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Abstract: The purpose of this paper is to define a framework for the implantation of a
distributed, adaptable and open prognostic system able to take into account, on one hand,
the dynamic of the monitored equipment and, on the other hand, the evolution of
performance criteria. In this way, the prognostic process is (re)defined: at the component
level and at the global level of the system (whole equipment). In the distributed model
proposed, the interest of neural networks as "prognostic tools" is pointed out. The work is
in coherence with actual industrial maintenance developments like "e-maintenance
systems" or "web-services applications". Copyright © 2007 IFAC
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1. INTRODUCTION

The maintenance activity combines different
methods, tools and techniques to reduce maintenance
costs while increasing reliability, availability and
security of equipments. Thus, one usually speaks
about fault detection, failures diagnostic, response
development (choice of management actions -
preventive and/or corrective) and scheduling of these
actions. Briefly these steps correspond to the need,
firstly, of '"perceiving" phenomena, next, of
"understanding" them, and finally, of "acting"
consequently. However, rather than understanding a
phenomenon which has just appeared like a failure (a
posteriori comprehension), it seems convenient to
"anticipate" it's manifestation in order to
consequently and, as soon as possible, resort to
protective actions. This is what could be defined as
the "prognostic process" and which the object of this
paper is.

Prognostic reveals to be a very promising
maintenance activity as it should permit to not
engage inopportune maintenance spending. Also,
industrials show a growing interest in this thematic
which becomes a major research framework; see
recent papers dedicated to "CBM", condition-based
maintenance (Jardine, et al., 2006; Ciarapica and
Giacchetta, 2006). The relative positioning of
detection, diagnostic, prognostic and decision /
scheduling can be schematized as proposed in Fig. 1.

The research community still doesn't propose a
formal framework to instrument the prognostic
process. (1) The prognostic itself isn't a stabilized
concept. (2) Existing developments deal essentially
with the provisional assessment of component's states
and leave side a "system-approach" of the problem.
(3) This is all the more critical as systems evolve in
complexity (mecatronics systems) and in scale
(distributed systems)...
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Fig. 1. Relative positioning of detection, diagnostic,
prognostic and decision/scheduling activities.

In this context, the purpose of the work reported here
is to define a framework for the implantation of a
distributed prognostic system to ensure a predictive
analysis at the global level of the system (the whole
equipment) and enable to take into account, on one
hand, the dynamic of the monitored equipment and,
on the other hand, the evolution of performance
criteria.

The paper is organized in three parts. First of all
(section 2), the concept of "prognostic" is briefly
defined and positioned within the maintenance
strategies. Some developments have been led to
improve the proactive capacities of maintainers. So,
the next part is dedicated to the analysis of the tools
used in time forecasting (section 3). At this stage, a
special attention is given to neural networks which
main advantages in regards with the reported work
are pointed out. Finally (section 4), an hybrid and
distributed system for "prognostic instrumentation"
is proposed. The whole aims at bringing the analysis
from local (component) to global (system) level.

2. MAINTENANCE AND PROGNOSTIC

2.1 Prognostic as a key feature of maintenance
policies

As mentioned earlier, the growth of the reliability,
availability or safety of a system is a determining
factor in regard with the effectiveness of industrial
maintenance. As a consequence, the implementation
of provisional strategies is a good way to improve
the availability of processes, to ensure the smallest
variations of products qualities or the direct costs
falling (Leger and Morel, 2001). Furthermore,
durable development involves the integration of
economical  strategies  beside  social  and
environmental ones for the optimization of
processes. This major provocation of triple
performance outlined a new and interesting research
area in scientific world: concepts like statical
corrective or preventive maintenance were replaced
by reactive or proactive maintenance (lung, et al.
2003) and the prognostic take a growing place.
Obviously, considering the benefits that a
"prognostic system" may bring to the security,
economics and resource management fields, the
industrial community takes now interest in this area.
In a word "prognostic" is recognized as a key feature
in maintenance strategies. Let's have a closer look on
this concept.

