
HAL Id: hal-00181308
https://hal.science/hal-00181308

Submitted on 23 Oct 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Functional Equivalence Checking for Verification of
Algebraic Transformations on Array-Intensive Source

Code
K. C. Shashidhar, Maurice Bruynooghe, Francky Catthoor, Gerda Janssens

To cite this version:
K. C. Shashidhar, Maurice Bruynooghe, Francky Catthoor, Gerda Janssens. Functional Equivalence
Checking for Verification of Algebraic Transformations on Array-Intensive Source Code. DATE’05,
Mar 2005, Munich, Germany. pp.1310-1315. �hal-00181308�

https://hal.science/hal-00181308
https://hal.archives-ouvertes.fr

Functional Equivalence Checking for Verification of
Algebraic Transformations on Array-Intensive Source Code

K.C. Shashidhar1,2, Maurice Bruynooghe2, Francky Catthoor1,2 and Gerda Janssens2

1Interuniversitair Micro-Elektronica Centrum (IMEC) vzw, Kapeldreef 75, B-3001 Heverlee, Belgium
2Faculteit Toegepaste Wetenschappen, Katholieke Universiteit Leuven, Belgium
{kodambal,catthoor}@imec.be, {maurice,gerda}@cs.kuleuven.ac.be

Abstract
Development of energy and performance-efficient embed-

ded software is increasingly relying on application of com-
plex transformations on the critical parts of the source code.
Designers applying such nontrivial source code transforma-
tions are often faced with the problem of ensuring functional
equivalence of the original and transformed programs. Cur-
rently they have to rely on incomplete and time-consuming
simulation. Formal automatic verification of the transformed
program against the original is instead desirable. This calls
for equivalence checking tools similar to the ones available
for comparing digital circuits. We present such a tool to com-
pare array-intensive programs related through a combination
of important global transformations like expression propaga-
tions, loop and algebraic transformations. When the trans-
formed program fails to pass the equivalence check, the tool
provides specific feedback on the possible locations of errors.

1 Introduction
Source code transformations come into play in situations

where a designer wants much better optimizations than those
a compiler can provide. Such a situation is common for de-
signers of mobile computing and communicating systems.
They are required to program complex signal processing al-
gorithms for complex platform architectures and yet meet
stringent constraints on the energy consumption and perfor-
mance of the final implementation. Research has shown that
application of source-to-source code transformations on an
original implementation of the algorithm can greatly help in
meeting such constraints (cf. [3, 4, 5, 13]).

Every stage in an implementation activity brings forth an
associated verification problem. Source code transforma-
tions are no exception. The problem here is to ensure that
the transformed program preserves the functionality of the
original program. Designers are at present using simulation
of the transformed program to gain confidence in the cor-
rectness of the transformed program before forwarding it to
the synthesis stage. But simulation is both incomplete and
time-consuming. Also, when the transformed program is in
error, it is hard to detect the exact cause with simulation.
Clearly, formal automatic verification of the transformed pro-
gram against the original, with support for error diagnostics,
is desirable here. A pragmatic approach to this problem is
to separate the two concerns, viz., applying transformations

and verifying that they preserve the functional equivalence.
This implies an ex post facto solution that requires a program
equivalence checking tool. Our work addresses this require-
ment. Since, in general, the program equivalence problem
is undecidable, we target the most important transformations
applied on a decidable, and yet relevant, class of programs.

Code transformations considered. We are interested in
verification of source code transformations that reduce the
accesses to the data memory hierarchy. Broadly, there are
two kinds of such transformations viz., global loop transfor-
mations and global data-flow transformations. Global loop
transformations are applied to reorder and restructure the
for-loops in the complete program in order to minimize the
data transfers between different layers of the hierarchy by im-
proving the temporal and spatial locality of the accessed data.
On the other hand, global data-flow transformations are ap-
plied either to remove repeated computation or to break bot-
tlenecks caused by data-flow dependencies in the program.
They comprise of expression propagations that introduce or
eliminate temporary variables that hold intermediate values
and global algebraic transformations that take advantage of
algebraic properties of the operators in transforming the data-
flow. The need for verification support for these transfor-
mations is rather high because they invariably involve error
prone manipulation of the index expressions of the array vari-
ables, especially when applied manually.

