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Introduction

We consider the reaction-diffusion coupled system in parallel way via parameter α > 0 of the form

u t -a(l(u)) ∆u + f (u -v) = α (u -v) in Ω × (0, T ) (1.1) v t -a(l(v)) ∆v -f (u -v) = α (v -u) in Ω × (0, T ) (1.2) u = v = 0 in ∂Ω × (0, T ) (1.3)
u(x, 0) = u 0 (x) in Ω (1.4) v(x, 0) = v 0 (x) in Ω (1.5) where u = u(x, t) and v = v(x, t) are real valued functions. Ω is a bounded domain of R n , ∂Ω is the boundary of Ω of class C 2 . f : R → R and a : R → R are Lipschitz continuous functions with a(ξ) ≥ m > 0. l : L 2 (Ω) → R is a continuous linear form.

For the last several decades, various types of equations have been employed as some mathematical model describing physical, chemical, biological and ecological systems. Among them, the most successful and crucial one is the following model of semilinear parabolic partial differential equation, called the reactiondiffusion system

∂u ∂t -D ∆u -f (u) = 0, (1.6) 
where f : R n → R n is a nonlinear function, and D is an n × n real matrix of diffusion. This reactiondiffusion model is obtained by combining the system of nonlinear ordinary differential equations called the reaction system du dt -f (u) = 0, (1.7)

and the system of linear partial differential equation called the diffusion system ∂u ∂t -D ∆u = 0.

(1.8)

In 1998, L. A. F. Oliveira [START_REF] Oliveira | On reaction-diffusion system[END_REF] considered the reaction-diffusion system where D was a n × n real matrix and f : R n → R n is a C 2 function. He studied the exponential decay for some cases. Except for some publications on the subject, such as the searching for traveling waves solutions and some problem in ecology and epidemic theory, most of authors assume that diffusion matrix D is diagonal, so that the coupling between the equations are present only on the nonlinearity of the reaction term f. However, cross-diffusion phenomena are not uncommon (see [START_REF] Capasso | Global attractivity for reaction-diffusion system. The case of nondiagonal matrices[END_REF] and references therein) can be treated as equations like in which D is not even diagonalizable. In 1997, M. Chipot and B. Lovat [START_REF] Chipot | Some remarks on nonlocal elliptic and parabolic problems, Nonlinear Analysis[END_REF] studied the existence and uniqueness of the solutions for non local problems u t -a Ω u(x, t) dx ∆u = f (x, t) in Ω × (0, T ) (1.9) u(x, t) = 0 on ∂Ω × (0, T ) (1.10) u(x, 0) = u 0 (x) on Ω (1.11) where Ω is a bounded open subset in R n n ≥ 1 with smooth boundary ∂Ω. T is some arbitrary time. a is some function from R into (0, +∞). This problem arises in various situations, for instance u could describe the density of a population(for instance of bacteria) subject to spreading. The diffusion coefficient a is then supposed to depend on the entire population in the domain rather than on the local density i. e. moves are guided by considering the global state of the medium. They proven the following result:

Theorem 1.1. Let T 0 > 0, u 0 ∈ L 2 (Ω), u 0 ≥ 0, u 0 ≡ 0. Let a be a continuous function positive in a neighborhood of Ω u 0 dx. Then for f ∈ L 2 ([0, T ] : H -1 (Ω)) there exists 0 < T ≤ T 0 and u solution to (1.9)-(1.11) such that u ∈ L 2 ([0, T ] : H 1 0 (Ω)) ∩ C 0 ([0, T ] : L 2 (Ω)), u t ∈ L 2 ([0, T ] : H -1 (Ω)), < u t , v > + a Ω u dx (∇u • ∇v) =< f, v > ∀ v ∈ H 1 0 (Ω), a. e. t ∈ [0, T 0 ]
where (∇u • ∇v) = Ω ∇u • ∇v dx.

In 2005, S. D. Menezes [START_REF] Menezes | Remarks on weak solution for a nonlocal parabolic problem[END_REF], give a simple extension of the result obtained by M. Chipot and B. Lovat [START_REF] Chipot | Some remarks on nonlocal elliptic and parabolic problems, Nonlinear Analysis[END_REF], considering a = a(l(u)), f = f (u) continuous functions. Indeed, they studied the existence, uniqueness and periodic solution for the following parabolic problem

u t -a(l(u))∆u + f (u) = h in Ω × (0, T ) (1.12) u(x, t) = 0 on ∂Ω × (0, T ) (1.13) u(x, 0) = u 0 (x) on Ω (1.14)
where Ω is a bounded open subset in R n , n ≥ 1 with smooth boundary ∂Ω. T is some arbitrary time.

l : L 2 (Ω) → R is a nonlinear form, h ∈ L 2 (0, T : H -1 (Ω))
and T > 0 is some fixed time. This problem is nonlocal in the sense that the diffusion coefficient is determined by a global quantity. This kind of problems, besides its mathematical motivation because of presence of the nonlocal term a(l(u)), arises from physical situations related to migration of a population of bacteria in a container in which the velocity of migration -→ ν = a ∇u depends on the global population in a subdomain Ω ′ ⊂ Ω given by a = a( Ω ′ u dx). For more information [START_REF] Chipot | Some remarks on nonlocal elliptic and parabolic problems, Nonlinear Analysis[END_REF] and reference therein.

This article is concerned with to prove the existence, uniqueness and the exponential decay of the system (1.1)-(1.5) using the energy method. The method of energy consists of to use appropriate multipliers to build a functional of Lyapunov, in this direction we prove that for this types of materials where the energy, that can flow from one part to another, is strong enough to produce exponential decay for the solution of the coupled system.