2.2 Acceptations of "prognostic"

The European Standard on maintenance terminology
(EN 13306, 2001) doesn't define the "prognostic". It
doesn't appear either on the IFAC keyword list. This
reveals that there is no consensual acceptation of this
term. The literature on prognostics is still small. The
objective of a prognostic "module" can be
summarized as follows.

Historical acceptation. Prognosis is traditionally
related to fracture mechanics and fatigue. It started to
be brought up by the modal analysis community as a
field of interest (Farrar, et al., 2003). In this
"meaning", prognostic is also called the prediction of
a system’s lifetime, which corresponds to the last
level of the classification of damage detection
methods introduced by (Rytter, 1993). This
acceptation of "prognostic" can be generalized by the
RUL concept (see here after).

Prognostic as a RUL estimation. The most widely
definition of prognostic is the following: a process
whose objective is to predict how much time is left
before a failure (or a fault) occurs given the current
machine condition and past operation profile
(Jardine, ef al., 2006). The time left before observing
a failure is usually called the "remaining useful life"
(RUL), remaining service life, residual life, or
remnant life.

Prognostic as a probability measure. Prognostic can
aim at predicting the chance that a machine operates
without a fault or failure up to some future time. In
the general maintenance context, this "probabilistic
prognostic value" is all the more an interesting
indication as the fault or failure can have catastrophic
consequences  (e.g. nuclear power plant):
maintenance manager need to know if the inspection
interval is appropriate... However, a small number of
papers address this second type of prognostics (Lin
and Makis, 2003; Farrar, et al., 2003).

2.3 "Prognostic" as an assessment process

Predict. All definitions proposed here above
assimilate prognostic to a "prediction process": a
future situation must be caught. In addition, this
obviously supposes that the current situation can be
grasped (practically, it's the synthesis of a detection
process and of measured data of the system).

Assess. More over, these approaches are grounded
on the failure (or fault) notion, which implies that the
"prognostic activity" is associated with a degree of
acceptability (a system must perform a required
function: EN 13306, 2001). Thus, prognostic should
be based on assessment criteria, whose limits depend
on the system itself and on performance objectives.

Consider Fig. 2 to illustrate this assumption: the
predicted situation at time "t+dt" can be considered
as a critical one because of the degradation limit.
Without this limit, there is no way to conclude on the
predicted situation.
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Fig. 2. Simple illustration of the difference between
prediction and performance evaluation.

Thus, prognostic could be split into 2 sub-activities:
a first one to predict the evolution of a situation at a
given time, and a second one to assess this predicted
situation with regards to an evaluation referential.
Let's resume (Fig. 3.):

- identification: a situation is captured by the
detection process and additional current
measures,

- prediction: the situation is forecasted in time,

- assessment: a situation is evaluated by the use of
performance criteria,

- prognostic: a predicted situation is assessed.

The difference pointed out here between prediction
and prognostic can be assimilated to this one
between "information" and "knowledge" concepts:
the prediction sub-process informs on a phenomenon
(from data to information), and the assessment one's
enable to interpret it and pro-act on it (from
information to knowledge). Obviously, in practical
situation all this must be supported by operational
tools. This is the purpose of section 3.

3. PROGNOSTIC METHODS

3.1 Overview

Various approaches to prognostics have been
developed that range in fidelity from simple
historical failure rate models to high-fidelity physics-
based models (Byington, 2002).

The required information (depending on the type of
prognostics approach) include: engineering model
and data, failure history, past operating conditions,
current conditions, identified fault patterns,
transitional failure trajectories, maintenance history,
system degradation and failure modes.
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Fig. 3. Prognostic as a prediction and assessment
process.

Let's have an overview of examples of prognostics
approaches that have successfully been applied for
different types of problems.

- Experience-Based Prognostics. Use statistical
reliability to predict probability of failure at any
point in time.