We do not distinguish between the transformations as long
as they are only from the above categories. The transformed
program can be under a combination of the transformations.
The equivalence checking is done oblivious of any informa-
tion about the particular instances of the above transforma-
tions that were applied and the order of their application.

An example problem. Suppose that we are given pro-
gram functions, as in Fig. 1. Expression propagations and
loop transformations have been applied on the original func-
tion (a) to obtain (b), and additionally, algebraic transforma-
tions to obtain (c) and (d). The functions, when executed,
take inputs A[] and B[], and assign the computed values to
the elements of the output array variable C[] and terminate.
If we ignore the possibility of overflow in the evaluation of
fixed-point integer expressions, the integer addition is both
associative and commutative. Therefore, it is expected that,
if the same values are input to the functions, the same val-
ues are assigned to the elements of the output variable C[].

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

/* Original function */

#define N 1024

foo(int A[], int B[], int C[])
{
 int k, tmp[N], buf[2*N];

 for(k=0; k<N; k++)
s1: tmp[k] = B[2*k] + B[k];

 for(k=N; k>=1; k--)
s2: buf[2*k-2] = A[2*k-2]
 + A[k-1];
 for(k=0; k<N; k++)
s3: C[k] = tmp[k] + buf[2*k];
}

/* Transformed function ver 2 */

#define N 1024

foo(int A[], int B[], int C[])
{
 int k, buf[2*N];

 for(k=0; k<N; k++)
u1: buf[k] = A[k] + B[k];

 for(k=N; k<=2*N-2; k+=2)
u2: buf[k] = A[k] + B[k];

 for(k=0; k<N; k++)
u3: C[k] = buf[k] + buf[2*k];

}

/* Transformed function ver 1 */

#define N 1024

foo(int A[], int B[], int C[])
{
 int k, tmp[N], buf[N];

 for(k=0; k<512; k++)
t1: tmp[k] = B[2*k] + B[k];

 for(k=0; k<N; k++){
t2: buf[k] = A[2*k] + A[k];
 if (k < 512)
t3: C[k] = tmp[k] + buf[k];
 else
t4: C[k] = (B[2*k] + B[k])
 + buf[k];
 }

}

/* Transformed function ver 3 */

#define N 1024

foo(int A[], int B[], int C[])
{
 int k, tmp[N], buf[2*N];

 for(k=0; k<=2*N-2; k+=2)
v1: buf[k] = A[k] + B[k];

 for(k=1; k<N; k+=2)
v2: tmp[k] = A[k] + B[k];

 for(k=0; k<N-1; k+=2){
v3: C[k] = buf[k] + buf[k];
v4: C[k+1] = tmp[k+1]
 + buf[2*k+2];
 }

}

a

db

c

Fig. 1: Program functions (a), (b) and (c), equivalent under
the considered transformations, compute ∀k ∈ [0 . . .N− 1] :
C[k] = B[2*k] + B[k] + A[2*k] + A[k]. Program (d) is
erroneously obtained. It is inequivalent to them ∀even k ∈
[0 . . .N−1], where C[k] = A[k] + B[k] + A[k] + B[k], but
equivalent ∀odd k ∈ [0 . . .N−1].

That is, the functions are input-output equivalent under the
applied transformations. We have developed a tool to check
such equivalences fully automatically. Because of an erro-
neous transformation, (d) is not equivalent to (a), (b) and (c).
It is helpful if the reason for nonequivalence of the function
can be ascertained and debugged. To this end, our tool pro-
vides diagnostics when it fails to show an equivalence.

2 Related Work
Motivated by pragmatics, we are interested in a fully auto-

matic, push-button style, a posteriori solution. This precludes
discussion of the vast research on formal verification of the
transformation tool or the library of transformations.