This paper is organized as follows. Before the main result, in section 2 we briefly outline the notation and terminology to be used subsequently. In the section three we prove the existence and uniqueness of solution, in the section four we prove the exponential decay of solution of the system. Finally, numerical evidence corroborating our theoretical results is given in section five. In this paper, we prove the following two theorem:

Theorem 1.2. Let (u 0 , v 0 ) ∈ L 2 (Ω) × L 2
(Ω) and 0 < T < +∞, where the time T depends only |u 0 | L 2 (Ω) and |v 0 | L 2 (Ω) . If (2.6)-(2.9) holds, then there is at most one solution of (1.1)-(1.5) in L 2 (0, T :

H 1 0 (Ω)) ∩ C([0, T ) : L 2 (Ω)) × L 2 (0, T : H 1 0 (Ω)) ∩ C([0, T ) : L 2 (Ω)) with initial data (u(x, 0), v(x, 0)) = (u 0 , v 0 ).
Theorem 1.3. Let (u, v) be a solution of system (1.1)-(1.5) given by the theorem 1.2, then there exist positives constants C and η, such that

E(t) ≤ C E(0) e -η t .
(1.15)

Preliminaries

In this work we consider the reaction-diffusion coupled system in parallel way via parameter α > 0 as

u t -a(l(u)) ∆u + f (u -v) = α (u -v) in Ω × (0, T ) (2.1) v t -a(l(v)) ∆v -f (u -v) = α (v -u) in Ω × (0, T ) (2.2) 
u = v = 0 in ∂Ω × (0, T ) (2.3) u(x, 0) = u 0 (x) in Ω (2.4) v(x, 0) = v 0 (x) in Ω (2.5)
where Ω is a bounded domain of R n , ∂Ω is the boundary of Ω of class C 2 . f : R → R is a Lipschitz continuous function, that is, there exists M 1 > 0 such that

|f (s) -f (t)| ≤ M 1 |s -t|, ∀ s, t ∈ R. (2.6) 
a : R → R is a Lipschitz continuous function, that is, there exists M 2 > 0 such that

|a(s) -a(t)| ≤ M 2 |s -t|, ∀ s, t ∈ R. (2.7) with a(ξ) ≥ m > 0, ∀ ξ ∈ R (2.8)
and

l : L 2 (Ω) → R is a continuous linear form.
(2.9)

In the system, the distributed spring coefficient is coupled by the terms α (u -v) and α (v -u). In this sense the Energy can flow from one part to another through this parameter α.

By < • , • > we will represent the duality pairing between X and X ′ , X ′ being the topological dual of the space X, We represent by H m (Ω) the usual Sobolev space of order m, by H m 0 (Ω) the closure of Throughout this paper c is a generic constant, not necessarily the same at each occasion(it will change from line to line), which depends in an increasing way on the indicated quantities.

C ∞ 0 (Ω) in H m (Ω),
We take the initial conditions as following

(u 0 (x), v 0 (x)) ∈ L 2 (Ω) × L 2 (Ω).
(2.10)

We denote the potential energy associated to this system by

E(t) = 1 2 Ω |u| 2 + |v| 2 dx.
(2.11)

Existence and Uniqueness of a local solution

In this section, we will prove that for (u 0 , v 0 ) ∈ L 2 (Ω) × L 2 (Ω) there exists a unique solution of (2.6)-(2.9) in L 2 (0, T :

H 1 0 (Ω)) ∩ C([0, T ) : L 2 (Ω)) × L 2 (0, T : H 1 0 (Ω)) ∩ C([0, T ) : L 2 (Ω))
where the time T depends only |u 0 | L 2 (Ω) and |v 0 | L 2 (Ω) . We make use of Faedo-Galerkin approximation for to prove the existence of weakly solutions. We write the system (2.1)-(2.5) in the following form,

u t -a(l(u)) ∆u = -f (u, v) + g(u, v) in Q = Ω × (0, T ) (3.1) v t -a(l(v)) ∆v = f (u, v) -g(u, v) in Q = Ω × (0, T ) (3.2) u = v = 0 on ∂Ω × (0, T ) (3.3) u(x, 0) = u 0 (x) in Ω (3.4) v(x, 0) = v 0 (x) in Ω (3.5)
where we denote

f (u, v) ≡ f (u -v) and g(u, v) ≡ α (u -v). Theorem 3.1(Existence). Let (u 0 , v 0 ) ∈ L 2 (Ω) × L 2 (Ω) and 0 < T < +∞. If (2.6
)-(2.9) holds, then there exists (u, v) solution of (3.1)-(3.5) such that

(u, v) ∈ L 2 (0, T : H 1 0 (Ω)) ∩ C([0, T ) : L 2 (Ω)) × L 2 (0, T : H 1 0 (Ω)) ∩ C([0, T ) : L 2 (Ω)) (3.6) (u t , v t ) ∈ L 2 (0, T : H -1 (Ω)) × L 2 (0, T : H -1 (Ω)) (3.7) d dt (u, h 1 ) + a(l(u)) Ω ∇u • ∇h 1 dx = - Ω f (u, v) h 1 dx + Ω g(u, v) h 1 dx (3.8)
for all h 1 ∈ H 1 0 (Ω), where (3.8) must be understood as an equality in D ′ (0, T ).

d dt (v, h 2 ) + a(l(v)) Ω ∇v • ∇h 2 dx = Ω f (u, v) h 2 dx - Ω g(u, v) h 2 dx (3.9)
for all h 2 ∈ H 1 0 (Ω), where (3.9) must be understood as an equality in D ′ (0, T ).

