N
N

N

HAL

open science

Assertion-Based Design Exploration of DVS in Network
Processor Architectures
Jia Yu, Wei Wu, Xi Chen, Harry Hsieh, Jun Yang, Felice Balarin

» To cite this version:

Jia Yu, Wei Wu, Xi Chen, Harry Hsieh, Jun Yang, et al.. Assertion-Based Design Exploration of DVS
in Network Processor Architectures. DATE’05, Mar 2005, Munich, Germany. pp.92-97. hal-00181501

HAL Id: hal-00181501
https://hal.science/hal-00181501
Submitted on 24 Oct 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00181501
https://hal.archives-ouvertes.fr

Assertion-Based Design Exploration of DVS in Network Processor Architectures

Jia Yu, Wei Wu, Xi Chen, Harry Hsieh, Jun Yang

University of California, Riverside

{jiayu, wwu, xichen, harry, junyang} @cs.ucr.edu

Abstract

With the scaling of technology and higher requirements on
performance and functionality, power dissipation is becoming
one of the major design considerations in the development of
network processors. In this paper, we use an assertion-based
methodology for system-level power/performance analysis to
study two dynamic voltage scaling (DVS) techniques, traffic-
based DVS and execution-based DVS, in a network processor
model. Using the automatically generated distribution analyz-
ers, we analyze the power and performance distributions and
study their trade-offs for the two DVS policies with different
parameter settings such as threshold values and window sizes.
We discuss the optimal configurations of the two DVS policies
under different design requirements. By a set of experiments,
we show that the assertion-based trace analysis methodology
is an efficient tool that can help a designer easily compare
and study optimal architectural configurations in a large de-
sign space.

1 Introduction and Motivation

As Internet gets more and more complicated with the rise of
new protocols and services, so does the cost of new equipment
and upgrades. A network processor (NPU) is a base hardware
platform that provides high performance and flexible program-
ming capabilities, which allows it to address many market seg-
ments and a wide range of applications. As a result, the cost
of upgrade can be reduced and developing cycles for new pro-
tocols and data types can be shortened. Therefore, NPUs are
poised to replace expensive and inflexible fixed-function sili-
con application-specific integrated circuits (ASICs).

A number of challenges for NPU implementation are al-
ready evident, and power dissipation is among one of them.
For example, in a typical router configuration, there may be
one or two NPUs per line card. A group of line cards, e.g. 16 or
32, are generally placed within a single rack or cabinet. Thus,
the aggregated heat dissipation becomes a big concern, given
that each NPU typically consumes around 20 Watts and the
operating temperature can reach as high as 70°C [13]. On the
other hand, with the demand of performance scaling, NPU’s
clock frequency is increasing and more computation engines

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

Felice Balarin
Cadence Berkeley Laboratories
felice@cadence.com

Description IXP1200 | IXP2400 | IXP2800
Performance(MIPS) 1200 4800 23000
Media Bandwidth(Gbps) 1 2.4 10
Frequency of ME(MHz) 232 600 1400
Number of MEs 6 8 16
Power(W) 4.5 10 14

Figure 1: The power and performance of Intel IXP NPUs.

will be put on an NPU. Figure 1 shows the power and perfor-
mance changes in three Intel IXP family NPUs [10, 12, 13].
Note that the power dissipation increases as the complexity of
NPU increases. This trend brings significant challenges for the
NPU design.

System level modeling with executable languages such as
C/C++ or other modeling frameworks have been crucial in de-
signing large electronic systems. Unfortunately, most cycle-
level accurate simulators only report performance and power
data for worst and/or average cases, which pose limitation on
power/performance analysis. For example, an NPU’s perfor-
mance and power dissipation are closely related to the work-
load, namely the incoming packet rate. The workload is usu-
ally unbalanced, which may cause extreme high power dissi-
pation occasionally. The unbalanced workload provides op-
portunities for power and performance tuning. The power and
performance distribution patterns are important complements
to average/worst-case data in the design exploration.

It has been shown that the assertion-based analysis method-
ology is very suitable for transaction-level or cycle-level de-
sign exploration, specially in power/performance analysis of
NPU designs. The basic methodology has been proposed in [6]
for verifying and analyzing basic functional and performance
properties of an NPU design. From formally specified as-
sertions, trace checkers and distribution analyzers are auto-
matically generated to validate or analyze simulation traces.
Designers do not need to write separate reference models or
scripts to scan through the traces. So it is very suitable for
design exploration of large systems with high complexity and
functionality such as NPU designs.