Undecidability of the program equivalence problem en-
forces that any effort start by defining a decidable class of
programs that is of interest. Hence, the problem has been ad-
dressed by various researchers for different program classes
with different applications in mind. Without enumerating the
methods, to the best of our knowledge, none of the meth-
ods is able to show equivalence of program functions as in
our example, in a scalable way. The problem we address is
distinct by its central requirement to represent and maintain
the relationships among elements of the array variables in the
programs in closed form. Unrolling deeply nested loops with
large bounds is clearly infeasible for real-life signal process-
ing programs. To add to this, algebraic transformations will
require a prohibitive search for normalization on the unrolled
statements. Hence, we restrict our discussion of related work
to methods that do not propose unrolling of loops.

Translation validation [7, 10] and fractal symbolic anal-
ysis (FSA) [9], both present methods which show semantic
equivalence of two versions of programs. In the case of the
former, the comparison is between the source and the target
code. These methods are distinct from ours in that they es-
sentially try to heuristically infer a sequence of legal trans-
formations that can relate the two programs. Instead, we are
able to directly check for equivalence of programs that are in
a suitable language class. Also, their methods do not han-
dle algebraic transformations. The work most related to ours,
because we address the same class of programs, is the algo-
rithm recognition method presented in [2]. Again, algebraic
data-flow transformations are not handled by them. Another
distinction is that, all these methods do not stress on debug-
ging support which is very important in the context of source
code transformations.

With respect to the equivalence problem of algebraic ex-
pressions, we would like to point out that methods from sym-
bolic algebra do not suffice due to the presence of loop trans-
formations on array variables. The quest here is for an anal-
ysis that deals with algebraic transformations involving array
variables in the expressions.

We have presented a preliminary method that checks
equivalence under only expression propagations and loop
transformations in [11]. In this paper, based on an improved
program representation, we present an extended method that
is able to handle algebraic data-flow transformations, in com-
bination with the other two transformations, in a single pass.

3 Program Representation
In this section we present a representation that captures the

computation and the relationships between elements of array
variables in the program. The representation is possible only
when the programs belong to a class that we describe first.

3.1 Class of allowed programs
The class of programs that we consider is based on the re-

curring features in signal processing programs, and the avail-
ability of some tools (mentioned below) to convert programs
that are not in the class. We assume that a program is first
subject to a source-to-source code preprocessing phase in or-
der to ensure that the original program has the properties of
this class before beginning to apply the code transformations.
Restriction of programs to this class is primarily to ease the
analyses required to identify optimization opportunities and
apply transformations. Apparently, what eases transforma-
tions also eases their verification.

The following properties distinguish the class: ① Single-
assignment form: Programs have been converted to a form
(called the dynamic-single assignment form) where every
memory location is written only once (methods exist to au-
tomate this, for example, [6]); ② Static control-flow: Data-
dependent while-loops have been converted to for-loops
with worst-case bounds by moving the conditions inside
the loops, and the data dependent if-conditions are simple
enough to be handled by if-conversions; ③ Affine indices:
All expressions in the index and the loop bounds are either
affine or piece-wise affine, and ④ No pointer references: Pro-

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

grams have been converted to a form where all references to
the memory are with explicit indexing (for example, using a
method as in [12]).

3.2 Array data dependence graphs
Given that a program has the above mentioned properties,

we can extract the complete data-flow in the program. This
extracted data-flow can be represented in the form of an ar-
ray data dependence graph (ADDG). It is a directed graph,
where, nodes represent the variables and occurrences of oper-
ators/functions in the program functions, and edges represent
the data dependence (in the direction opposite to the flow of
data). For example, Fig. 2 gives the ADDGs of the program
functions in Fig. 1. The edges outgoing from operator nodes
are labeled by the position of the operand for the computation
and the thick edges outgoing from the variables are labeled by
the labels of assignment statements where they are defined.

buftmp

+

+

C

+

B A

1 2

s3

s1 s2

1 2

+

C

u3

buf

1 2

1 2

u1

A B

buftmp

+

++

B A

1 2

t4

t1 t2

1 21 2

+

C

t3

+

1 2

A B

tmpbuf

+

v4

+

C

v3

12

++

v1 v2

1 21 2

a c

db

1 2

++
1 21 2

u2

1 2

Fig. 2: The ADDGs of the program functions in Fig. 1.