- Evolutionary/Statistical Trending Prognostics.
Multi-variable analysis of system response and
error patterns compared to known fault patterns.

- Artificial ~ Intelligence  Based  Prognostics.
Mechanical failure prediction using reasoners
trained with failure data.

- State Estimator Prognostics. System degradation
or diagnostic feature tracking using Kalman
filters and other predictor-corrector schemes.

- Model-Based or Physics of Failure Based
Prognostics. Fully developed functional and
physics-of-failure models to predict degradation
rates given loads and conditions.

Similar to diagnosis, prognostic methods can be
classified as being associated with one of the
following two approaches: model-based and data-
driven (Chiang, et al., 2001). Each one of these
approaches has its own advantages and
disadvantages, and, consequently, they are often used
in combination in many applications. The next
paragraphs present a synthesis of it.

Let's note that according to some authors, all
methods are labeled as "prognostic tools". However,
most of them refer to what, in this paper, is called
"prediction"...

3.2 Model based approaches

The model-based methods assume that an accurate
mathematical model can be constructed from first
principles. As an example, physics-based fatigue
models have been extensively employed to represent
the initiation and propagation of structural anomalies.
The model-based methods often use residuals as
features, where the residuals are the outcomes of
consistency  checks  between  the  sensed
measurements of a real system and the outputs of a
mathematical model. The premise is that the
residuals are large in the presence of malfunctions,
and small in the presence of normal disturbances,
noise and modeling errors.

Statistical techniques are used to define thresholds to
detect the presence of faults. The three main ways of
generating the residuals are based on:

- parameter estimation,

- observers (Kalman filters, reduced order
unknown input observers, Interacting Multiple
Models),

- parity relations.

Advantage and drawback. The main advantage of
model-based approaches is their ability to incorporate
physical understanding of the system to be
monitored. In addition, in many situations, the
changes in feature vector are closely related to model
parameters (Chelidze, et al., 2002).



Therefore, model based approaches can also
establish a functional mapping between the drifting
parameters and the selected prognostic features.
Moreover, if the understanding of the system
degradation improves, the model can be adapted to
increase its accuracy and to address subtle
performance problems. Consequently, it can
significantly outperform data-driven approaches. But
this closed relation with a mathematical model may
also be a strong weakness: it can be difficult even
impossible to catch the system behavior (distributed
systems, mecatronics systems,...). Further, some
authors think that the monitoring and prognostic
tools must evolve as the system does...

3.3 Data driven approaches

Data-driven  approaches derive directly from
routinely monitored system operating data (e.g.,
calorimetric or spectrometric data, power, vibration
and acoustic signal, temperature, pressure, oil debris,
currents voltages...). In many applications, measured
input/output data is the major source for a deeper
understanding of the system degradation behavior.

Data-driven approaches rely on the assumption that
the statistical characteristics of data are relatively
unchanged unless a malfunctioning even occurs.
According to the scientific literature, data-driven
approaches can be divided on two global categories:

- statistical techniques:

o multivariate statistical methods (static and
dynamic principle components (PCA),

« linear and quadratic discriminant,

« partial least squares (PLS),

« canonical variates analysis (CVA),

o signal analysis (niters, auto-regressive
models, FFT, etc.).

- artificial intelligent techniques:

o neural networks (multi-layer perceptron,
probabilistic neural networks, learning vector
quantization, self-organizing maps, etc.),

« fuzzy rule-based systems,

« decision trees,

« graphical models (Bayesian networks, hidden
Markov models).

Case-based Reasoning (CBR), intelligent decision-
based models and min-max graphs have been
considered as potential candidates for prognostic
algorithms too.

Advantage and drawback. The strength of data-
driven techniques is their ability to transform high-
dimensional noisy data into lower dimensional
information for diagnostic/prognostic decisions. Al
techniques have been increasingly applied to
machine prognostic and have shown improved
performances over conventional approaches.

