectural TLM [START_REF] Muller | SystemC TM : Methodology and Applications[END_REF][START_REF] Pasricha | Transaction level modeling of SoC with Sys-temC 2.0[END_REF]. In architectural TLM, simulation time is only roughly modeled. This method is suitable for early stage prototyping of SoC. In microarchitectural TLM, the simulation time is modeled in a fully cycle-accurate manner. With micro-architectural TLM, we can verify SoC design in the early design stage with 100% cycle accuracy [START_REF] Arm | AMBA AHB Cycle Level Inteface (AHB CLI) Specification[END_REF][START_REF] Caldari | Transaction-Level Models for AMBA Bus Architecture Using SystemC 2.0[END_REF]. This paper deals with simulation acceleration of micro-architectural TLM.

The simulation speed of TLM is much faster than that of RTL simulation. It is reported that the micro-architectural transaction-level models run at least two orders of magnitude faster than RTL models; simulation speeds of at least 100 kHz for a complete system simulation are readily achievable [START_REF] Arm | ARM System-Level Modeling[END_REF][START_REF] Clouard | Experiences and Challenges of Transaction-Level Modeling with SystemC 2[END_REF][START_REF] Muller | SystemC TM : Methodology and Applications[END_REF]. It is also possible to mix transaction level models with RTL models for gradual refinements but low simulation speed of RTL blocks limits the total simulation performance. In simulation accelerators, introduced to increase the RTL simulation speed, the limited throughput of the channel between simulator and simulation accelerator often restricts the overall performance gain.

Characteristics of the Simulator-Accelerator Channel

The channel between the simulator and the accelerator is composed of layers of API (Application Program Interfaces), device driver, and physical media each with static startup overhead. When PCI-based built-in simulation accelerator is used, experimental results show that startup overhead time is as big as 12.2 usec for each channel access whereas the payload times for simulator-to-accelerator and accelerator-to-simulator transfers are 49.95 nsec/word and 75.73 nsec/word each. 1 To utilize the channel more efficiently, we need to send lots of data at a single time. But that's not possible with conventional simulation accelerators where the progress of simulator and accelerator are synchronized every simulation time. The amount of data to be sent between two simulation domains for a single simulation cycle is often too small to justify the startup overhead time of the channel; for an SoC design where each building block is interconnected via system bus, the amount of data does not exceed five words at a time. As a result, the transfer on the channel is composed of a series of short bidirectional transfers.

If we can remove one of the two types of transfers, we can merge remaining data transfers as a single transfer to minimize the number of channel accesses. This requires prediction of the states of the other simulation domain and recoveries from bad predictions. This paper deals with an optimistic simulator-accelerator channel usage based on 'prediction and rollback' to maximize the simulation speed when transaction-level models are executed by simulator while the behavior of RTL blocks is represented by accelerator.

Related Works

Parallel discrete event simulation (PDES), sometimes called distributed simulation, refers to the execution of a single discrete event simulation program on a parallel computer [START_REF] Fujimoto | Parallel discrete event simulation[END_REF]. The concept of 'prediction and rollback' was first developed in PDES to extract maximum parallelism from a given problem. In the conservative method the progress of each process is synchronized at every simulation time. On the other hand, in optimistic method, each process proceeds assuming that there are no incoming messages. When a process receives a message with a time stamp smaller than the current simulation time, the process rollbacks to a previous state and sends negative messages to negate incorrect messages sent by the process.

The 'prediction and rollback' concept was first applied to SoC design by Yoo [START_REF] Yoo | Fast Hardware-Software Coverification by Optimistic Execution of Real Processor[END_REF], where ARM prototype board models ARM processor and high level simulator models the behavior of hardware IPs. Yoo tried to minimize the channel accesses between the prototype board and simulator. But, his approach is based on high-level simulation without cycle-accurate behavior, which limits its practical use.

In [START_REF] Lee | Simulation Acceleration of Transaction-Level Models for SoC with RTL sub-blocks[END_REF], we proposed an "optimistic" simualtoraccelerator channel usage scheme based on 'prediction and rollback'. With the proposed method, one of the two verification domains, i.e, simulation domain and acceleration domain, leads the other. The leader predicts the responses of the lagger so as to remove lagger-to-leader transfers on the channel. This allows to merge multiple leader-to-lagger transfers on the channel to minimize startup overhead of channel access. The proposed method has two operating modes, i.e., Simulator Leading Accelerator (SLA) and Accelerator Leading Simulator (ALS) depending on which of the two verification do-mains leads the other. The duration of each SLA or ALS phase is named as a transition and a single transition is composed of four steps.

• Run-Ahead step (RA step) where leader proceeds predicting responses of lagger. Output of leader are not sent to lagger until RA step is over. Instead they are stored in Leader Output Buffer (LOB).