The distinction when compared to a standard data depen-
dence graph is that, in an ADDG, the data dependence, denoted
by a reverse directed edge, refers not just to a single value,
but to a set of values. Since the program is required to be in
single-assignment form, the values are guaranteed to be as-
signed to different elements of the array variable defined in
the statement. The dependence relation between the sets of
values of defined variables and the operand variables is given
by the so-called dependency mappings, one for each operand
variable of the statement. For example, for the statement s2 in
the original function (a), the two dependency mappings viz.,
from buf[] to the first A[] and from buf[] to the second A[]
are as defined below, where D := {[k] |1 ≤ k ≤ 1024 ∧ k ∈ Z}.

Mbuf,A1 := {[x] → [y] |x = 2k−2 ∧ y = 2k−2 ∧ k ∈ D}

Mbuf,A2 := {[x] → [y] |x = 2k−2 ∧ y = k−1 ∧ k ∈ D}.

When there are multiple occurrences of a variable in the same
statement we distinguish them with subscripts denoting their
position as operands. In an ADDG, the root nodes and the leaf

nodes correspond to the output and the input variables, re-
spectively, of the program function. The rest of the variable
nodes in the ADDG are intermediate variables.
Intermediate variable reduction. For a given path, reduc-
tion of an intermediate variable is an operation that we use as
a primitive in our method. This involves updating the depen-
dency mapping from the predecessor variable node to the in-
termediate variable node being reduced. The new dependency
mapping will then be from the predecessor variable node to
the successor variable node on the path in question. This is
obtained by the composition of the two mappings.

For example, let us consider reduction of the intermediate
variable node tmp on the leftmost path (path 1) in the ADDG of
the original function (a) from the output variable C to the input
variable B, that is, [C

s3
−→ +

1
−→ tmp

s1
−→ +

1
−→ B]. The

predecessor variable node to tmp is C and the successor vari-
able node is B. Reducing tmp on the path involves updating
the dependency mapping from C to tmp (MC,tmp) into depen-
dency mapping from C to B (M

C
1
�B

). It is computed as below,
where �� is the natural join operation on two relations [8] and
D := {[k] |0 ≤ k < 1024 ∧ k ∈ Z}.

M
C

1
�B

:= MC,tmp �� Mtmp,B1

:= {[k] → [k] |k ∈ D} �� {[k] → [2k] |k ∈ D}

:= {[k] → [2k] |k ∈ D}.

On a given path, if all the intermediate variables between the
current variable and the output variable are reduced, we ob-
tain the output-current mapping. When the current variable
is an input variable, this mapping gives the relation between
the elements of the output variable to the elements of the in-
put variable for that path. Then it is called the output-input
mapping for that path of computation.

In the example path we mentioned above, tmp is the only
intermediate variable, hence the output-input mapping from C

to B for that path is just the M
C

1
�B

that was computed above.

4 Algebraic Transformations
Algebraic data-flow transformations take advantage of the

properties of the operators or user-defined functions and mod-
ify the data-flow such that the semantics of the original func-
tion are preserved (modulo overflow). The algebraic transfor-
mations are not restricted to the expression in a statement, but
can have a global scope. This can be seen in our simple ex-
ample in Fig. 1, where the algebraic transformations applied
on (a) to obtain (c) and (d) are across expressions of multiple
assignment statements at an algorithmic level. The ADDGs of
the functions, as shown in Fig. 2, also reflect this.

Typically, most of such global transformations just rely on
the associativity and/or commutativity properties of the op-
erators like addition and multiplication on a fixed-point data-
type like integer. Hence in what follows, we restrict our dis-
cussion to only these transformations. Other algebraic prop-
erties related to identity, inverse, distributivity and evaluation
of constants are less common in practice and can be handled
in a way similar to what we present.

The effect of such algebraic transformations on an ADDG

is shown in Fig. 3, where, operators, ⊕ is associative, ⊗ is
commutative and � is both commutative and associative.

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

p1 p2 p2 p1p3

p

p1 p2 p3

p

p1

p2

(b) Commutativity(a) Associativity

p p

p3p1 p2

p

�� � � �

�

� �

�

	

�

p

p1 p2

�

��

p3 p4

��

p

p1

��

��

p3 p4

p2

p

��

p2 p3 p4p1

� �

(c) Combination of associativity and commutativity

Fig. 3: Effect of algebraic transformations on an ADDG.