In this paper, we focus on the assertion-based design ex-
ploration of dynamic voltage scaling techniques in the NPU
model. In order to efficiently analyze the power-performance
trade-offs among different DVS policies with different param-
eter settings, we use Logic of Constraints (LOC) [4] to specify
assertion formulas for power and performance distributions.

YF]',F.

COMPUTER
SOCIETY

With automatically generated distribution analyzers, we com-
pare their power and performance characteristics and identify
optimal configurations in their large design spaces.

The rest of the paper is organized as follows. In the next sec-
tion, we introduce the network processor model, the basic DVS
technique and the assertion-based trace analysis methodology.
In Section 3, we describe the experiment settings for the net-
work processor simulator NePSim including benchmarks, IP
traffic files,and simulation traces. In Section 4, we present the
procedures and analysis results of assertion-based design ex-
ploration for DVS policies in the NPU model. We compare two
types of DVS techniques, traffic-based DVS and execution-
based DVS, with different parameter settings, and find optimal
configurations for both DVS techniques under different design
requirements. Section 5 concludes the paper.

2 Background
2.1 Network Processor Model

A network processor design usually contains multiple RISC
processing cores, dedicated hardware for common networking
operations, high-speed memory interfaces, high-speed I/O in-
terfaces, and interfaces to general purpose processors. Here
we use NePSim simulator [8] to model the NPU architec-
ture. NePSim is based on Intel IXP1200 and includes a cycle-
accurate architecture simulator and a power estimator. All the
configurations in NePSim are parameterizable.

The reference model of the network processor design fol-
lows IXP1200 and consists of a StrongARM core, six multi-
threaded processing units called microengines (MEs), memory
controllers, high-speed buses, and packet buffers. The Stron-
gARM core initializes the microcode program to control stores
of the microengines and loads necessary data into memory be-
fore enabling the microengines. The off-chip SRAM (up to
8M) is typically used to store the forwarding table, while the
SDRAM (up to 256M) is typically used to store IP packets.
The usage of each component is highly dependent on the ap-
plication and workload.

2.2 Dynamic Voltage Scaling

Dynamic voltage scaling (DVS) [3] is a popular low power
technique and has been employed widely for microprocessors,
resulting in significant power and energy savings. DVS ex-
ploits the variance of a processor’s utilization, reducing voltage
and frequency (VF in short) when the processor has low activ-
ity and increasing VF when the peak performance is required.
Dynamic power consumption is proportional to C- Vdd> - o.- f,
so reducing voltage (Vdd) and frequency (f) can significantly
reduce power consumption.

Although many DVS algorithms appear in literature, the un-
solved difficulty is how to derive the optimal settings from ex-
ternal observations, for example, by monitoring the workload

or idle time. In this paper, we will use assertion-based method-
ology to study and find out optimal DVS parameters in NPUs.

2.3 Assertion-Based Analysis Methodology

Assertion-based checking is similar to the popular embed-
ded assertion technique in hardware design, where simple
comparison circuitry is inserted into HDL descriptions to help
designers uncover bugs during simulation. The methodology
begins with a formula, e.g. in Logic of Constraints (LOC), and
generates stand-alone checkers, independent of any simulation
language and platform [4, 6]. Furthermore, LOC is designed
to specify quantitative performance and functional properties
for analysis of transaction-level execution traces. The basic
components of LOC are event names, instances of events, an-
notations, and a single index variable i. For example, a latency
property (a dequeue event happens no later than 50 cycles af-
ter the corresponding enqueue) can be formally specified as an
LOC formula: cycle(deq[i])- cycle(eng[i])<=50. The formula
is satisfied if it holds for all event instances, i.e. for all values
of i. The automatically generated checkers are used to ana-
lyze simulation trace files and report all the violations of the
assertions.

To automate quantitative distribution analysis that is com-
mon in design exploration, we extend the LOC assertions by
introducing 3 more operators <, < and >. To analyze the distri-
bution of some quantity over certain ranges, we can use a for-
mula, in the form of quantity > {min,max, step}, to automat-
ically generate a corresponding analyzer. An analysis period
is specified with a triple {min, max, step}, where min and max
are lower and upper bounds, and the interval between these two
values is divided into bins of width step. For example, given a
formula:

(time(forward[i+ 100]) — time (forward(i])) < {40,80,5} , (1)

an assertion analyzer is generated to evaluate the left hand side
with i being 0, 1, 2, ... , and report the percentage of formula
instances whose values fall within the ranges of (—eo, 40], (40,
45], ..., (75, 80], (80, +<0). If we replace the operator > with
< or >, the ranges become (—oo, 40], (—oo, 45], ..., (—oo, 75],
(—oo, 80] or [40, +o0), [45, +o0), ..., [75, +<0), [80, +o0), re-
spectively.