In practice however, it isn't easy to apply Al
techniques due to the lack of efficient procedures to
obtain training data and specific knowledge. So far,
most of the applications in the literature just use
experimental data for model training. Thus, data-
driven approaches are highly-dependent on the
quantity and quality of system operational data.

3.4 Artificial Neural Networks

Within the field of maintenance problems, Artificial
Neural Networks (ANNs) have successfully been
used to support the detection, diagnostic and
prediction processes, and research works emphasize
on the interest of using it (Dong, ef al., 2004, Freitas,
et al., 1999; Wang and Vachtsevanos, 2001; Yam, et
al., 2001; Zhang, et al., 1998): ANNs are a general
and flexible modeling tool, especially for prediction
problems. Let's point out the principle arguments of
this assumption (not exhaustive list).

An adaptable tool. ANNs are data-driven self-
adaptive methods in that they learn from examples
and capture subtle functional relationships among the
data, even if the underlying relationships are
unknown. Thus, ANNs are well suited for problems
whose solutions require knowledge that is difficult to
specify but for which there are enough data or
observations.

A robust tool. After the learning phase, ANNs can
often correctly infer the unseen part of a population
even if the sample data contain noisy information.

A general tool. ANNs are capable of performing
nonlinear modeling which is a really interesting
characteristic as many real world systems are
nonlinear too.

An open tool. In recent works, extensions of ANNs
like neuro-fuzzy systems have been developed in
order to overpass the performance of classical neural
networks, in particular for prediction problems. See
(Wang, et al. 2004), or (Ciarapica and Giacchetta,
20006) for an example.

4. TOWARDS AN HYBRID AND DSTRIBUTED
PROGNOSTIC SYSTEM

In this part, to avoid misunderstandings, the terms
"system" and "tool" are distinguished: "system"
refers to the equipment to be monitored and "tool"
designates the way of supporting the "prognostic
process" (implementation of a method or technique).

4.1 Prognostic tool requirements: the global point of
view

A few requirements of general prognostic tools
emerge from sections 2 and 3.

First of all, a prognostic tool must obviously enable
the prediction of a future state of the system. In
addition, managers do not only want to know what a
situation will be, but evaluate this one too: which
performance will be reached? However, each
component of the system can be considered as a
single system which involves that there is no general
way of defining performances. Moreover, actual real
systems can't be considered as static and definitive
systems... Thus, the prognostic tools must be
dynamic and adaptable to be suitable.
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Fig. 4. Relationships between system structure and
functions in a dysfunctional analysis.

4.2 Prognostic tool requirements: functionalities to
be provided

Generally, a system analysis is performed by
exploiting different models: a functional model to
describe the functions to be provided by the system,
a structural model to describe the architecture
allowing the realization of these functions, and an
event model to describe the behavior. Diverse
requirements for a general prognostic tool follow
from it. Consider Fig. 4 to argue.

The system as a sum of components — local
prognostics (point A in Fig. 4). Considering sub-
systems, one must be able to "locally" predict the
comportment of the component and to assess the
performances reached. Now, this kind of prognostic
is all the more reliable as the local behavior of the
system and the local expectations from it are
considered, which implies the development of
specifics but accurate prognostic tools.

The system as a set — global prognostic (points B and
C in Fig. 4). From the health-management point of
view, relationship between function, structure and
behavior can be difficult to identify (complexity of
the process, lack of knowledge, complicated causal
relations, etc.). These considerations make harder the
modeling step, even impossible. Yet, a monitoring
process must deal with it, and artificial intelligence
should be valorized to support a global prognostic.
(Note that the same reasons led researchers to
associate dependability tools like "fault trees" with
artificial intelligence in diagnostic applications.)

