* Zhuo
email: zhuoli@ee.tamu.edu

Weiping Shi
email: wshi@ee.tamu.edu

An Time Algorithm for Optimal Buffer Insertion with b Buffer Types

Buffer insertion is a popular technique to reduce the interconnect delay. The classic buffer insertion algorithm of van has complexity

where n is the number of buffer positions.

Cheng and Lin extended van Ginneken's algorithm to allow b buffer types in time For modern design libraries that contain hundreds of buffers, it is a serious challenge to balance the speed and performance of the buffer insertion algorithm. In this paper; we present a new algorithm that computes the optimal buffer insertion in time. The reduction is achieved by the observation that the C)pairs of the candidates that generate the new candidates must form a hull. On industrial test cases, the new algorithm is faster than the previous best buffer insertion algorithms by orders of magnitude.

Introduction

Delay optimization techniques for interconnect are increasingly important for achieving timing closure of high performance designs. One popular technique for reducing interconnect delay is buffer insertion. A recent study by Saxena et al.

projects that 35% of all cells will be intra-block repeaters for the 45 node. Consequently, algorithms that can efficiently insert buffers are essential for the design automation tools.

In 1990, van proposed an optimal buffer insertion algorithm for one buffer type. His algorithm has time complexity

where n is the number of candidate buffer positions. Lillis, Cheng and Lin [START_REF] Lillis | Optimal wire sizing and buffer insertion for low power and a generalized delay model[END_REF] extended van Ginneken's algorithm to allow buffer types in time O(n n)for multi-pin nets, for one buffer type. Several works have built upon van Ginneken's algorithmand its extension for multiple buffer types to include wire sizing simultaneous tree construction [8, 6, 5, 9, noise constraints [2] and resource minimization [7, Modern design libraries may contain hundreds of different buffers with different input capacitances, driving resistance, intrinsic delay, power level, etc. If every buffer available for the given technology is supplied, it is stated in [START_REF] Alpert | Buffer library selection[END_REF] that the current algorithms could possibly take days or even weeks for large designs since all these algorithms are quadratic in terms of b. Alpert et. [START_REF] Alpert | Buffer library selection[END_REF] studied how to reduce the size of the buffer library with a clustering algorithm. Though the buffer library size is reduced, the solution quality is often degraded accordingly.

In this paper, we propose a new algorithm that performs optimal buffer insertion with buffer types in time. Our speedup is achieved by the observation that the candidates that generate new buffered candidates must lie on the convex hull of (Q,C). Experimental results show that our algorithm is significantly faster than previous best algorithms.

Section 2 formulates the problem. Section 3 describes the new algorithm. Simulation results are given in Section4 and conclusions are given in Section 5.

Preliminary

A net is given as a routing tree T = (V,E) , where V = and E V x V. Vertex is the source vertex and also the root of T , is the set vertices, and is the set of internal vertices.

New Algorithm

The previous best algorithm for multiple buffer types by Lillis, Cheng and Lin consists of three major operations: 1) adding buffers at a buffer position in time, 2) adding a wire in time, and 3) merging two branches in + time, where and are the numbers of buffer positions in the two branches. As a result, their algorithm has time complexity

In this section, we show that the time complexity of the first operation, addingbuffers at a buffer position, can be reducedto and thus our algorithm can achieve total time complexity Assume we have computed the set of nonredundant candidates for and now reach a buffer position see Fig. 1. Wire (v, has 0 resistance and capacitance. Define as the slack if we add a buffer type at v for any candidate a in If we do not insert any buffer at then every candidate for is a candidate for If we insert a buffer at then for every buffer type Proof: This procedure is known as Graham's scan in computational geometry It finds the convex hull of a set of points in sorted order in linear time.

It is well known that a set of points form a convex hull if and only if there are no consecutive a and that satisfy Eq. (2). Therefore, Convexpruning is correct since it checks all consecutive candidates.

To analyze the time complexity, consider the number of forward and backward moves. Each time moves backward, it deletes a candidate. Therefore, there can be at most k backward moves.

The number of forwardmoves is the size of the list plus the number of backward moves. Therefore the number of forward moves is at most 2k. Hence the time complexity is Proof: Since are in the nondecreasing order of capacitance and the given set of nonredundant candidates are in nondecreasing order of it takes

+

Since the operation of adding a buffer is reduced to time from Theorem 1 and 2, it is easy to see that buffer insertion with b buffer types can be done in worst case time with our new algorithm.

the index in time.

= time to merge the two sorted lists.

Simulation

Both the algorithm of Lillis et al. [START_REF] Lillis | Optimal wire sizing and buffer insertion for low power and a generalized delay model[END_REF] and the new algorithm are implemented in C and runon a Sun SPARC workstations with 400 and 2 GB memory. The device and interconnect parameters are based on TSMC 180 nm technology. We have 4 different buffer libraries, with the size 8, 16, 32 and 64 respectively. is chosen from 180 to 7000 Q, is chosen from 0.7 to 23 and is chosen from 29 ps to 36.4 ps. The sink capacitances range from 2 to 41 The wire resistance is 0.076 and the wire capacitance is 0.118 Table shows for large industrial circuits, the new algorithm is up to 11times faster than Lillis'

The memory usage is not shown in the table, but there is only almost 2% memory overhead due to the double linked list used by the new algorithm. When b is small, algorithm has a little time overhead compared to Lillis' algorithm. due to function Fig. 3 shows the time complexity curve of two algorithms for the net with 1944 sinks and 33133 buffer positions with respect to the size of buffer library b. In the fig-ure, the y axis is normalized to the running time of the case when the buffer library size is 8. Though the worst case time complexity of Lillis' algorithm is quadratic in terms of b, it behaves more like a linear function of as observed in

The time complexity curve of our algorithm is also linear, but has a much smaller slope. of the two algorithms for the net with 1944 sinks, with respect to the number of buffer positions n. The buffer library size is 32. In the figure, the y axis is normalized to the running time of the case with 1943 buffer positions. We can see that while Lillis' and our algorithms both behave quadratically, our algorithm shows much slower growing trend since the operation of adding a buffer becomes more dominant among three major operations when n increases.