Associativity. As shown in Fig. 3(a), the end-nodes are re-
grouped with respect to the chain of ⊕-nodes (the associative
chain) by the associative transformation, while maintaining
their order.
Commutativity. As shown in Fig. 3(b), the effect of a commu-
tative transformation is to permute the positions of the outgo-
ing edges of the ⊗-node.
Combination of associativity and commutativity. As shown
in Fig. 3(c), the effect of the transformation is to maintain the
same end-nodes with any possible tree of �-nodes between
them and the root �-node.

The designers, based on the knowledge of the overall com-
putation, are often able to apply algorithmic or big-step trans-
formations. For example, as can be seen from the ADDGs in
Fig. 2, the transformed functions (c) and (d) are the result
of several applications of the basic algebraic transformations
above. Here, the transformation is motivated by the observa-
tion that they perform N/2 integer additions less when com-
pared to functions (a) and (b) (i.e., 3N −5N/2).

5 Equivalence Checking Method
The method shows equivalence of the original and the

transformed program functions by checking a sufficient con-
dition. The condition is that, in the ADDGs extracted from the
two program functions, every corresponding data dependence
paths have identical ① computation and ② output-input map-
pings. The method checks these two parts of the sufficient
condition based on a traversal of the two ADDGs.

We first briefly explain the basic method that is able to han-
dle only expression propagations and loop transformations in
Section 5.1. In Section 5.2, we extend it to handle algebraic
transformations along with the other two transformations.

5.1 Basic method
Central to our equivalence checking is a synchronized

depth-first traversal of the two ADDGs. The traversal be-
gins from each of the corresponding root nodes (output vari-
ables with same names) and proceeds in lock-step on the two
ADDGs. Initially the output-current mapping is set to identity
mapping from an output variable to itself, for all its elements.

When an intermediate variable is encountered on the path
in either of the two ADDGs, it is reduced and the output-current
mappings are updated for each of the outgoing paths in the
sub-ADDG rooted at the node being reduced. When an oper-
ator node is reached on one of the ADDGs, the same operator

node must be reached next on the other ADDG, possibly af-
ter a sequence of intermediate variable reductions. Whenever
multiple outgoing branches are present, the paths on the two
ADDGs are paired for further traversal. If the branching is at
an operator node, the paths with the same labels on the out-
going edges on either side are paired. If the branching is at
an intermediate variable, the pairing is based on the output-
current mapping. At any given point during the traversal, the
paths already traversed on the two ADDGs are both guaranteed
to have the same operator nodes appearing in the same se-
quence on them. This implies that, when a path ends at a leaf
node, the same computation is guaranteed on the correspond-
ing paths traversed in the two ADDGs. This satisfies the first
part of the sufficient condition.

When the output-current mappings are updated at the leaf
nodes on the two corresponding paths we have their output-
input mappings. The second part of the condition is satisfied
when they are checked to be identical. This implies that cor-
responding paths supply the same operators with the same
values in any execution of the function. When the traversal
has exhausted all the paths, satisfying the sufficient condition
for each path, the two ADDGs, hence the two programs, are
both guaranteed to apply the same computation on the same
input values and hence assign the same output values.

For example, consider the ADDGs of functions (a) and (b)
in Fig. 2, where (b) has been obtained by applying only ex-
pression propagations and loop transformations. There are 4
paths in total from the output variable C to the input variables
in (a). But in (b), assignment to C is distributed among state-
ments t3 and t4, as a result, it has 8 paths. For both (a) and
(b), if we number the paths from left to right, the traversal
corresponds, path 1 in (a) to paths 1 and 5 in (b), path 2 in (a)
to paths 2 and 6 in (b) and so on. This satisfies first part of
the sufficient condition since corresponding paths are found
without any mismatch. It can also be checked that the updated
output-input mappings on all pairs of corresponding paths are
identical. For instance, for path 1 in (a) and (b), we have the
following identical mappings.

aM
C

1
�B

⇔ bM
C

1
�B

⇔{[k] → [2k] |0 ≤ k < 512 ∧ k ∈ Z}

Note that since the branching at C in (b) divides the ele-
ments of C into two groups of assignments, output-input map-
ping is split for all paths of both (a) and (b). The remaining
pairs of output-input mappings on the corresponding paths
are similarly identical. This satisfies the second part of the
sufficient condition.