Proof. i) Approximate problem: Let {w j } j∈N be a Hilbertian basis of H 1 0 (Ω) (cf. H. Brezis, [ 3] 
). For each j = 1, 2, 3, . . . represent by V j , the subspace of H 1 0 (Ω) generated by {w 1 , w 2 , . . . , w j }. The approximate problem, associated with (3.1)-(3.5), consists of to find u j , v j ∈ V j such that

(u ′ j , h 1 ) -a(l(u j ))(∆u j , h 1 ) = -(f (u j , v j ), h 1 ) + (g(u j , v j ), h 1 ), ∀ h 1 ∈ V j (3.10) (v ′ j , h 2 ) -a(l(v j ))(∆v j , h 2 ) = (f (u j , v j ), h 2 ) -(g(u j , v j ), h 2 ), ∀ h 2 ∈ V j (3.11) u j (0) = u 0j → u 0 strongly in L 2 (Ω) (3.12) v j (0) = v 0j → v 0 strongly in L 2 (Ω) (3.13) Let h 1 = w i (x) and h 2 = w i (x) for i = 1, . . . , j, then in (3.10)-(3.13) we have for θ kj , φ kj ∈ C ∞ (Ω) j k=1 θ ′ kj (t)w k (x), w i (x) -a l j k=1 θ kj (t)w k (x) ∆ j k=1 θ kj (t)w k (x), w i (x) = -f j k=1 θ kj (t)w k (x), j k=1 φ kj (t)w k (x) , w i (x) + g j k=1 θ kj (t)w k (x), j k=1 φ kj (t)w k (x) , w i (x)
and

j k=1 φ ′ kj (t)w k (x), w i (x) -a l j k=1 φ kj (t)w k (x) ∆ j k=1 φ kj (t)w k (x), w i (x) = f j k=1 θ kj (t)w k (x), j k=1 φ kj (t)w k (x) , w i (x) -g j k=1 θ kj (t)w k (x), j k=1 φ kj (t)w k (x) , w i (x)
that is,

θ ′ kj (t) -λ k a(l(u j )) θ kj (t) = -(f (u j , v j ), w i ) + (g(u j , v j ), w i ) (3.14) φ ′ kj (t) -λ k a(l(v j )) φ kj (t) = (f (u j , v j ), w i ) -(g(u j , v j ), w i ). (3.15) 
ii) Approximate solutions: We will just work with the equation (3.14). For (3.15) the result is similar. For i, k = 1, . . . , j in (3.14), we have the following system

     θ ′ 1j θ ′ 2j . . . θ ′ jj      =    λ 1 a(l(u j )) 0 . . . 0 λ j a(l(u j ))         θ 1j θ 2j . . . θ jj      -      (f, w 1 ) (f, w 2 ) . . . (f, w j )      +      (g, w 1 ) (g, w 2 ) . . . (g, w j )      that is, X ′ = F (X, t) (3.16) X(0) = X 0 (3.17)
where F (X, t) = A X + B and X 0 = [α 1j , α 2j , . . . , α jj ] T . The system (3.16)-(3.17) is equivalent to system of ordinary differential equations of first order. Let us show that the system (3.16)-(3.17) is in the conditions of Carathéodory's theorem.

Claim. For fixed X, we will show that A and B are measurable in t.

In fact, we observed that the matrix A is formed for the elements λ k a(l(u j )) with k = 1, 2, . . . , j.

Since l is a lineal and continuous form and the operator a is continuous, then the composition a(l(u j )) is also continuous; therefore λ k a(l(u j )) is continuous for k = 1, 2, . . . , j and then A is measurable in t.

On the other hand, let us observe that B is formed by the elements (f (u j , v j ), w i ) and (g(u j , v j ), w i ), with i = 1, 2, . . . , j. Since f and g are continuous and w i ∈ H 1 0 (Ω), we concludes that B is continuous and therefore measurable.

Claim. For fixed t, we will show that F is continuous in X.

In fact, notice that B is continuous in X, because B is constant in relation to X. For continuity of A X, is enough we verify that A is continuous in X. Let k X = θ kj (k = 1, 2, . . . , j) be the projection R j -→ R and σ(X) = k X w k . For each t fixed, as

u j (t) = j k=1 θ kj (t) w k , we can consider the function X -→ a(l(u j )) = a l j k=1 θ kj (t) w k = a l j k=1 k X w k .
Since A is lineal combination of continuous functions, proceeds that A is continuous in X, hence the function F (X, t) is continuous in X.

Claim. Let K be a compact of D = E × [0, T ], where E = {X ∈ R j×1 : ||X|| R j×1 ≤ δ, δ > 0}.
We will show that exists a real function m r (t), integrable in [0, T ], so that

||F (X, t)|| R j×1 ≤ m r (t), ∀ (X, t) ∈ D.
In fact, we denote by || • || p q the norm of maximum in R pq . But F (X, t) = A X + B, then

||F (X, t)|| j×1 ≤ ||A|| j×j ||X|| j×1 + ||B|| j×1 . Since X ∈ E, we have ||X|| j×1 ≤ δ. Then ||F (X, t)|| j×1 ≤ δ ||A|| j×j + ||B|| j×1 .
Notice that λ k a(l(u j )) are continuous functions, hence

||A|| j×j ≤ C (C > 0).
On the other hand, for the matrix B we have

|(f (u j , v j ), w i )| ≤ |f (u j , v j )| |w i | = |f (u j , v j )|, |(g(u j , v j ), w i )| ≤ |g(u j , v j )| |w i | = |g(u j , v j )|. Thus ||F (X, t)|| j×1 ≤ δ C + |f (u j , v j )| + |g(u j , v j )| ≡ m r (t), where m r (t) is integrable in [0, T ].
Hence, the system (3.16)-(3.17) satisfies the conditions of Carathéodory, and then exists {u j (t), v j (t)} ∈ [0, t j ) × [0, t j ), t j < T 0 .

We now have to establish an estimate that permits to extend the solution {u j (t), v j (t)} to the whole interval [0, T ].