Conclusion

We presented a new algorithm for optimal buffer insertion with buffer types of worst case time This is an improvement of the previous best algorithm Simulation results show our new algorithm is significantly faster than algorithms for large industrial circuits with large buffer libraries. Our algorithm can also be applied to reduce buffer cost. We leave the details to the journal version.

=

 Figure 1. consists of buffer position and

Figure 2 .

 2 Figure 2. (a) Nonredundant candidates on (Q,C) plane. (b) Nonredundantcandidates after convex pruning.

>

 Accordingto the definition of convex pruning, is not pruned.Lemma4Let the set of nonredundant candidates ter Convexpruning be and assume are sorted in increasingQ and order. Considerany three candidates a, = 1,.. . ,b. Nonredundant candidates in are stored in increasing order using a double link list pointed by header.Buffer types are sorted in non-increasing driver resistance order and stored in array B. Function P a) computes as defined in Eq. (1).

 with zero resistance and capacitance,nonredundantcandidates of N are stored in increasingQ and order, then function AddBuff er generates all new candidates in time. Proof: Let the set of nonredundant candidates after Convexpruning be From Lemma 3, we know that all best candidates are in From Lemma and Lemma 4, starting from the first candidates in function AddBuf fer can find all in the increasing order of i. Now consider the time complexity. Function Convexpruning takes time according to Lemma 2. The for loop takes + b) = time. It takes only time to sort the entire buffer library in terms of the input capacitance and establish the order from buffer index i to the order in Each time function AddBuf f er is called, the new candidates can be sorted in nondecreasing order by using Theorem 2 Given a set nonredundantcandidates sorted in increasing Q and all b new candidates can be inserted in time.

Figure 3 .

 3 Figure 3. Comparison of normalized running time with respect to buffer library size among two algorithms. Number of sink is and number of buffer positions is 33133.

Fig. 4

 4 Fig.4shows the time complexity of the two algorithms for the net with 1944 sinks, with respect to the number of buffer positions n. The buffer library size is 32. In the figure, the y axis is normalized to the running time of the case with 1943 buffer positions. We can see that while Lillis' and our algorithms both behave quadratically, our algorithm shows much slower growing trend since the operation of adding a buffer becomes more dominant among three major operations when n increases.

ReferencesC.

 Alpert and A. Devgan. Wire segmenting for improved buffer insertion. In DAC, pages 588-593, 1997. [2] C. J. Alpert, A. Devgan, and S. T. Quay. Buffer insertion for noise and delay optimization. In DAC, pages 362-367, 1998.

Figure 4 .

 4 Figure 4. Comparison of normalized running time with respect to buffer positions among two algorithms. Number of sink is and number of buffer types is 32.

 tion. IEEE Trans. CAD, to appear. W. Shi and Z. Li. An time algorithm for optimal buffer insertion. In pages 580-585,2003. W. Shi, Li, and C. J. Alpert. Complexity analysis and speedup techniques for optimal buffer insertion with minimum cost. In ASPDAC, pages 609414,2004. [L. P. P. van Buffer placement in distributed tree network for minimal delay. In ISCAS, pages 868, 1990. H. Zhou, D. F. Wong, I. M. Liu, and A. Aziz. Simultaneous routing and buffer insertion with restrictions on buffer locations. IEEE Trans. CAD,

slack of v under a is a) = min - a) } . Buffer Insertion Problem: Given routing tree T = (V,E) ,sink capacitance and for each sink capacitance and resistance for each edge e , possible buffer position and buffer library find a can- didate a for T that maximizes

	each buffer type	the intrinsic delay is	driv-
	ing resistance is	and input capacitance is	A
	function f :		specifies the types of buffers al-
	lowed at each internal vertex. Each edge e E is associ-
	ated with lumped resistance	and capacitance
	Following previous researchers [14, 7, 9, 15,	we use
	the Elmore delay for the interconnect and the linear delay
	for buffers. For each edge e =	signals travel from
	to	The	delay of is
	where		is the downstream capacitance at	For any
	buffer type	at vertex	the buffer delay is
				.	+
	where		is the downstream capacitance at	When a
	buffer is inserted, the capacitance viewed from the upper
	stream is		
	For any vertex	V , let	be the	down-
	stream from and with being the root. Once we decide
	where to insert buffers in	we have a candidate a for
	The delay from to sink	under a is
					a) .
	The effect of a candidate to the upstream is described
	by slack Q and downstream capacitance	Define
		as the downstream capacitance at node under
	candidate a. For any two candidates	and	of
	we say	dominates	if	and
			The set of nonredundant candidates
	of	which we denote as	is the set of candidates
	such that no candidate in	dominates any other candi-
	date in		and every candidate of	is dominated by
	some candidates in	Once we have	the can-
	didate that gives the maximum

Each sink vertex is associated with sink capacitance and required arrival time A buffer library contains differenttypes of buffers and its size is representedby b. For = + where the sum is over all edges e in the path from to s. If is a buffer in then is the buffer delay. If is not a buffer in a,then = The a) can be found easily. The number of total nonredundant candidates is at most 1for one buffer type and 1for b buffer types [where n is the number of candidatebuffer positions.

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE'05) 1530-1591/05 $ 20.00 IEEE

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE'05)

This research was supported by the NSF grants CCR-0098329, 01 13668, 512-0266-2001.