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Abstract

Optimal synthesis of quantum circuits is intractable and
heuristic methods must be employed. Templates are a gen-
eral approach to reversible and quantum circuit simplifi-
cation. In this paper, we consider the use of templates to
simplify a quantum circuit initially found by other means.
We present and analyze templates in the general case, and
then provide particular details for circuits composed of
NOT, CNOT and controlled-sqrt-of-NOT gates. We intro-
duce templates for this set of gates and apply them to sim-
plify both known quantum realizations of Toffoli gates and
circuits found by earlier heuristic Fredkin and Toffoli gate
synthesis algorithms. While the number of templates is quite
small, the reduction in quantum cost is often significant.

1. Introduction

Research in quantum circuit synthesis is motivated by
the growing interest in quantum computation [16] and ad-
vances in quantum circuit technology [1, 2]. Even for cir-
cuits with only a few variables, it is at present intractable to
find an optimal circuit. Thus a number of heuristic synthesis
methods have emerged. Application of these methods usu-
ally results in a non-optimal circuit specification, which can
be later simplified using local optimization techniques.

Local optimization has only recently been considered as
a possible tool for the simplification of quantum [9, 21]
and reversible circuits [7]. While those works provide sev-
eral rewriting rules, there is clearly a benefit to systemizing
the approach through a method such as the templates dis-
cussed in this paper. A somewhat different approach for lo-
cal optimization of reversible NOT-CNOT-Toffoli circuits
was applied for the simplification of random reversible cir-
cuits in [18]. That approach and our template method are
very different in that they have different metrics for the cir-
cuit cost, use different types of gates, and are applied to dif-
ferent types of circuits. This makes it difficult to compare

the methods. However, we believe that our method is more
general and will be more scalable.

Templates have been considered for Toffoli [13] and
Toffoli-Fredkin [12] reversible network simplification. In
this paper, we revisit the definition of templates and show
how they can be applied in the quantum case.

2. Background

We present a short review of the basic concepts of quan-
tum computation necessary for this paper. For a more de-
tailed introduction, please see [16].

The state of a single qubit is a linear combination α|0〉+
β|1〉 (also written as a vector (α, β)) in the basis {|0〉, |1〉},
where α and β are complex numbers called the amplitudes,
and |α|2 + |β|2 = 1. Real numbers |α|2 and |β|2 represent
the probabilities p and q of reading the ‘pure’ logic states
|0〉 and |1〉 upon measurement. The state of a quantum sys-
tem with n > 1 qubits is given by an element of the tensor
product of the single state spaces and can be represented
as a normalized vector of length 2n, called the state vector.
Quantum system evolution allows changes of the state vec-
tor through multiplication by the appropriate 2n × 2n uni-
tary matrices.

The above models how a transformation can be per-
formed, but does not indicate how to identify the unitary
matrices that compose the transformation or how to im-
plement them. Typically, certain primitive gates are used
as elementary building blocks with an assumed unit cost
[4, 6, 16]. Among these are:
• NOT (x �→ x̄) and CNOT ((x, y) �→ (x, x ⊕ y)) gates;

• Hadamard gate defined by H = 1√
2

(
1 1
1 −1

)
;

• controlled-V gate that depending on the value on its con-
trol line changes the value on the target line using the trans-

formation given by the matrix V = i+1
2

(
1 −i
−i 1

)
;

• controlled-V + that depending on the value of its control
line changes the value on the target line using the transfor-
mation V+ = V−1;
• rotation gates R(γ), γ ∈ [0, 2π].
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The controlled V and V + gates can be seen to be
controlled-sqrt-of-NOT gates since V 2 = (V +)2 =

(
0 1
1 0

)
which is the transformation matrix for NOT. Note that once
a gate is available, its inverse is also available with the
same cost. This observation will be useful when consider-
ing the templates and their application to quantum circuit
simplification.

The Toffoli gate [20] and its generalization with more
than two controls serve as a good basis for synthesis pur-
poses as shown by several authors [3, 8, 14]. The general-
ized Toffoli gate, which for simplicity we refer to simply as
a Toffoli gate, is defined as follows:

Definition 1. For the set of Boolean variables {x1, x2, ...,
xn} the Toffoli gate has the form TOF (C; T ), where
C = {xi1 , xi2 , ..., xik

}, T = {xj} and C ∩ T = ∅.
It maps each pattern (x+

1 , x+
2 , ..., x+

n ) to (x+
1 , x+

2 , ..., x+
j−1,

x+
j ⊕x+

i1
x+

i2
...x+

ik
, x+

j+1, ..., x
+
n ). C is called the control set

and T is called the target.

Unfortunately, Toffoli gates are not simple transforma-
tions in quantum technology. Rather they require a num-
ber of quantum gates and Toffoli gates with a large num-
ber of controls can be quite costly [4, 10]. In this paper, we
apply templates to the best known quantum circuits imple-
menting large Toffoli gates resulting in significant simpli-
fication. This is very useful since it allows simpler quan-
tum realization of the circuits reported by authors who have
used Toffoli gates with large control sets.