4.3 An hybrid and distributed prognostic tool

According to all considerations made overhead, the
evolution and the complexity of actual systems can
not be handled for all characteristics: the analyses are
made at the component level and the global aspect of
the system isn’t considered in classical approaches.
Moreover, a prognostic tool has to dynamically adapt
itself to follow the system monitored evolution.
Thus, a framework for prognostic should be the
integration of various specifics prognostic tools by a
generic one called "intelligent integrator" (Fig. 5).

Specific tools. There is no preferential tool to
perform local prognostics: each one must be the most
appropriated according to the component monitored.
However, "local performance assessment" should be
handled by them.

I% I% system / components

rognostic rognostio | ! 1ocal prognostics
prog prog ' — any technique

[] [] . N
| predict ! assess | predict | assess! = distributed

—————— X— -- == 7— ----- —locally accurate

] ic- NN' global prognostics
,_Egglf_sﬂi___: — neural network

[]
 predict 1 assess!  — influence learning
memmmteooo — adaptable

Fig. 5. Schematization of an hybrid and distributed
prognostic tool.

Intelligent integrator. As mentioned before, the
"global prognostic tool" must handle with the
incomplete knowledge of the phenomena and must
be adaptable and capable to accommodate with the
system evolution. Neural Networks are well fitted for
it: they can learn from scenarios and can predict the
future evolution of a process. Also, "the transfer
function" hasn't to be modeled in legible terms
because the model of the system is considered as a
black box. In addition, different learning and training
algorithms can be chosen (even developed) in
concordance with the performances required.

Hybrid aspects. The specific tools used at the local
level and the intelligent integrator used at the global
one give to the approach proposed an hybrid aspect.

Distributed architecture. The implementation of this
framework in an integrated maintenance system, is
guided by an "horizontal integrate" policy of the
process (Iung., et al., 2001). The supervised
parameters, degradation indicators or decision
actions are taken as much is possible at the lowest
level (the operational level) of the applications. It
isn’t about a centralized structure like the expert
systems, it’s more a operational, distributed
architecture.

The "weight" of certain parameters with regards to
prognostic can be extracted by a permanent survey of
the degradations propagation through the process
components and by the determination of the degree
of influence of those over the final characteristics of
the system. The a priori knowledge of the system
comportment as well as the online information about
its evolution is available for potential users. These
are the consequence of system modularity,
perfectibility and adaptability.

Finally, note that the integrated approach proposed in
this paper can be a good way to incrementally
instrument a system: there is no need to directly take
the problem on its whole complexity. One can
primarily implement several prognostic tools and
extend it later.

5. CONCLUSION AND WORK IN PROGRESS

Many health monitoring technologies have been
developed. They however have traditionally focused
on fault detection and isolation within an individual
subsystem.



The researchers in this area are just beginning to
address the concepts like prognostics or prognostic
integration technologies across subsystems and
systems. Hence, the ability to detect and isolate
impending faults or to predict the future situation of
a system is currently an high priority research topic.
In this context, the work reported aims globally at
defining a framework for the implantation of a
distributed prognostic system to ensure a predictive
analysis at all levels of a system.

The main requirements wanted to be meet can be
resume as follows:

- identify and assess the degradation degree of
components of the analyzed system (local
treatments),

- correlate causes with effects from the prediction
point of view: first at the local level, and next at
the global level of the process,

- learn from scenarios the influence of partial
entities on the whole system with neural
networks,

- coordinate the local predicted states with the
global performance criteria (from local prediction
to global prognostic).

The work is still in progress and the developments
are at present extended in tree principal ways. First,
the definition of prognostic as the association of a
prediction and an assessment processes is more
precisely studied. Secondly, the application of neural
networks as tool for a global prognostic is been
investigated. Finally, the implementation of the
studied framework is in progress at a French
industrial partner for the monitoring of high speed
trains motors.

To conclude, let us underline a point of interest of
the global work which is not discussed in the paper.
From the industrial point of view, this work is in
coherence with actual maintenance trends like
"e-maintenance systems" or ‘'intelligent sensors
networks" and with the increasing interest for
emerging technologies like "web-services".
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