3 Experimental Settings

In this section, we introduce our experiment environment,
IP packet traffic models used in the simulation, and the simu-
lation traces.

3.1 Benchmark Applications

In our experiments, we choose four representative network-
ing applications to explore different architectural features of
the NPU model, i.e. ipfwdr, url, nat and md4. The applica-
tion ipfwdr is an IP forwarding software provided in Intel’s

YF]',F.

COMPUTER
SOCIETY

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

2.5e+08

Max
2e+08 - ,

Ll

Figure 2: Example IP packets distribution

d.5e+08 -

1e+08 |

Throughput (bits/s)

Med

Tlme Hour Mlnute

5e+07

o

Mln |
9:47 520 16:43

SDK. The routing table is stored in the SRAM and the out-
put port information is stored in the SDRAM. The program url
routes packets based on URL requests. It checks the payload
of packets frequently, so it needs a large number of SRAM and
SDRAM accesses. In nat (network address translation), each
packet only needs an access to SRAM for looking up the IP
forwarding table. The md4 provides a 128-bit digital signature
algorithm. It moves data packets from SDRAM to SRAM and
accesses SRAM multiple times for computation. It is therefore
both memory and computation intensive.

Memory accesses, specially SDRAM accesses, have long
latency. They lead to long idle time for MEs, which in
turn shows up as lower power and throughput. Computation-
intensive benchmarks, those that do not wait on memories, will
tend to show higher power consumption.

3.2 1P Traffic Patterns

The simulation inputs follow IP packet traffic patterns in a
real world edge router from NLANR [15]. Figure 2 shows a
day time distribution of IP packet arriving rates. It is obviously
too expensive to simulate the entire day’s worth of simulation
traces for the purpose of design space exploration. We sample
a few seconds of real traffic in high, medium and low arriving
rates as individual inputs to the simulator.

3.3 Simulation Traces

The simulator provides the assertion analyzer with neces-
sary data traces. The traces contain a set of architectural ex-
ecution events that occur frequently during simulation and a
set of power/performance related values called annotations. In
our experiments, we mainly use three types of events, pipeline,
forward and fifo, explained in Figure 3. In a simulation trace,
the events are prefixed to differentiate different microengines
(MEs) or configurations. For example, m2_pipeline represents
a pipeline event from ME2. Each event is associated with five
annotations (see Figure 3). A snapshot of a trace file generated
by NePSim simulator is shown in Figure 4.

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

Event type Details

pipeline an instruction enters the execution pipeline

forward an IP packet is forwarded

fifo an IP packet is put into the processing queue
Annotation type | Details

cycle number of core clock cycles elapsed from the beginning
time simulated time elapsed from the beginning

energy cumulative energy consumed

total_pkt total packets received or transmitted

total_bit total bits received or transmitted

Figure 3: List of event and annotation types.

cycle time(us) energy ploss event

365 1.573 0.768133 120 m2_pipeline
366 1.577 0.773932 120 m3_pipeline
367 1.580 0.784506 121 forward

368 1.583 0.794108 121 mb5_pipeline
369 1.587 0.809369 121 m4_pipeline

Figure 4: A snapshot of NePSim simulation trace.

4 Design Exploration of DVS

In a real system with DVS, the frequency and voltage are
adjusted dynamically according to the processing workload. A
DVS scheduler relies on the history information of workload to
make decisions. In an NPU design, two types of information
can be used for this purpose, network traffic load and processor
idle time. We call the two DVS policies traffic based dynamic
voltage scaling (TDVS) and execution based dynamic voltage
scaling (EDVS). We do not combine the two policies because
monitoring both traffic load and processor idle time on a chip
is expensive in terms of area and power.

In this section, we analyze the power/performance trade-
offs of DVS policies by varying the window size and threshold
for voltage/frequency scaling, and search for optimal points
in the design space. We also compare the two DVS policies
through their power and performance results under different
design requirements.