From now on, {C i } i=1...7 , will denote positive constants, independents of j and t.

iii) A priori estimates: We put h 1 = u j and h 2 = v j in the equations (3.10) and (3.11) respectively, we have

(u ′ j , u j ) -a(l(u j )) (∆u j , u j ) = -(f (u j , v j ), u j ) + (g(u j , v j ), u j ) (3.18) (v ′ j , v j ) -a(l(v j )) (∆v j , v j ) = (f (u j , v j ), u j ) -(g(u j , v j ), u j ). (3.19)
Using the boundary condition and the first Green's identity we have

(-∆u j , u j ) = Ω (-∆u j ) u j dx = Ω ∇u j • ∇u j dx = |∇u j | 2 = ||u j || 2 .
Then, we can write (3.18) as 1 2

d dt |u j | 2 + a(l(u j )) ||u j || 2 = -(f (u j , v j ), u j ) + (g(u j , v j ), u j ). (3.20)
In a similar way we can write (3.19) as 1 2 

d dt |v j | 2 + a(l(v j )) ||v j || 2 = (f (u j , v j ), u j ) -(g(u j , v j ), u j ). ( 3 
d ds |u j | 2 + |v j | 2 ds + t 0 a(l(u j )) ||u j || 2 + a(l(v j )) ||v j || 2 ds = 0,
that is,

|u j (t)| 2 + |v j (t)| 2 + 2 t 0 a(l(u j )) ||u j || 2 + a(l(v j )) ||v j || 2 ds = |u j (0)| + |v j (0)|.
In the last identity, using (2.6) and (2.8) we obtain

|u j (t)| 2 + |v j (t)| 2 + 2m t 0 ( ||u j || 2 + ||v j || 2 ) ds ≤ |u j (0)| 2 + |v j (0)| 2 . (3.22) Since u j (0) → u 0 and v j (0) → v 0 strongly in L 2 (Ω) follows that |u j (0)| 2 + |v j (0)| 2 ≤ C. Hence |u j (t)| 2 + |v j (t)| 2 ≤ C.
From where follows that u j (t) and v j (t) are bounded in L ∞ (0, T : L 2 (Ω)). Thus,

t 0 (||u j || 2 + ||v j || 2 ) ds ≤ C,
then u j (t) and v j (t) are limited in L 2 (0, T : H 1 0 (Ω)).

From (3.10)-(3.11), we have that

u ′ j = a(l(u j ))∆u j -f (u j , v j ) + g(u j , v j ) ∈ H -1 (Ω) v ′ j = a(l(v j ))∆v j + f (u j , v j ) -g(u j , v j ) ∈ H -1 (Ω).
Notice that -a(l(u j )) ∆u j defines an element of H -1 (Ω), given by the duality -a(l(u j )) ∆u j , h 1 = a(l(u j ))

Ω ∇u j • ∇h 1 dx, ∀ h 1 ∈ H 1 0 (Ω).
In a similar way we have

-a(l(v j )) ∆v j , h 2 = a(l(v j )) Ω ∇v j • ∇h 2 dx, ∀ h 2 ∈ H 1 0 (Ω).
Using the fact that -a(l(u j )) ∆u j , -a(l(v j )) ∆v j ∈ H -1 (Ω), the dual of H 1 0 (Ω), then they are lineal and continuous forms and therefore both are bounded.

Since u j , v j ∈ L 2 (0, T : L 2 (Ω)), then Ω |f (u j , v j )| dx ≤ Ω β |u j -v j | dx ≤ Ω β (|u j | + |v j |) dx ≤ C Ω |u j | 2 dx 1/2 + Ω |v j | 2 dx 1/2 and Ω |g(u j , v j )| dx = Ω α |u j -v j | dx ≤ Ω α ( |u j | + |v j | ) dx ≤ C Ω |u j | 2 dx 1/2 + Ω |v j | 2 dx 1/2 . Therefore f (u j , v j ), g(u j , v j ) ∈ L 2 (0, T : L 2 (Ω)) ֒→ L 1 (0, T : L 2 (Ω))
and we concludes that u ′ j , v ′ j are bounded in L 2 (0, T : H -1 (Ω)). iv) Passage to the limit: We have that

u j , v j are bounded in L ∞ (0, T : L 2 (Ω)) ∩ L 2 (0, T : H 1 0 (Ω)), (3.23) u ′ j , v ′ j are bounded in L 2 (0, T : H -1 (Ω)). (3.24)
Now, due the corollary of Banach-Alouglu (See [START_REF] Rudin | Functional Analysis[END_REF], p. 66), we can extract subsequences of u j k ≡ u j and v j k ≡ v j (which we denote with the same symbol) so that

u j ⋆ ⇀ u weak star in L ∞ (0, T : L 2 (Ω)) (3.25) v j ⋆ ⇀ v weak star in L ∞ (0, T : L 2 (Ω)) (3.26) u j ⇀ u weak in L 2 (0, T : H 1 0 (Ω)) (3.27) v j ⇀ v weak in L 2 (0, T : H 1 0 (Ω)). (3.28) Consequently T 0 (u j , h 1 ) dt -→ T 0 (u, h 1 ) dt, ∀ h 1 ∈ L ∞ (0, T : L 2 (Ω)) (3.29) T 0 (u j , h 1 ) dt -→ T 0 (u, h 1 ) dt, ∀ h 1 ∈ L 2 (0, T : H 1 0 (Ω)) (3.30) T 0 (v j , h 2 ) dt -→ T 0 (v, h 2 ) dt, ∀ h 2 ∈ L ∞ (0, T : L 2 (Ω)) (3.31) T 0 (v j , h 2 ) dt -→ T 0 (v, h 2 ) dt, ∀ h 2 ∈ L 2 (0, T : H 1 0 (Ω)) (3.32) For (3.24) it proceeds u ′ j ⇀ u ′ weakly in L 2 (0, T : H -1 (Ω)) (3.33) v ′ j ⇀ v ′ weakly in L 2 (0, T : H -1 (Ω)). (3.34)
On the other hand,