5.2 Extended method
Let us now consider the situation when algebraic transfor-

mations are allowed. As discussed in Section 4, they may
shuffle the paths and/or redistribute some operator nodes.
Clearly, the traversal as described above will not suffice any-
more. For example, consider the ADDGs (a) and (c) in Fig. 2,
where (c) has been obtained by additionally applying alge-
braic transformations. In path 1 of the two ADDGs, a mismatch
occurs upon reaching the input variable (leaf node) which is
B in the original ADDG (a), whereas it is A in the transformed
ADDG (c). The mismatch prevents the equivalence proof of
program pairs under algebraic transformations.

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

In order to handle algebraic transformations, the traver-
sal has to do additional work to know which paths to pair
up. This requires that upon reaching an operator which per-
mits algebraic transformations, a specific normal form be es-
tablished before continuing the traversal. Such a normaliza-
tion relies on two operations viz., flattening and matching,
invoked depending on the properties that hold for the oper-
ator. When the operator is associative, flattening is invoked
and when the operator is commutative, matching is invoked.
When the operator is both associative and commutative, a flat-
tening operation is followed by a matching operation.

Flattening for an associative operator. Suppose that an
associative operator (⊕) is reached on an ADDG. The flattening
operation involves a lookahead traversal of the sub-ADDG of
the associative chain rooted at the ⊕-node. It constructs an
ordered list of nodes such that each node in the list is either
a leaf node or the first node for an outgoing path which is an
operator node different from ⊕. Any intermediate variables
that exist on the path between the nodes in the list and the root
⊕-node are reduced. The effect of flattening is that it brings
all operands of the chain to the same level as successor nodes
of the root ⊕-node. Fig. 4 illustrates this. The order in which
the operands are reached during the traversal is maintained by
labeling the edges accordingly.

only
-nodes or

intermediate
variables

�

� �

leaf nodes or operator-nodes
different from

�

Fig. 4: Illustration of the flattening operation.

Matching for a commutative operator. Suppose that
a commutative operator (⊗) is reached on both the ADDGs.
Since any permutation of the outgoing edges of ⊗-nodes on
the two ADDGs is a valid transformation, the labels on them
are of no consequence in pairing the corresponding paths.
The correct pairing is then provided by the matching oper-
ation. Separately on both the ADDGs, the sub-ADDG rooted at
the ⊗-node is traversed and any intermediate variables that
are present are recursively reduced until all the successor
nodes of the ⊗-node are either leaf nodes or operator nodes.
This yields two lists of successor nodes, one for each ADDG.
If the lists have unique nodes, then the pairing of the paths
is one-to-one. Otherwise, if the non-unique nodes are input
variables, output-input mappings are checked to pair them. If
the non-unique nodes are operators, a lookahead traversal is
recursively employed to reveal more successor nodes until a
unique pairing is obtained.

Going back to our example function pair (a) and (c), we
see that the first operator starting from the output variable
is an addition operator. Therefore the flattening operation
is applied at the node. This results in the ADDGs shown in
Fig. 5. A subsequent matching operation here has to deal
with the non-unique input variables as the successor nodes.
Nodes B and A each appear twice as successor nodes on each
of the ADDGs. This requires that the matching be estab-
lished by checking the output-input mappings to the nodes.

+

C

B

+

A

p q r s w x y z

BA

Ca c

Fig. 5: The ADDGs of functions (a) and (c) after flattening.