4.1 Traffic based Dynamic Voltage Scaling

TDVS uses the total traffic load detected at the 16 device
ports as the control parameter for scaling. If the traffic vol-
ume in the previous time window is smaller or larger than a
particular threshold value, we scale down or up the VF of the
processor by one step, until a lower or upper bound is hit. The
lower and upper bounds of VF, similar to those used in Intel
XScale [11], are from 400MHz to 600MHz and 1.1V to 1.3V.
We set the frequency step to 50Mhz and compute the voltage
as in XScale. In order to match higher NPU frequency, we
scale the speed of SDRAM, SRAM and ixbus to 1.3 times of
those in IXP1200.

To estimate the power in TDVS, we modified NePSim’s
power estimation module to include the power overhead, a 32-
bit adder. The adder is used to accumulate the packet sizes in
each monitor window, and compare the traffic volume with the

TEEE .2

COMPUTER
SOCIETY

threshold. Note this adder is only used when a packet comes
in, much less frequently than the ALUs in ME pipelines. From
the experiment results, we find the overhead is less than 1% of
total power.

TDVS reduces the power, but it may adversely affect the
performance. The clock cycle becomes longer if Vdd is de-
creased, so the NPU takes longer time and possibly more en-
ergy to get the same amount of work done. The trade-off moti-
vates us to analyze both power consumption and performance
of the NPU with different TDVS policies applied. The goal is
to find the optimal points in the design space for each bench-
mark. We use the following LOC formula to analyze the power
consumption distribution:

(energy(forward[i + 100]) — energy(forward]i]))/
(time(forward|i+ 100]) — time(forward]i]))
>{0.5,2.25,0.01} . (2)

The left hand side of the formula calculates the average power
consumption for each 100 packets forwarded.

To study the performance of the processor with various
configurations, we analyze the distribution of the transmitting
throughputs using the following formula:

((total bit(forward|i + 100]) — total bit(forward|i])) /10°)
/ (time(forward[i + 100]) — time(forward(i]))
4{100,3300,10} . (3)

The left hand side of the formula calculates the average for-
warding bit rate in Mbps for each 100 packets forwarded.
With the two formulas, we search for the optimal settings
of TDVS policies. In TDVS, two main types of parameters
that need to be carefully tuned are the traffic thresholds and
window size. For each TDVS policy, the traffic thresholds
are a set of volume numbers that control the voltage scaling
in different VF combinations. With the frequency and volt-
age reduced, the traffic threshold is also lowered to match the
reduced ME processing capability. Taking ipfwdr as an exam-
ple, we choose a top threshold of 1000Mbps for the normal
frequency of 600MHz and other thresholds for reduced VFs
are decided as shown in Figure 5. In our experiments, we use
the benchmark ipfwdr to compare the TDVS policies with four
different top thresholds: 800, 1000, 1200, and 1400 Mbps.

Frequency (Mhz) 600 550 500 450 400
Voltage(V) 1.3 1.25 1.2 1.15 1.1
Traffic Threshold(Mbps) 1000 | 916 833 | 750 666

Figure 5: The detailed scaling values.

The window size decides how long a traffic history is used
to make voltage scaling decisions, and it also directly affects
the overall performance of the TDVS policy. For example, if
the window size is set to 20k clock cycles, the average traffic
volume in the previous 20k cycles is compared to the current
threshold to decide whether the VF needs to be changed. If a

@ @
g 1 7 T 3 1
5 09 r 28& — A S 0.9 A
s 08 X o s 08 A
2 o7t P 2 o7 f
5 06 80K 8- 4 5 06 4
#*= 05 noD\‘S - %« 05]
o 04 X 4 B 04 B
& o3 w, 1 & o3 g
s 02 . s 02 A
13 L o 13 4
g 0.[1))) -) g 0.[1) — <
06 08 1 12 14 16 06 08 1 12 14 16
Power -- threshold 300Mbps Power -- threshold 500Mbps
@ @
g 1 ~<em 7 T 8 1 7 T
€ 09 F Xxlig POK —+— ~ c 09r ROK —— o
S 08 % 0K -—-x--- 4 S 08 0K --x---
2 o7t o2 0K x4 2 07 0K %o o
5 06 X 80K B o 5 06 80K - o
= 05| X noDYS --m- 4 & 051 noDYS w4
o 7 - - o 7 ~
g 0af we 1 % o0sf o]
‘s 02 ®.a 4 T 02 Y m
€ [- < E [N “J
| S e WA - | SN ‘
0.6 0.8 1 1.2 1.4 1.6 0.6 0.8 1 1.2 1.4 1.6

Power -- threshold 400Mbps Power -- threshold 600Mbps

Figure 6: Power under different design points with TDVS.