H 1 0 (Ω) c ֒→ L 2 (Ω) ֒→ H -1 (Ω)
. By Lions-Aubin's compactness Theorem [START_REF] Lions | Quelques méhodes de résolution des problemes aux limites non linéaires[END_REF] follows that 

u j -→ u strongly in L 2 (0, T : L 2 (Ω)) (3.35) v j -→ v strongly in L 2 (0, T : L 2 (Ω)). ( 3 
(u j (t), w(t)) dt -→ T 0 (u(t), w(t)) dt, ∀ w ∈ L 1 (0, T : L 2 (Ω)) T 0 (v j (t), w(t)) dt -→ T 0 (v(t), w(t)) dt, ∀ w ∈ L 1 (0, T : L 2 (Ω)).
We choose w = θ h 1 with θ ∈ D(0, T ), h 1 ∈ L 2 (Ω) and we will show that for all θ ∈ D(0, T ) and for all

h 1 ∈ L 2 (Ω), T 0 [ (g(u j , v j ), h 1 ) -(g(u, v), h 1 ) ] θ(t) dt -→ 0.
Let T be a positive number such that supp(θ) ⊂ [0, T ], then

T 0 [ (g(u j , v j ), h 1 ) -(g(u, v), h 1 ) ] θ(t) dt = T 0 (g(u j , v j ) -g(u, v), h 1 ) θ(t) dt.
Hence, by straightforward calculations

T 0 (g(u j , v j ) -g(u, v), h 1 ) θ(t) dt ≤ T 0 Ω |g(u j , v j ) -g(u, v)| |h 1 | |θ(t)| dx dt = T 0 Ω |α (u j -v j ) -α (u -v)| |h 1 | |θ(t)| dx dt = T 0 Ω |α (u j -u) -α (v j -v)| |h 1 | |θ(t)| dx dt ≤ T 0 Ω ( α |u j -u| + α |v j -v| ) |h 1 | |θ(t)| dx dt.
Using L 2 (0, T : L 2 (Ω)) ֒→ L 1 (0, T : L 2 (Ω)) and the Cauchy-Schwartz inequality we obtain

T 0 (g(u j , v j ) -g(u, v), h 1 ) θ(t) dt ≤ C T 0 Ω |u j -u| 2 dx 1/2 Ω |h 1 | 2 dx 1/2 dt + C T 0 Ω |v j -v| 2 dx 1/2 Ω |h 1 | 2 dx 1/2 dt.
Applying the Cauchy-Schwartz inequality and considering the convergence (3.35) we obtain

C T 0 Ω |u j -u| 2 dx 1/2 Ω |h 1 | 2 dx 1/2 dt ≤ C T 0 Ω |u j -u| 2 dxdt 1/2 T 0 Ω |h 1 | 2 dxdt 1/2 < ε.
In a similar way using the convergence (3.36) we have

C T 0 Ω |v j -v| 2 dx 1/2 Ω |h 1 | 2 dx 1/2 dt ≤ C T 0 Ω |v j -v| 2 dx dt 1/2 T 0 Ω |h 1 | 2 dx dt 1/2 < ε.
Therefore we have

T 0 (g(u j , v j ) -g(u, v), h 1 ) θ(t) dt < ε.
Performing similar calculations we can to prove that

T 0 (f (u j , v j ) -f (u, v), h 1 ) θ(t) dt < ε.
We will show now, that for every θ ∈ D ([0, T ]) and for every

h 1 ∈ L 2 (Ω) a(l(u j )) T 0 Ω ∇u j • ∇h 1 θ(t) dt -→ a(l(u)) T 0 Ω ∇u • ∇h 1 θ(t) dt. (3.37)
It is enough we prove that

a(l(u j )) -→ a(l(u)) in L 2 (0, T ), ∀ T > 0. (3.38)
Since a is continuous, we will show that l(u j ) -→ l(u) strongly in L 2 (0, T ).

(3.39)

In fact, because

T 0 |l(u j ) -l(u))| 2 dt = T 0 |l(u j -u)| 2 dt ≤ C 6 T 0 |u j -u| 2 dt < ε.
This last one result, is consequence of the convergence (3.35).

These convergence implies that we can take limits in the approximate problem (3.11)-(3.15), and then to verify the conditions (i), (ii), (iii) and (iv) of the Theorem. Now, we will make verify of the initial data and we prove the uniqueness of solutions. Using the result of regularity we have that

u, v ∈ C 0 (0, T : L 2 (Ω)) (3.40) 
In this form, makes sense we calculate u(0) e v(0). Let us consider θ ∈ C 1 (0, T : R), with θ(0) = 1 and θ(T ) = 0. Since the convergence (3.29) we have

T 0 (u ′ j , z) θ dt -→ T 0 (u ′ , z) θ dt, z ∈ L 2 (Ω). (3.41) 
Performing integration by parts in (3.41) we have

-(u j (0), z) - T 0 (u j , z) θ ′ dt -→ -(u(0), z) - T 0 (u, z) θ ′ dt. (3.42) 
Using the convergence (3.29) in (3.42) we have (u j (0), z) -→ (u(0), z), for all z ∈ H 1 0 (Ω). But u j (0) converges strong for u 0 in L 2 (Ω), consequently weak in L 2 (Ω). Therefore (u j (0), z) -→ (u 0 , z), for all z ∈ H 1 0 (Ω). From uniqueness of the limit we have (u(0), z) -→ (u 0 , z), for all z ∈ H 1 0 (Ω). Thus, u(0) = u 0 . In a similar way we can prove that v(0) = v 0 .

