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Abstract—This paper presents an analog neuromimetic 
integrated circuit and an associated system dedicated for 
experiments of parameters extraction in biological neuron 
models. The IC based on Hodgkin-Huxley (HH) formalism 
computes in real-time and continuous mode. The dedicated 
system is a PCI board that is able to program dynamically the 
neuron model parameters in the IC. The full system, which 
includes the IC and the PCI board, is used to build a new 
hardware/software technique to extract biophysics parameters 
from biological neuron. This technique could be helpful for the 
neuroscientists proposing an alternative to voltage-clamp 
technique. For that, the new technique will use optimization 
algorithms to be efficient. 

I. INTRODUCTION 
Since the first silicon neuron from M. Mahowald and 

R. Douglas [1], research groups have designed and used 
analog integrated circuits to integrate neuromorphic systems. 
Among those neuromorphic items, we can isolate two 
groups. The first one consists in bio-inspired systems, 
designed to develop new solutions for engineering questions. 
The designers use biological principles to build new and 
more efficient systems about vision [2] [3], attention [4] and 
learning [5]. The second type are neuromimetic systems that 
use engineering means and tools; those systems are 
developed to address neurosciences questions, like the 
comprehension of central pattern generator [6], rhythmic 
motor control [7], learning [8] or vision processing [9]. 

Neuromimetic systems can also be helpful tools for 
neurophysiology experiments. For example, to specify a 
biological neuron, neuroscientists use the voltage-clamp 
technique [10]. This is a long process, where the in-vitro cell 
activity is measured in a way that it fits one by one ionic 
channel while measuring the cell surface area and the 
membrane capacitance. Another technique is to use 
optimization algorithms to identify the electrical behavior of 
the observed cell to a mathematical model. When the neuron 
model is based on the Hodgkin-Huxley formalism, as many 
as fifteen parameter values have to be fitted for a simple 
three conductances neuron. If optimization algorithms are 
computed using a software solution, the computation power 
of the system [11] becomes quickly a key issue when 
handling so many parameters. Hardware computation using 
VLSI ASICs is a solution in such a case. We have already 

designed analog neuromimetic integrated circuits based on 
Hodgkin-Huxley formalism, including the description of 
calcium-dependent channels [12]. One of the last 
neuromimetic integrated circuit (IC) that we have designed is 
a mixed analog-digital chip. Its main features are: it 
simulates in biological real-time the neuron activity 
(membrane potential); it is able to process models with on-
chip dynamically programmable parameters. The ICs are 
hosted in a custom system, and communicate via a PCI 
interface with user interface software that controls the neuron 
models parameters and the simulation progress [13]. In such 
a system, where the neural activity is computed by dedicated 
ICs, the host computer is available during the simulation for 
calculating optimization algorithms.  

We will present in this paper the design of analog 
neuromimetic ICs; results will be shown where analog IC 
neurons achieve neural simulations in biological real-time 
but also faster than the biological real-time. This 
configuration will increase the efficiency of our 
hardware/software system when identifying a biological 
neuron. We will end up by the presentation of the complete 
system developed to process the optimization technique. 

II. THE MODEL IMPLEMENTATION 

A.  The Hodgkin-Huxley formalism 
To design neuromimetic IC (in contrast to bio-inspired 

IC), we chose the Hodgkin-Huxley formalism. The main 
advantage of this formalism is that it relies on parameters, 
which are biophysically realistic, by the way of a 
conductance-based expression of the neural activity (see 
detailed description of the Hodgkin-Huxley formalism in 
[14]). We will express here the conductance-based principle 
and find out generic expressions for these conductance 
phenomena. 

The Hodgkin-Huxley formalism provides a set of 
equations and an electrical equivalent circuit (Fig. 1) that 
describe the behavior of separate conductances. Each 
conductance represents the dynamics of an ionic specie 
(sodium, potassium or calcium) flowing through the neural 
membrane. All these ionic currents are integrated on the 
membrane capacitance following the electrical equation (1), 



Cmem . dVmem / dt  =  - Σ Iion + Is (1) 

where Vmem is the membrane potential, Cmem the membrane 
capacitance and Is an eventual stimulation or synaptic 
current. The generic mathematical expression (2) for each 
ionic current is: 

Ιion = gmax . mp . hq . (Vmem – Vequi) (2) 

where gmax is the maximal conductance value, m and h are 
respectively the activation and inactivation function and Vequi 
the ion-specific reverse potential. We will for our 
implementation integrate current generators that follow 
expression (2). Synaptic current are based on similar 
conductance-based model. 