Normalized # of instances
cooocoooo0o
oLNRRNONEO =
LI e e e
Normalized # of instances
CO0000000
oLNRRNONEO =
LI e e e

I I I
600 800 1000 1200 1400
Throughput -- threshold 1200Mbps

N
1)
S

I I I
600 800 1000 1200 1400
Throughput -- threshold 800Mbps

N
1)
S

LI e s e
000000000
oLV RODN®D©O

Normalized # of instances
cooococoooo
CLNRRNONDO
Normalized # of instances

I I I I S I I I I
400 600 800 1000 1200 1400 400 600 800 1000 1200 1400
Throughput -- threshold 1000Mbps Throughput -- threshold 1400Mbps

Figure 7: Throughput under different design point with TDVS.

window size is too large, it may smooth the peak traffic with
low traffic and miss a good chance to reduce power; If window
size is too small, VF may change too frequently, which in-
curs more penalty and eventually hurts the performance. In our
experiments, the penalty for each voltage scaling is 10us [8],
which is equivalent to 6000 cycles at the normal frequency of
600MHz. We compare 4 different window sizes for ipfwdr,
ranging from 20k to 80k cycles.

We run the simulation 8x10° cycles for each TDVS con-
figuration. Using the automatically generated distribution an-
alyzer with the formulas (2) and (3), we compare the power
and performance distributions with different TDVS policies or
no TDVS enabled. The distributions for the power and perfor-
mance are plotted in Figure 6 and Figure 7 respectively. Each
subgraph shows the power or throughput distribution with a
particular top threshold and different window sizes. In the
power distribution graphs, the horizontal axis represents pos-
sible power values and the vertical axis represents the per-
centages of assertion instances that are smaller than particular
power values. Similarly, in the throughput distributions, the
vertical axis represents the percentages of assertion instances
that are larger than particular throughput values.

From Figure 6, we can see that compared with no TDVS
policy, the power saving by TDVS is obvious no matter what
threshold or window size is chosen. In most cases (except with
window size of 20k), the performance degradation is small
(from Figure 7). It is therefore shown that TDVS is a very

YF]',F.

COMPUTER
SOCIETY

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

Power (W)

800

1200
Threshold (Mbps)

1400720000

Figure 8: Power under different design points with TDVS.

successful power saving technique. We also see that TDVS
configurations with smaller window sizes have lower power
consumption but worse throughput, regardless the threshold
values. When window size is small, e.g 20k, the TDVS pol-
icy becomes very aggressive. The VFs are changed very fre-
quently, and as a result, the 6000-cycle penalties almost con-
sume 30% of the window time. That is the reason why there is
dramatic drop in throughput for window sizes of 20k. On the
other hand, for 80k window sizes, certain power savings are
still achieved with almost no performance loss.

To compare the results of different thresholds more clearly
and look for a best TDVS policy for ipfivdr with an optimal
threshold-window size combination, we generate 3-D graphs
for power and performance distributions in Figure 8 and Fig-
ure 9. A vertex on the surface shown in Figure 8 represents
that 80% of formula (2) instances are lower than a power value
for a particular threshold and window size. Similarly, a vertex
on the surface in Figure 9 represents that 80% of formula (3)
instances are higher than a throughput value for a particular
threshold and window size. As shown in Figure 8, for a partic-
ular window size, the threshold of 1000Mbps has higher power
than others, and this trend becomes more significant as the win-
dow size increases. As shown in Figure 9, if the window size
is small, the performances for different thresholds are simi-
lar; as the window size becomes larger, the performance for
1000Mbps threshold becomes much better than others.

Based on above analysis, if performance has a higher pri-
ority in the design, we should choose threshold of 1000Mbps
and 80k window size resulting in limited power savings. On
the other hand, if saving power is more important, the config-
uration with 1400Mbps and 40k of window size is preferred.
And this result is specific to this particular ipfwdr application.