The check reveals that the following equalities hold, where
D := {[k] |0 ≤ k < 1024 ∧ k ∈ Z}.

aM
C

p
�B

⇔ cM
C

z
�B

⇔ {[k] → [2k] |k ∈ D}
aM

C
q
�B

⇔ cM
C

x
�B

⇔ {[k] → [k] |k ∈ D}
aM

C
r
�A

⇔ cM
C

y
�A

⇔ {[k] → [2k] |k ∈ D}
aM

C
s
�A

⇔ cM
C

w
�A

⇔ {[k] → [k] |k ∈ D}

This results in the matching: {(p,z),(q,x),(r,y),(s,w)}.
Here, a leaf node has been reached now on each of the paths
and there exists an identical output-input mapping on the cor-
responding paths of the two ADDGs. Our sufficient condition
therefore implies that they are equivalent.

To summarize, with the help of the flattening and matching
operations, the synchronized traversal can be continued with
a correct pairing of the branching paths at the operators which
permit algebraic transformations. On each path, the traversal
culminates at the matching leaf nodes, at which point, the
second part of the sufficient condition is checked. That is, the
output-input mapping computed on the path to that input vari-
able during the traversal must be identical to the one on the
corresponding path on the other ADDG. If this check fails, the
traversal stops, reporting a failure and generating diagnostics.
If it succeeds, the traversal continues until all the paths of the
ADDGs are exhausted.

Before concluding, a brief remark is in order related to
presence of any cycles in an ADDG. A cycle implies that the
data-flow has recurrences, that is, a set of statements that
read values (possibly computed from values –) written by
themselves in earlier iterations. The method efficiently deals
with cycles by employing the computation of transitive clo-
sure of the total dependence mapping of the cycle. This is
computable only under certain conditions that usually hold in
most real-life programs that we have checked on.

6 Verification and Debugging
Our prototype transformation verification tool implements

the scheme shown in Fig. 6. The tool accepts original and
transformed functions in the C language. Our sufficient con-
dition assumes that the code is correctly scheduled. There-
fore, it is required to check separately that all the reads for
values follow their writes, that is, the def-use order is correct
in the two programs. This can be checked by standard array
data-flow analysis (cf. [1]). If the order is correct, the tool
extracts ADDGs based on a source code analysis. The equiv-
alence checker takes these ADDGs and applies the method we
have presented. It relies on the OMEGA calculator [8] for
an efficient implementation of all the required operations on
integer sets and tuple relations. If the checking succeeds,
the two program functions are guaranteed to be functionally
equivalent. If it fails, it generates error diagnostics.

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

transformed
function

original
function

ADDG
 extractor

ADDG

Equivalence Checker

Equivalent Not Equivalent
+ Diagnostics

ADDG
 extractor

ADDG

transformations

optional inputs for
focussed checking,
operator property
declarations, etc

def-use
checker

def-use
checker

Fig. 6: The verification and debugging scheme.

6.1 Error diagnostics
The simplest case of an error is when there is a mismatch

in the expected operator node or the leaf node. The informa-
tion about the mismatch and the statement number is output,
which suffices to correct the error. The more complicated
errors involve the index expression. For example, we earlier
mentioned that function (d) is in error. Let us see the diagnos-
tics generated for it. It is similar to (c), but has the assignment
to C interleaved among statements v3 and v4. Therefore flat-
tening ADDG of function (d) results in the same ADDG as shown
in Fig. 5(c), for each of the two branches at C. As explained
earlier, the presence of non-unique leaf nodes requires that
the matching, between the flattened ADDGs (a) and (d), be
based on the dependency mappings. The matching succeeds
for two paths, viz., {(q,x),(s,w)}, but fails for the other two
paths, viz., {(p,z),(r,y)}. This is shown below.

(aM
C

p
�B

⇔{[x] → [2x]}) � (dM
C

z
�B

⇔{[x] → [x]})

(aM
C

r
�A

⇔{[x] → [2x]}) � (dM
C

y
�A

⇔{[x] → [x]})

where, x ∈ {[k] |(∃ j |2 j = k ∧ 0≤ k < 1023 ∧ k ∈Z)}. The above
mismatch in dependency mappings implies that paths z and y
are in error, which correspond to statements v3 and v1 in
the program text. The diagnostic points the user to these
two statements, displays the index expressions of variables
C, buf2, A and B in the statements as possible places of er-
ror and the difference in the output-input mappings. A fur-
ther heuristic on this information deduces that variable buf2

is common to the two paths and hence its index expression is
most likely to be in error. This is indeed the case in statement
v3 of function (d), where, it should have been buf[2*k].