B. The implemented analog computation core 
Figure 2 describes the organization of the integrated IC 

gathering ionic current generators as described earlier. To 
cover the widest possible range of models, while limiting the 
design complexity, we retained five channel types: leakage, 
sodium, potassium, calcium and calcium-dependent 
potassium. A neuron model will be possibly described by 
any combination of these channel types; associated to the 

chosen set of conductances, 8 input synapses and one 
stimulation current generator. The analog computation core 
is configurable through two internal buses. The first one, 
which is analog, defines the parameter values in the 
mathematical expression given in (2). The second one is a 
digital bus used to specify which ionic current generators are 
active for the simulation. The membrane voltage (via the 
“Vmem buffered” output) and any ionic current generator 
switched to the “Display output” can be displayed in real 
time on an oscilloscope. 

III. FROM ANALOG COMPUTATION CORE TO SYSTEM 

A. Design principle 
We integrated a circuit including two analog computation 

cores (Fig. 3). The 158 analog parameters that are necessary 
for the 2 analog cores are stored on-chip, using dynamic 
analog memories, based on integrated capacitors. The 
memory cells array receives data from an external ADC, 
which sequentially refreshes the analog parameters values. 
This technique allows external modifications of one or more 
parameters, even during the running of the simulation. Due 
to internal protocol, one modification necessitates three 
refreshing cycles (≤ 5 ms), which is compatible with the 
Vmem dynamics in biological real time. To program the 
parameter memories we use a 3 bits bus (Clock, Reset and 
Data) and an analog bus (Parameter values). The 
experimenter chooses a topology before the simulation starts, 
to define which channels are activated to compute the 
electrical activity. This topology is stored on built-in 
dynamic digital memories and programmed by another 3 bits 
bus (Clock, Reset and Data). 

B. The Chip Pamina 
The chip was designed in full-custom mode with a 

BiCMOS SiGe 0.35µm technology process from 
austriamicrosystems (AMS) under Cadence environment. 
Figure 4 is a microphotograph of the ASIC called Pamina. 
The ionic current generators have been designed in current 
mode [15], which means that the internal variables in the 
model expressions are physically represented by currents. 
Topology and analog memory cells can also be identified on 
the figure. Pamina contains around 19,000 MOS transistors, 
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Fig. 1:  Neuron electrical equivalent circuit 
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2,000 bipolar ones and 1,200 passive elements; its area is 
4170 x 3480 µm2. Ionic and synaptic current generators, as 
well as analog memory cells, are designed in full-custom 
mode; digital cells are from the austriamicrosystem’s library. 
Custom implementation is 71% of the 22,200 elements. 

C. The system 
A complete computer-based system was built to exploit 

the designed ASICs (see Fig. 5). The experimenter defines 
the neurons model parameters, using interface software. 
Theses characteristics include the ionic channels choice 
between sodium, potassium, leakage, calcium and calcium-
dependent potassium and the parameters values for each 
channel. These data are sent to the IC through the analog and 
digital buses described in the previous paragraph. The analog 
computation core simulates in real-time the membrane 
potential, which is digitized through an analog digital 
converter and sent to the computer for display, storage or 
further processing. 

IV. TOWARDS OPTIMIZATION TECHNIQUE 
With the neuromimetic IC called Pamina and the 

communication via PCI-bus with the host computer, we have 
all components to build a system to determine the set of 

parameters from a biological neuron, as mentioned in the 
introduction paragraph.  