4.2 Execution based Dynamic Voltage Scaling

In execution based dynamic voltage scaling (EDVS), the
idle time of microengine is used as the control parameter for
voltage scaling. When the idle time is longer or shorter than
a certain percentage of an observed period, the VF of the mi-
croengine is scaled down or up by one step, until a lower or
upper bound is hit. Note that in EDVS, each ME changes its
VF independent. Intuitively, ME idle time is usually seen to be

Throughput (Mbps)

980
960
940
920
900
880
860 [

800

1200
Threshold (Mbps) *%% 2505000 30000

Figure 9: Throughput under different design point with TDVS

proportional to the workload, which makes TDVS and EDVS
almost the same. However, this is not really the case in the
NPU model. Even if an ME does not process packets during
low workload, it will actively execute instructions to poll the
buffers and status registers to check new packets. In the NPU
model, the idle time of an ME is mainly introduced by long
latency of memory accesses since an SDRAM access can take
as much as 100 clock cycles. If all the threads in an ME are
waiting for memory accesses to be completed, we consider the
ME idle.

To analyze EDVS policies, the idle time thresholds and win-
dow sizes are the main parameters. Other parameters are con-
figured as those used in TDVS. We use the assertion-based
distribution analyzer to find the good idle time thresholds by
analyzing the distribution of the idle time in simulations. It
is observed that for receiving MEs, in around 90% of the to-
tal simulation time, idle time is either under 5%, or between
30% and 40%, indicating two modes of operation. For trans-
mitting MEs, idle time is almost always under 5%, indicating
a transimmion constrained scenario. The microengines seem
working under only two statuses, either busy or idle. Here we
simply choose the idle time threshold value as 10%, i.e. if the
idle time of an ME is longer or shorter than 10% of an ob-
served period determined by the window size, its VF may be
changed. We study three different window sizes, 20k, 40k and
60k and still use ipfwdr as the example benchmark.

1 T

L] 20K —— 20K —+—
08 ! 40K --x--- o 0.8 - -
4 k 60K ---*--- e
06 o 80K @ 0.6 4
W N noDVS --&--
04 - g . g 0.4

02 T _a A 0.2

Normalized # of instances
Normalized # of instances

1 | s L 0 1 I =
1 11 12 13 14 15 16 17 1000 1100 1200 1300 1400
Power Throughput

Figure 10: Power and performance distribution for EDVS

We run the simulation 8x10° cycles for each EDVS con-
figuration and plot the distributions of throughput and power
in Figure 10. From the power distribution graph, we observe
that power dissipation generally drops from 1.5W to 1.15W
for most cases with EDVS applied, achieving around 23% of
power saving. Meanwhile, there is nearly no performance

YF]',F.

COMPUTER
SOCIETY

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

LN
NS U s
140608 1 12141618 040608 1 12141618

“\ovV§ ——
- 1 08r h: v
@ i 6 VS| - —-- -
g 06 TEL\
S 4 o04f ! R
k7] 4 o2t \ q
£ PR N
kS 2141618 040608 1 1.21.4161.8
H*
g ! 17 nobvs N T novs
nol nol nol
% 081 & "Bpvg - 08 i 4 o8t 2ova 1\
ETo6 TDVS -—4- 06 TDVS -—-t 4 06 | TPVS -—-1 4
5S04l | 04| 1 oatf - 1
Z o2} \ 02 4 o2t R
0 1 [TS 1 1 0 1 1 0 1 1 1
040608 1 12141618 040608 1 12141618 040608 1 1.2141618
[T T envs - SO TRV TN Thhovs =
inol — N — N —
081 ilepvs ——- 7 08r. JEovs---- 7 08 N "Bovs - 1
—o06f! 1| TOVS -—-- 4 06\ IfDVS-—--4 o6 \‘. DVS -—--
Soabl 4 oal N 1 o4t § 1
02+ ! 4 02F NI 4 o2t ! E
0 P I P R PR S TR
040608 1 12141618 040608 1 12141618 040608 1 12141618
Power(W)- Min Power(W)- Max Power(W)- Med

Figure 11: Energy comparisons for employing DVS

degradation from the throughput distributions. In EDVS, each
ME changes its VF independently and the transmitting MEs
never scales down their VFs due to their low idle time.

4.3 Comparison between TDVS and EDVS

We have shown that both TDVS and EDVS are capable of
saving power with little performance sacrificed. Now we are
ready to compare the two policies, and find which one is better
given a particular power or performance requirement. We sam-
ple the real traffic file in three periods with high, medium, and
low traffic volumes respectively. We simulate all four bench-
marks with the optimal configurations (from previous analy-
sis) for two DVS policies and compare the power distributions
in Figure 11. We do not show the throughput performances
and only note that in all cases EDVS has no significant per-
formance loss while TDVS never drops more than 2-5% com-
pared to the original NPU model with no DVS applied.