• Follow-Up step (FU step) where lagger follows up with the leader.

• Optional RollBack step (RB step) where leader rolls back to a previous state in case of prediction error detected.

• Optional Roll-Forth step (RF step) where leader runs again from the previous state to reach the progress of lagger.

Even though the proposed method can have great performance improvement compared to the conventional method, the paper focused on cases where two blocks residing in two different verification domains communicate over static interconnections between them and failed to handle cases where multiple blocks are dynamically interconnected with a bus.

Problem Definition

We applied the "optimistic" channel usage pattern to SoC model where building blocks with different abstraction levels, i.e., TL and RTL, are interconnected with a system bus. It is assumed that the system bus follows the Advanced High-performance Bus (AHB) specification. 2 The bus dynamically utilizes interconnections among bus components, i.e., bus masters and bus slaves, to use the common resource for multidirectional data transfers. The dynamic utilization includes dynamic decision of data flow direction, dynamic decision of active bus components, dynamic decision of active interconnections, etc., which complicate the application of the "optimistic" channel usage pattern to SoC verification. The complications are summarized as follows.

1. How to split a single bus model into two sub-bus models without combinatorial half loops between them?

2. How to limit number and types of signals between the two sub-bus models so that we can predict contents of at least one of the bidirectional data transfers between them?

3. Dynamic decisions on how to packetize bus signal values between the two sub-bus models.

4. Dynamic decisions among SLA, ALS and "conservative" operating modes.

We can meet the first constraint by letting each bus component to be present only in one of the two verification domains, i.e., simulation domain and acceleration domain. As most bus specifications limit communication between bus components to take place only at edges of a clock signal, there can be no combinatorial half loop if each component is present only in a single verification domain.

We can meet the second constraint by limiting the subject of data transfers between simulator and accelerator only to elements of minimal set of active bus signals. Set 4 Except for the arbitration request signals, all the elements of MSABS are related to data transfer on the bus and we call it transaction bus signals. In short, MSABS can be divided into two subsets of set of transaction bus signals and set of arbitration request signals. Among elements of set of transaction bus signals, values of address and control signals of active bus master can be deduced from their values at the start of a burst transfer on the target bus as their values either increase linearly over time or remain constant throughout a single burst transaction on the target bus. In other words, they are "predictable." Responses of active bus slave are also "predictable" as they just represent whether the active bus slave can handle bus transaction at a particular target time, which can be modeled with a simple producer-consumer model. This leaves read data and 3 Active bus master refers to a bus master that is granted for bus access and active bus slave refers to a bus slave that is accessed by the active bus master. 4 Signal name in parentheses denotes the name of the corresponding signal under AHB specification [START_REF] Arm | AMBA Specification[END_REF]. It is assumed that arbitration priority and address maps of bus slaves are statically defined. This removes output signals of arbiter and decoder from the minimal set of active bus signals whose states (values) can be deduced from arbitration request signals and address signals.

Set of transaction bus signals

Set of bus signals

Set write data whose values cannot be effectively predicted, i.e., "non-predictable." As only one of the two data signals is active at a time, we set the source of the data flow as leader and the sink of it as lagger so that we do not need to predict values of data signals.

Elements of set of arbitration request signals are "nonpredictable" as we cannot predict whether a bus master will request for bus access at a particular target time. We cannot apply the same solution we used for data signals here as there can be sources of arbitration request signals, i.e., bus masters, on either side of simulator-accelerator channel. In other words, we should be able to predict the values of bus request signals driven by bus masters residing in lagger. But as the arbitration request signals contribute only to the generation of arbitration result signal, it suffices to be able to predict arbitration result signal value. In SoC designs where large amount of data flow in bursts between building blocks, the arbitration result tends to change only occasionally and we can effectively predict its value from its previous one. Figure 1 summarizes the above explanation. When there is any signal other than bus signals interconnecting two building blocks residing in different verification domains, interrupt signal to be one of the most common examples, it should be treated the same as elements of MSABS and should be a subject of prediction, too.

The remaining problems related to dynamic use of simulator-accelerator channel are handled in Sect. 5.