To finish this section we will show the uniqueness of solution.

Theorem 3.2(Uniqueness). Let (u 0 , v 0 ) ∈ L 2 (Ω) × L 2 (Ω) and 0 < T < +∞, where the time T depends only

|u 0 | L 2 (Ω) and |v 0 | L 2 (Ω) . If (2.6)-(2.9) holds, then there is at most one solution of (3.1)-(3.5) in L 2 (0, T : H 1 0 (Ω)) ∩ C([0, T ) : L 2 (Ω)) × L 2 (0, T : H 1 0 (Ω)) ∩ C([0, T ) : L 2 (Ω)) with initial data (u(x, 0), v(x, 0)) = (u 0 , v 0 ). Proof. Assume that (u 1 , v 1 ), (u 2 , v 2 ) in L 2 (0, T : H 1 0 (Ω)) ∩ C([0, T ) : L 2 (Ω)) × L 2 (0, T : H 1 0 (Ω)) ∩ C([0, T ) : L 2 (Ω)) are two solutions of (3.1)-(3.5) with u t , v t in L 2 (0, T : H -1 (Ω)) × L 2 (0, T : H -1 (Ω))
, so all integrations below are justified and with the same initial data, in fact (u 1 -u 2 )(x, 0) ≡ 0 and (u 2 -u 2 )(x, 0) ≡ 0. Then

d dt u 1 -a(l(u 1 )) △u 1 = -f (u 1 , v 1 ) + g(u 1 , v 1 ) d dt v 1 -a(l(v 1 )) △v 1 = f (u 1 , v 1 ) -g(u 1 , v 1 )
and

d dt u 2 -a(l(u 2 )) △u 2 = -f (u 2 , v 2 ) + g(u 2 , v 2 ) d dt v 2 -a(l(v 2 )) △v 2 = f (u 2 , v 2 ) -g(u 2 , v 2 ).
Then

d dt (u 1 -u 2 , h 1 ) + a(l(u 1 )) Ω ∇u 1 • ∇h 1 dx -a(l(u 2 )) Ω ∇u 2 • ∇h 1 dx = -(f (u 1 , v 1 ) -f (u 2 , v 2 ), h 1 ) + (g(u 1 , v 1 ) -g(u 2 , v 2 ), h 1 ), ∀ h 1 ∈ H 1 0 (Ω) d dt (v 1 -v 2 , h 2 ) + a(l(v 1 )) Ω ∇v 1 • ∇h 2 dx -a(l(v 2 )) Ω ∇v 2 • ∇h 2 dx = (f (u 1 , v 1 ) -f (u 2 , v 2 ), h 2 ) -(g(u 1 , v 1 ) -g(u 2 , v 2 ), h 2 ), ∀ h 2 ∈ H 1 0 (Ω). Using that g(u 1 , v 1 ) -g(u 2 , v 2 ) = α (u 1 -u 2 ) -α (v 1 -v 2 ) and that f (u, v) = f (u -v) we have d dt (u 1 -u 2 , h 1 ) + a(l(u 1 )) Ω ∇u 1 • ∇h 1 dx -a(l(u 2 )) Ω ∇u 2 • ∇h 1 dx = -(f (u 1 -v 1 ) -f (u 2 -v 2 ), h 1 ) + α (u 1 -u 2 , h 1 ) -α (v 1 -v 2 , h 1 ), ∀ h 1 ∈ H 1 0 (Ω) d dt (v 1 -v 2 , h 2 ) + a(l(v 1 )) Ω ∇v 1 • ∇h 2 dx -a(l(v 2 )) Ω ∇v 2 • ∇h 2 dx = (f (u 1 -v 1 ) -f (u 2 -v 2 ), h 2 ) -α (u 1 -u 2 , h 2 ) + α (v 1 -v 2 , h 2 ), ∀ h 2 ∈ H 1 0 (Ω).
On the other hand, let

h 1 = u 1 -u 2 and h 2 = v 1 -v 2 we obtain d dt |u 1 -u 2 | 2 + a(l(u 1 )) Ω ∇u 1 • ∇(u 1 -u 2 ) dx -a(l(u 2 )) Ω ∇u 2 • ∇(u 1 -u 2 ) dx = -(f (u 1 -v 1 ) -f (u 2 -v 2 ), u 1 -u 2 ) + α |u 1 -u 2 | 2 -α (v 1 -v 2 , u 1 -u 2 )
and

d dt |v 1 -v 2 | 2 + a(l(v 1 )) Ω ∇v 1 • ∇(v 1 -v 2 ) dx -a(l(v 2 )) Ω ∇v 2 • ∇(v 1 -v 2 ) dx = (f (u 1 -v 1 ) -f (u 2 -v 2 ), v 1 -v 2 ) -α (u 1 -u 2 , v 1 -v 2 ) + α |v 1 -v 2 | 2 .
Hence

d dt |u 1 -u 2 | 2 + a(l(u 1 )) ||u 1 || 2 + a(l(u 2 )) ||u 2 || 2 + [ a(l(u 1 )) -a(l(u 2 ) ] Ω ∇u 1 • ∇u 2 dx ≤ |f (u 1 -v 1 ) -f (u 2 -v 2 )| |u 1 -u 2 | + α |u 1 -u 2 | 2 + α |v 1 -v 2 | |u 1 -u 2 | and d dt |v 1 -v 2 | 2 + a(l(v 1 )) ||v 1 || 2 + a(l(v 2 )) ||v 2 || 2 + [ a(l(v 1 )) -a(l(v 2 ) ] Ω ∇v 1 • ∇v 2 dx ≤ |f (u 1 -v 1 ) -f (u 2 -v 2 )| |v 1 -v 2 | + α |u 1 -u 2 | |v 1 -v 2 | + α |v 1 -v 2 | 2 .
Using (2.6)-(2.9) and the Young inequality we have