The parameters extraction by optimization algorithms 
necessitates to minimize an error function between a 
reference activity and a current activity. More specifically, 
this error function compares two membrane potentials, one 
measured from a biological cell (the reference), and the other 
from the simulation (the model which parameters are 
examined). Optimization algorithms do the error function 
minimization. An error function in temporal domain would 
have to deal with the arbitrary phase difference that exists 
between the 2 signals. Synchronizing the reference and 
simulated activity by adjusting for example the stimulations 
is not a simple case. We chose to define an error function 
that compares the membrane potentials evolution in time 
rather than their static values. Considering the definition of 
the mathematical expression (1) and (2) for the membrane 
potentials, we will calculate the phase diagram (3), which 
specifies the membrane voltage activity on a single period, 
regardless of the absolute phase. This approach is possible 
only because we consider periodic activities. 

dVmem / dt  =  f(Vmem) (3) 

Figure 6 illustrates plots such a phase diagram in the case 
of a three conductances neuron model [16]. We plot the 
phase diagram of the reference activity and the simulated 
activity, which simulates a set of parameters arbitrary 
chosen. In that demonstration case, the reference activity is 
from an already known model card, obtained from voltage-
clamp experiments, and is software simulated. This plot 
points out the difference between the two electrical activities, 
and the “error” is clearly visible. This means that the IC 
parameters are not well tuned to fit the reference model. The 
optimization technique will minimize the error function to 
obtain closer trajectories in the phase diagram. The error 
function definition and the optimization algorithms choice 
are discussed in [17]. 

The main advantages of this technique are that it helps 
reducing neurophysiology experiments, while giving the 
opportunity to explore systematically the parameters space of 
the studied model. With this technique, the neuroscientists 
need to measure only the membrane voltage, which is easier 

 
Fig. 4:  Microphotograph of the chip Pamina 

Parameters control bus

Analog
Computation

Core

Analog Digital
ConverterMembrane potential

digitized

- Interface allowing
  parameters management

- Analog computation
- Membrane potential
   digitization

Fig. 5:  Structure of the complete simulation system 

-200

0

200

400

-80 -40 0 40

Vmem (mV)

dV
m

em
/d

t(
m

V
/m

s)

Reference activity IC simulation

Fig. 6:  Phase diagram of reference activity and IC activity 



than the ionic channels dynamic with the voltage-clamp 
technique. The set of parameters exploration will give to the 
neuroscientists the mathematically possible solutions 
(possibly more than one). Neuroscientists will then retain the 
most realistic model card.  

V. THE COMPUTATION SPEED 
The analog neuromimetic IC present a great advantage 

over the digital implementations: we can increase the 
computational speed, and run simulations at a fixed time 
scale that will be more than the biological real-time. Looking 
at expression (1), if we arbitrarily divide the membrane 
capacitor value by a α term,  and divide all the kinetics of the 
activation and inactivation variables by the same α term, we 
immediately divide the simulation time by the α term (t in 
the expression is replaced by t/α). We show in fig. 7 test 
measurements on the ASIC Pamina in the cases α = 1, 10 
and 100. Each simulation is drawn with its own time scale 
t/α. This property is limited by the circuit electronic 
performances, as it was not designed to process higher 
kinetics than the real-time ones. When α = 10, the action 
potential shape is almost identical to the reference one (α = 
1), and the activity frequency slightly increases. When α = 
100, we can observe noise during the depolarizing phase of 
the spike, before the action potential. These results show us 
that, although the IC Pamina was not designed for increasing 
the computation speed, we can find an optimum factor to 
speed up the simulation while keeping an activity identical to 
the reference one. Applying that property to the 
software/hardware optimization technique will reduce the 
simulation time; this can be a key issue when exploring large 
set of parameters in the Hodgkin-Huxley models. 

VI. CONCLUSION 
We presented in this paper a custom experimental setup, 

which includes analog neuromimetic IC modeling the 
Hodgkin-Huxley formalism, and a PCI interface to 
dynamically control the IC. The proposed hardware/software 
technique using this system is an alternative to voltage-clamp 
experiments for parameters extraction in biological neuron 

models. We demonstrated that the analog neuromimetic IC 
can compute neural activity faster than biological time. 
Additional results including the software implementation of 
optimization algorithms implementation will be presented 
during the conference.  
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