Bus modeling

Figure 2 shows how a single SoC model is split into two verification domains according to abstraction level of each component. For this purpose, a single bus model should be

Operations of Channel Wrapper

The operation of CW is realized with a state diagram shown in Fig. 3. Each of the two CWs holds its own state and their combination represents each step of a transition. Operations of CW can be grouped into six paths denoted as F (roll-Forth), P (Prediction), S (Synchronization), L (Lagger), R (Report), and C (Conservative) paths in Fig. 3. Each path represents operations of a CW for a single simulation cycle. Except for the case when operation of a CW is blocked at some blocking read operations, state of the CW flows from START to END at every positive edge of a clock signal. This is called a unit cycle operation of CW. Let's assume that two CWs start running in conventional operating modes: "conservative" cycle-by-cycle synchronization. During this time, two CWs take C-path together leapfrogging each other. At some moment, one of the two CW realizes that it can predict the response of the other and takes P-path instead of C-path. This is the start of a new tran-sition. Even though leader takes P-path, it does not run in "optimistic" way (no predictions are made) when this is the first time to take P-path for a transition. This is to store the state of leader before taking "optimistic" operations for possible rollbacks in the future. Leading CW takes rb store state (denoted as P-5 in Fig. 3) to register a state store after current unit cycle operation is over. 5 After that leader takes C-path for "conservative" operation (P-6). The "optimistic" channel usage starts when leader comes back to P-path again at the very next unit cycle operation. 6 Now leader takes different path in the P-path to write output values of leader to LOB and to predicts the response of lagger. The prediction result is stored in the LOB along with output data of leader. The prediction results is reflected on the current verification domain before current unit cycle operation is over; predicted signal value is sent to the current verification domain as if it was read from the other verification domain. This continues until leader cannot predict the response of lagger. When leader cannot proceed without synchronization, leader takes S-path instead of P-path. In S-path, the contents of LOB are flushed to lagger (S-2) and leader waits for the reply from lagger in Get response state (S-3).

Until then, lagger waits for leader to write data in Read input data state (C-3). Now that LOB is flushed, lagger can get out of the blocking read operation to finish the simulation cycle and to take L-path at the next simulation cycle. Lagger checks a single prediction every time it reaches Prediction check state (L-1). If the prediction coincides with the actual response of lagger, lagger reads another leaderto-lagger data and finishes the unit cycle operation. When all leader-to-lagger data are consumed, i.e., all the predictions are correct, lagger takes R-path, and reports this to leader, which has been waiting for this response in S-3. 7 In R-path, the output of lagger is sent to lagger immediately (R-2) and lagger once again waits for the leader-to-lagger at Read input data state (R-3). And this is the end of a successful transition.

When a prediction failure is detected in Prediction check state in L-path, it is reported to leader immediately (L-5). After reporting the prediction failure, lagger waits for the 5 For simulator, the state is stored after all operations for the current simulation time is over and all the variables are stabilized. This is to save memory requirements for the state storage. For accelerator, the state is stored as soon as ACW reaches P-5 as the signal values of accelerator is stabilized as soon as clock signal toggles [START_REF] Lee | Simulation Acceleration of Transaction-Level Models for SoC with RTL sub-blocks[END_REF]. 6 If leader cannot predict the response of lagger at the next simulation cycle, the transition is over and there is no optimistic channel usage and the proposed method works just the same as conventional method with unnecessary state store overhead spent at the previous unit cycle operation. 7 Lagger can figure out that the last leader-to-lagger data is reached as the last leader-to-lagger data does not contain prediction. The last unit cycle operation of leading CW does not predict the state of lagger as it tries to read it from lagger as conventional method does. leader at L-6. Upon receiving this message, leader takes prediction failure path in S-path. First, leader stores the last response of lagger (S-5), which leader failed to predict, and requests state restore (S-6). After the unit cycle operation of leading CW is over, the state of leader is rolled back to a state P-path stored in the past. 8 Now leader takes F-path for roll-forth operations. The operations of F-path resemble those of P-path except that F-path does not write output signal values to LOB. After iterating taking F-path for the number of successful predictions, the transition is over. Operations of each path and their relations to transition steps are summarized in Tbl. 1.

Experimental Results

The performance of the proposed idea is highly sensitive to the prediction accuracy. Low prediction accuracy degrades performance by increasing not only the number of rollbacks but also the number of state restores and state stores. But the biggest degradation comes from the increased number of clock cycles to be processed by leader and channel accesses as shown in Tbl. 2. Table 2 shows the effect of prediction accuracy to the duration of time spent by each component operation under ALS operating mode. We assumed simulator speed of 1,000 kcycles/sec, accelerator speed of 10 Mcycles/sec, LOB depth of 64 and 1,000 rollback variables. T sim. and T acc. stand for the average time spent by simulator and accelerator to model the behavior of a target SoC model for a single target clock cycle, respectively. T store and T restore stands for the time spent in stor-8 The state of CW is not rolled back.

ing and restoring the state of leader. T store stands for the time spent in accessing simulator-accelerator channel. Conventional method has a simulation speed of 38.9 kcycles/sec under the same environment. The proposed method has performance gain of 16.75 when all the predictions are correct. The performance of ALS drops as the prediction accuracy drops. When it equals to 10%, the performance of ALS is about the same as that of conventional method.