Overall, TDVS has more power savings than EDVS. But as
the traffic volume becomes higher, power savings by TDVS re-
duce quickly, while EDVS has a more steady reduction under
every situation. EDVS has better results for memory intensive
benchmarks. We observe that ipfwdr shows the most power
savings if traffic volume is medium or high. This is because
ipfwdr needs to check routing tables in SRAM and the out-
put port information in SDRAM for each packet. There are
plenty of opportunities for EDVS. The benchmark nat shows
no power savings from EDVS under every traffic patterns due
to the fact that nat has very few memory accesses, and the MEs
are kept busy.

In summary, if the power consumption is the dominant de-
sign factor, TDVS shall be a better choice. Otherwise, if
performance is more important and packet loss needs to be
avoided as much as possible, EDVS shall be used.

5 Conclusions

In this paper, we used an assertion-based design exploration
methodology to study two different dynamic voltage scaling
techniques in a network processor model: TDVS and EDVS.
We analyzed the power and performance distributions with the
two DVS policies and different parameter settings using auto-
matically generated distribution analyzers based on assertion
formulas. We studied the power-performance trade-offs with
TDVS and EDVS applied and different thresholds and win-
dow sizes used. It was shown that in the NPU model the op-
timal configuration of a DVS policy usually depends on mul-
tiple factors such as the characteristics of the application, traf-
fic loads and power or performance design requirements. The
assertion-based analysis methodology was shown to be an effi-
cient tool to help a designer choose an optimal configuration in
a large design space, specially when the number of considered
parameters is large and manual analysis of simulation results
becomes tedious.

References

[1] Y. Abarbanel, I. Beer, L. Gluhovsky, S. Keidar, and Y. Wolfsthal, “FoCs -
automatic generation of simulation checkers from formal specifications”,
Technical Report, IBM Haifa Research Laboratory, Israel, 2003.

[2] F. Balarin, Y. Watanabe, J. Burch, L. Lavagno, R. Passerone, and
A. Sangiovanni-Vincentelli, “Constraints specification at higher levels of
abstraction”, International Workshop on High Level Design Validation
and Test, 2001.

[3] T. Burd and R. Brodersen, “Design issues for dynamic voltage scaling,”
International Symposium on Low Power Electronics and Design, pp.9-14,
2000.

[4] X.Chen, H. Hsieh, F. Balarin, and Y. Watanabe, “Automatic trace analysis
for logic of constraints”, Design Automation Conference, 2003.

[5] X. Chen, H. Hsieh, F. Balarin, and Y. Watanabe, “Verifying LOC
Based Functional and Performance Constraints”,International Workshop
on High Level Design Validation and Test, 2003.

[6] X. Chen, Y. Luo, H. Hsieh, L. Bhuyan, and F. Balarin, “Utilizing Formal
Assertions for System Design of Network Processors”, Design Automa-
tion and Test in Europe, Feb. 2004.

[7]1 C. Eisner and D. Fisman. Sugar 2.0 proposal presented to the accellera
formal verification technical committee. Mar. 2002.

[8] Y. Luo, J. Yang, L. Bhuyan, and L. Zhao, “NePSim: A Network Proces-
sor Simulator with Power Evaluation Framework™, IEEE MICRO, special
issue on network processors, Sept., 2004.

[9] A. Pnueli, “The temporal logic of programs”, The 18th IEEE Symposium
on Foundation of Computer Science, pages 46-57, 1977.

[10] http://developer.intel.com/design/network/ixa.html, Intel Corporation,
IXP1200 Network Processor Family Hardware Reference Manual, 2001.

[11] http://developer.intel.com/design/intelxscale, Intel XScale microarchi-
tecture, 2004.

[12] http://www.intel.com/design/network/products/npfamily/ixp2400.htm,
Intel IXP2400 Network Processor, 2004.

[13] http://www.intel.com/design/network/products/npfamily/ixp2800.htm,
Intel IXP2800 Network Processor, 2004.

[14] http://www.eda.org/vfv, PSL homepage, 2004.

[15] http://www.nlanr.net, the NLANR Measurement and Network Analysis,
2004.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