d dt |u 1 -u 2 | 2 + m ||u 1 || 2 + m ||u 2 || 2 ≤ M 1 | l(u 1 ) -l(u 2 ) | ||u 1 || ||u 2 || + M 3 |(u 1 -u 2 ) -(v 1 -v 2 )| |u 1 -u 2 | + α |u 1 -u 2 | 2 + α 2 |v 1 -v 2 | 2 + α 2 |u 1 -u 2 | 2 ≤ M 1 C 1 |u 1 -u 2 | ||u 1 || ||u 2 || + M 3 |u 1 -u 2 | 2 + M 3 |u 1 -u 2 | |v 1 -v 2 | + 3 2 α |u 1 -u 2 | 2 + α 2 |v 1 -v 2 | 2 ≤ m 2 ||u 1 || 2 + M 2 1 C 2 1 2m ||u 2 || 2 |u 1 -u 2 | 2 + M 3 |u 1 -u 2 | 2 + M 3 2 |u 1 -u 2 | 2 + M 3 2 |v 1 -v 2 | 2 + 3 2 α |u 1 -u 2 | 2 + α 2 |v 1 -v 2 | 2 ≤ m 2 ||u 1 || 2 + M 2 1 C 2 1 2m ||u 2 || 2 |u 1 -u 2 | 2 + 3 2 (M 3 + α) |u 1 -u 2 | 2 + 1 2 (M 3 + α) |v 1 -v 2 | 2 and d dt |v 1 -v 2 | 2 + m ||v 1 || 2 + m ||v 2 || 2 ≤ M 2 | l(v 1 ) -l(v 2 ) | ||v 1 || ||v 2 || + M 3 |(u 1 -u 2 ) -(v 1 -v 2 )| |v 1 -v 2 | + α 2 |u 1 -u 2 | 2 + α 2 |v 1 -v 2 | 2 + α |v 1 -v 2 | 2 ≤ M 2 C 2 |v 1 -v 2 | ||v 1 || ||v 2 || + M 3 |v 1 -v 2 | 2 + M 3 |u 1 -u 2 | |v 1 -v 2 | + 3 2 α |v 1 -v 2 | 2 + α 2 |u 1 -u 2 | 2 ≤ m 2 ||v 1 || 2 + M 2 2 C 2 2 2m ||v 2 || 2 |v 1 -v 2 | 2 + M 3 |v 1 -v 2 | 2 + M 3 2 |v 1 -v 2 | 2 + M 3 2 |u 1 -u 2 | 2 + 3 2 α |v 1 -v 2 | 2 + α 2 |u 1 -u 2 | 2 ≤ m 2 ||v 1 || 2 + M 2 2 C 2 2 2m ||v 2 || 2 |v 1 -v 2 | 2 + 3 2 (M 3 + α) |v 1 -v 2 | 2 + 1 2 (M 3 + α) |u 1 -u 2 | 2 Then d dt |u 1 -u 2 | 2 + m 2 ||u 1 || 2 + m ||u 2 || 2 ≤ M 2 1 C 2 1 2m ||u 2 || 2 |u 1 -u 2 | 2 + 3 2 (M 3 + α) |u 1 -u 2 | 2 + 1 2 (M 3 + α) |v 1 -v 2 | 2 (3.43) and d dt |v 1 -v 2 | 2 + m 2 ||v 1 || 2 + m ||v 2 || 2 ≤ M 2 2 C 2 2 2m ||v 2 || 2 |v 1 -v 2 | 2 + 3 2 (M 3 + α) |v 1 -v 2 | 2 + 1 2 (M 3 + α) |u 1 -u 2 | 2 (3.44) Adding (3.43) with (3.44) we obtain d dt ( |u 1 -u 2 | 2 + |v 1 -v 2 | 2 ) + m 2 ||u 1 || 2 + m ||u 2 || 2 + m 2 ||v 1 || 2 + m ||v 1 || 2 ≤ M 2 1 C 2 1 2m ||u 2 || 2 |u 1 -u 2 | 2 + M 2 2 C 2 2 2m ||v 2 || 2 |v 1 -v 2 | 2 + 2 (M 3 + α) |u 1 -u 2 | 2 + 2 (M 3 + α) |v 1 -v 2 | 2 = M 2 1 C 2 1 2m ||u 2 || 2 + 2 (M 3 + α) |u 1 -u 2 | 2 + M 2 2 C 2 2 2m ||v 2 || 2 + 2 (M 3 + α) |v 1 -v 2 | 2
We define

ϕ(t) = M 2 1 C 2 1 2m ||u 2 || 2 + 2 (M 3 + α) , ξ(t) = M 2 2 C 2 2 2m ||v 2 || 2 + 2 (M 3 + α) .
Thus,

d dt |u 1 -u 2 | 2 + |v 1 -v 2 | 2 ≤ ϕ(t) |u 1 -u 2 | 2 + ξ(t)|v 1 -v 2 | 2 .
Let R(t) = sup{ϕ(t), ξ(t)}, then R > 0 and

d dt |u 1 -u 2 | 2 + |v 1 -v 2 | 2 ≤ R(t) |u 1 -u 2 | 2 + |v 1 -v 2 | 2 . (3.45)
Integrating (3.45) over t ∈ [0, T ] and using that u 1 (0) = u 2 (0) and v 1 (0) = v 2 (0), we obtain

|u 1 -u 2 | 2 + |v 1 -v 2 | 2 ≤ t 0 R(t) ( |u 1 -u 2 | 2 + |v 1 -v 2 | 2 ) dx. Let ρ(t) = |u 1 -u 2 | 2 + |v 1 -v 2 | 2 , then ρ(t) ≤ t 0 R(s) ρ(s) ds. (3.46)
Applying Gronwall's inequality, we obtain

ρ(t) ≤ 0. Therefore ρ ≡ 0, i. e., |u 1 -u 2 | 2 + |v 1 -v 2 | 2 = 0.
Using the regularity of the solutions, the uniqueness follows.