Figure 4 shows the performance estimation of ALS under four different configurations with two different simulator speed and two LOB depths. As the performance of hardware-based simulation accelerator is independent of design sizes, we kept accelerator speed to be constant. The bigger the simulator performance gets, we get the more performance gain from the proposed method. LOB depth decides the maximum number of predictions and tends to accelerate the performance gain of the proposed idea when the prediction accuracy is high. On the other hand, it degrades the performance gain when the prediction accuracy is low.

The performance of SLA has similar tendencies: maximum performance gain of 3.25 and 15.34 for simulation performance of 100 kcycles/sec and 1,000 kcycles/sec, each. But it was found that SLA suffers more from low prediction accuracies. This is because relatively low operating speed of simulation domain compared to that of acceleration domain enlarges the effect of the most dominant factor of performance degradation, i.e., time spent by leader. SLA has the same simulation performance as the conventional method when the prediction accuracy is 98%[70%] assuming that the simulation performance is 100 kcycles/sec[1,000 kcycles/sec].

Prob.

1.000 0.990 0.960 0.900 0.800 0.600 0.300 0.100 T sim. 1.0e-6 1.0e-6 1.0e-6 1.0e-6 1.0e-6 1.0e-6 1.0e-6 1.0e-6

T acc.

Conclusion

Micro-architectural transaction-level modeling enabled early stage SoC verification with full cycle accuracy and fast simulation speed. Usually, transaction-level models are gradually refined to RTL models. But as the simulation

Figure 1 .

 1 Figure 1. Grouping of bus signals.

 of bus signals is a set of signals holding all the signals present in a bus specification. Set of active bus signals is a subset of set of bus signals, all of whose elements influences the operation of the bus. Signals driven by either by active bus master or active bus slave are elements of set of active bus signals. 3 Signals driven by arbiter and decoder are also elements of set of active bus signals as well as arbitration request signals driven by any of bus masters. Minimal set of active bus signals (MSABS) is a subset of set of active bus signals, values of whose elements can exclusively define the operations and states of the bus without redundant elements whose states can be deduced by combinations of states of the other elements of MSABS. Specifically, MSABS includes address (HADDR), control signals (HTRANS, HWRITE, HSIZE, HBURST, and HPROT), write data (HWDATA) of active bus master, read data (HRDATA), responses (HRESP, HREADY, and HSPLITx) of active bus slave, and arbitration request signals (HBUSREQx) of all bus masters.

Table 1 . Roll steps and CW states.

 1

	Roll Leader Lagger Description
	step	state	state	
	RA	P	L,R,C Leader predicts responses of
	step	path	path	lagger to remove read trans-
				action except for the first
				time in P-path.
	FU	S	L	Lagger follows up leader
	step	path	path	until either they are synch-
				ronized or prediction error
				is found.
			R	Lagger reports that all the
				predictions were correct.
	RB	S	L	States of leader gets
	step	path	path	rolled back to a prev. state
	RF	F	L	Leader follows up the prog-
	step	path	path	ress of lagger, which is
				waiting for leader.

Table 2 . Performance of ALS.

 2

		1.0e-7 1.6e-7 2.9e-7 4.9e-7 8.1e-7 1.5e-6 2.4e-6 3.0e-6
	T store	4.69-10 7.6e-10 1.6e-9 3.3e-9 6.2e-9 1.2e-8 2.1e-8 2.7e-8
	T rest.	0 2.9e-10 1.2e-9 2.9e-9 5.7e-9 1.2e-8 2.0e-8 2.6e-8
	T ch.	4.3e-7 6.8e-7 1.5e-6 2.9e-6 5.4e-6 1.1e-5 1.8e-5 2.3e-5
	Perform.	652k	543k 363k 226k 138k 76.7k 46.1k 36.7k
	Ratio	16.75 13.97 9.33 5.80 3.56 1.91 1.19 0.94

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE'05) 1530-1591/05 $ 20.00 IEEE

AHB specification is one of the most popular and widely-used bus standards for embedded systems proposed by ARM [1]. Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE'05) 1530-1591/05 $ 20.00 IEEE

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE'05)

F-path P-path S-path L-path R-path C-path

speed of RTL models are too slow, the verification speed degrades as the proportion of RTL blocks increases. We can alleviate this problem with simulation accelerator, but now the throughput of simulator-accelerator channel limits the simulation performance. This gets worse as transactions on the channel are composed of series of short transfers, which suffers from static startup overhead of the channel. To minimize the effect of startup overhead and to get maximum simulation speed, we introduced the concept of 'prediction and rollback' to the synchronization between simulator and accelerator. With this method, the progress of simulator and accelerator are not synchronized at every simulaton time, but they are synchronized only when it is inevitable for cycle accurate behavior. We adopted the concept to a system bus model to get a profound performance gain when prediction accuracy is high.