When desired, the designer can also limit the checker to
focus on only certain parts of the input programs. This can be
done by specifying the subsets of output and input variables,
or by declaring a correspondence of intermediate variables in
the two programs. This helps not only in reducing the check-
ing time but also in generating better error diagnostics.

6.2 Experience
The method is based on the depth-first traversal of the

ADDGs and it uses tabling of established equivalences to avoid
reworking on any overlapping sub-ADDGs. Therefore the
complexity of traversal is linear in the size of the larger of
the two ADDGs. Also, the supposedly expensive operations on
the integer sets and tuples can be safely assumed to be bound
by a small constant as the lengths of the formulae describing
them are usually small enough in practice.

We have earlier reported verification times taken by our
tool that implemented the basic method to be in the order of
only few seconds [11]. In experiments with the new tool im-
plementing the extended method, on realistic examples in-
volving algebraic transformations, we have observed no sig-
nificant degradation in performance. On problem instances
that we experimented on, where we used source codes whose
control complexity and ADDG sizes were comparable to real-
life application kernels, verification consistently took less
than 100 seconds on a desktop. This shows that our veri-
fication tool can be conveniently used to increase designer
productivity while applying source code transformations.

7 Conclusions
We have presented a verification tool as required by de-

signers applying source code transformations on signal pro-
cessing programs. The tool is fully automatic, fast and able
to provide useful error diagnostics. It is based on equivalence
checking of the original and the transformed programs and
is able to handle important transformations like expression
propagations, loop and algebraic transformations that have
been widely reported in the literature. Allowing algebraic
transformations has significantly increased the class of pro-
grams that can be shown equivalent by the tool and hence its
applicability in practice.

Acknowledgment. The authors gratefully thank anonymous
referees for their detailed constructive comments.

References
[1] R. Allen and K. Kennedy. Optimizing Compilers for Modern

Architectures. Morgan Kaufmann Publishers, 2001.
[2] D. Barthou, P. Feautrier, and X. Redon. On the equivalence

of two systems of affine recurrence equations. 8th Euro-Par,
LNCS 2400, pp. 309–313. Springer, 2002.

[3] C. Brandolese et al. The impact of source code transforma-
tions on software power and energy consumption. Journal of
Circuits, Systems, and Computers, 11(5):477–502, 2002.

[4] F. Catthoor et al. Custom Memory Management Methodology:
Exploration of Memory Organization for Embedded Multime-
dia System Design. Kluwer, 1998.

[5] F. Catthoor et al. Data Access and Storage Management for
Embedded Programmable Processors. Kluwer, 2002.

[6] P. Feautrier. Array expansion. International Conference on
Supercomputing, pp. 429–441. ACM, 1988.

[7] B. Goldberg et al. Into the loops: Practical issues in translation
validation for optimizing compilers. 3rd Compiler Optimiza-
tion Meets Compiler Verification, ENTCS. Elsevier, 2004.

[8] W. Kelly et al. The Omega Calculator and Library, Version
1.1.0. http://www.cs.umd.edu/projects/omega.

[9] N. Mateev, V. Menon, and K. Pingali. Fractal symbolic analy-
sis. ACM TOPLAS, 25(6):776–813, 2003.

[10] G. C. Necula. Translation validation for an optimizing com-
piler. SIGPLAN PLDI, pp. 83–95. ACM, 2000.

[11] K. C. Shashidhar et al. Automatic functional verification of
memory oriented global source code transformations. 8th High
Level Design Validation and Test, pp 31–36. IEEE, 2003.

[12] R. A. van Engelen and K. A. Gallivan. An efficient algorithm
for pointer-to-array access conversion for compiling and opti-
mizing DSP applications. Innovative Archs. for Future Gen.
High-Perf. Processors and Systems, pp. 80–89. IEEE, 2001.

[13] W. Wolf and M. Kandemir. Memory system optimization of
embedded software. Proc. of the IEEE, 91(1):165–182, 2003.

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