Exponential stability

In this section we show that the total energy (2.11) associated to system (2.1)-(2.5) decay exponentially to zero as t tends to infinity. In what follows we will prove our main result:

Theorem 4.1. Let (u, v) be a solution of system (1.1)-(1.5) given by the theorem 3.1 and theorem 3.2. We suppose that m > 2 c p (M 1 + α) > 0, where c p corresponds to the constant of the Poincaré inequality.. Then there exist positives constants C and η, such that

E(t) ≤ C E(0) e -η t . (4.1) 
Proof. Multiplying equation (2.1) by u and integrating over x ∈ Ω we have 1 2

d dt Ω |u| 2 dx + a(ℓ(u)) Ω |∇u| 2 dx = - Ω f (u -v) u dx + α Ω (u -v) u dx.
Multiplying equation (2.2) by v and integrating over x ∈ Ω we have 1 2

d dt Ω |v| 2 dx + a(ℓ(v)) Ω |∇v| 2 dx = Ω f (u -v) v dx -α Ω (u -v) v dx.
Adding the expressions above and using (2.8) we have case the parameter ε is a very small parameter and it plays a practical computational role to avoid the numerical overflow on the diffusion when the extinction of the population occurs, that is when u ≈ 0 or v ≈ 0. We consider a parameter m 0 to the numerical study of an extinsion case of population and for a persistence case of population. In fact, the exponential decaying of the energy (4.1), can be interpreted as the extinsion of two populations u and v. That is occurs when the hypothesis m > c p (M 1 + α) of the Theorem 4.1, is verified. If m is too small, the decaying of the energy is not guarantee and a population persistence can be occur as we see in Figure 2. The initial condition is given by u 0 (x) = δ sin(πx), with δ = 1.95 (see [START_REF] Ackleh | Existence-uniqueness and long time behavior for a class of nonlocal nonlinear parabolic evolution equations[END_REF]), and v 0 (x) = -u 0 (x) = -δ sin(πx). In this example, a negative v 0 has not a physical or biological sense, if u and v represent densities of population, but we want to focus in the importance of the hypothesis of the Theorem 4.1, showing numerically that the exponential decaying of the energy does no occur when the hypothesis is not verified. We choose the parameter ε = 10 -6 for the nonlocal diffusion function (5.5), and we choose r = 1.0 and k = 10.0 for the reaction function (5.6). The discretization is given by J = 10 4 and K = 10 4 ; we solve the linear system (5.1)-(5.3) using Thomas algorithm programming in Fortran90.

We consider here 2 simulations, the first one with m 0 = 1.0 (see Figure 1), and the second one with m 0 = 0.1 (see Figure 2). The population persistence phenomenom does not occur with a choice of a big amplitude δ for the initial condition as it occurs in [START_REF] Ackleh | Existence-uniqueness and long time behavior for a class of nonlocal nonlinear parabolic evolution equations[END_REF]. In fact we made simulations with different δ values and the exponential decaying is always observed. 

  .21) Adding the equations (3.20) with (3.21) and integrating of 0 to t, we obtain

|u| 2 +

 2 |v| 2 dx + m Ω |∇u| 2 + |∇v| 2 dx ≤ Ω |f (u -v)| |u -v| dx + α Ω |u -v| 2 dx.

Figure 1 :

 1 Figure 1: Extinction of the population density u(x, t) (left) and v(x, t) (right) at time T = 0.2.

Figure 2 :

 2 Figure 2: Persistence of the population density u(x, t) (left) and v(x, t) (right).
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Using (2.6) follows that

Applying the Poincaré inequality and the Young inequality, we obtain

Now choosing m > 2 c p (M 1 + α) > 0 follows that there exists C > 0 such that

From we concludes that there exists η > 0 such that

The proof follows.

Numerical Results

In this section we consider a particular case of the nonlocal reaction diffusion equations (2.1)-(2.5) in one dimensional space (n = 1), Ω = (0, 1), and l :

Then we approximate the solution of the system using implicit finite differences. The numerical scheme reads as following

for i = 1, . . . , J -1 and k = 0, . . . , K, where δt = T /K, δx = 1/J, x i = iδx, i = 0, . . . , J and t k = kδt, k = 0, . . . , K. In (5.1)-(5.3), u k i denotes the approximation of u(t k , x i ). In order to solve the system (5.1)-( 5.3), we consider the initial condition approximated by

and v 0 i = v 0 (x i ), for i = 0, . . . , J.

(5.4)

For each k = 0, . . . , K, the scheme (5.1)-(5.3) is equivalent to a linear system with a tridiagonal matrix of R (J-1)×(J-1) which is positive definited and then there exists a unique solution of (5.1)-(5.4).

In order to compare the numerical behaviour of the solution with theoretical and numerical behaviour of the solution for one equation (scalar case), we take the same nonlinear reaction terms with similar parameters and initial conditions of Ackle and Ke [START_REF] Ackleh | Existence-uniqueness and long time behavior for a class of nonlocal nonlinear parabolic evolution equations[END_REF]. Nonlinear reaction and nonlocal diffusion are given by a(ξ) := max ε,

f (w) -αw := rw(κ -w), for all w,

where ε, m 0 , r and κ are constant and positive parameters. We remark that in the numerical example of Ackle and Ke [START_REF] Ackleh | Existence-uniqueness and long time behavior for a class of nonlocal nonlinear parabolic evolution equations[END_REF], the authors consider a nonlocal diffusion given by the expression 1

. In our