Definition 2. An n-input, n-output Boolean function is re-
versible if it maps each of the 2n input patterns to a unique
output pattern.

Clearly, a reversible function f has an inverse (f−1).
Each of the gates noted above implements a reversible func-
tion and thus there is a corresponding inverse gate. NOT,
CNOT, and Toffoli gates are self-inverse. V and V + are
the inverses of each other. The situation for rotation gates
is more complex and is not considered here as we have not
employed rotation gates in our work so far. Quantum cir-
cuits of necessity implement reversible functions.

We shall write G−1 to denote the gate implementing the
inverse function of the function realized by gate G. In con-
text, we will use G to mean a gate or the transformation ma-
trix for that gate. The symbol ⊕ will be used in diagrams to
denote a NOT gate.

3. Templates: definition

A Rewriting rule is a procedure that takes two equiv-
alent (computing the same function) circuits and replaces
one with the other. If the cost of the replacement circuit is
less than the cost of the replaced circuit, this leads to a cir-
cuit cost reduction. Templates are a generalization of this
idea.

Often, the cost of a circuit is defined simply as a, possi-
bly weighted, gate count. We term this a linear cost met-
ric. In the case of a non-linear cost metric (such as those
used in [6, 19]), it is necessary to consider the cost of the
entire circuit as the overall cost can be affected by a local
optimization. An example of such a situation arises when
considering Peres gates [17] (defined by the transformation
(a, b, c) �→ (a, b⊕ a, c⊕ ab)) which, when implemented by
a quantum Toffoli gate TOF (a, b; c) followed by a CNOT
gate TOF (a; b) would have a cost of 5 + 1 = 6, whereas
a Peres gate can be directly constructed with 4 elementary
quantum blocks.

We call a rewriting rule regular if the replacement cir-
cuit has smaller cost than the replaced circuit, otherwise
we call it irregular. The idea of applying regular rewrit-
ing rules to simplify sub-circuits of a given circuit has two
phases. First, find as many regular rewriting rules as possi-
ble, and second, apply them to reduce the cost of a given cir-
cuit. Direct application of such an approach to quantum cir-
cuit cost reduction can be found in [9]. However, we see the
following potential problems with that particular approach:
• The number of regular rewriting rules is very large even
for small parameters. For instance, in the case of the quan-
tum gates listed above, the number of regular rewriting rules
is infinite if no proper classification is presented and rota-
tion gates with any parameter γ are allowed.
• Often, rewriting rules are redundant in the sense that
a G1G2G3 → G4G5 rewriting rule is a derivative of
G2G3 → G5 rewriting rule if G1 = G4.
• It often happens that interchanging the order of the gates,
which sometimes is possible and itself does not change the
cost of a circuit, may result in allowing a rewriting rule ap-
plication that decreases the cost of the circuit.

We employ templates as a means to address the above
problems while maintaining the advantages of rewriting
rules. The following observations are beneficial to the un-
derstanding of templates:
Observation 1. For any circuit G0G1... Gm−1 realizing a
reversible function f , circuit G−1

m−1G
−1
m−2... G−1

0 is a real-
ization for f−1.
Observation 2. For any rewriting rule G1G2... Gk →
Gk+1Gk+2... Gk+s its gates satisfy the following:
G1G2... GkG−1

k+sG
−1
k+s−1... G−1

k+1 = I .
Proof. The following set of equalities constructed using the
rule GG−1 = I for a single gate G proves the statement.

G1G2... Gk = Gk+1Gk+2... Gk+s

G1G2... GkG−1
k+sG

−1
k+s−1... G−1

k+1 =
Gk+1Gk+2... Gk+sG

−1
k+sG

−1
k+s−1... G−1

k+1

G1G2... GkG−1
k+sG

−1
k+s−1... G−1

k+1 = I.

Observation 3. For an identity G0G1... Gm−1

and any parameter p, 0 ≤ p ≤ m − 1,
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G0G1...Gp−1 → G−1
m−1G

−1
m−2... G−1

p is a rewrit-
ing rule. In the most trivial circuit cost metric, when the
cost of every gate is assumed to be one (that is, the sim-
ple gate count is used), the rewriting rule is regular for
parameters p in the range m

2 < p ≤ m − 1.

Proof. Proof of this statement follows from the previous
one by renaming the subscripts and listing the equalities in
the reverse order.
Observation 4. If G0G1... Gm−1 = I , then
G1... Gm−1G0 = I .
Proof. The following proves the statement.

G0G1... Gm−1 = I

G−1
0 G0G1... Gm−1 = G−1

0 I

G1... Gm−1 = G−1
0

G1... Gm−1G0 = G−1
0 G0

G1... Gm−1G0 = I.

Definition 3. A size m template is a sequence of m gates
(a circuit) that realizes the identity function. Any template
of size m must be independent of all templates of smaller
or equal size, i.e. for a given template T of size m no appli-
cation of any set of templates of smaller size can decrease
the number of gates in T or make it equal to another tem-
plate. The template G0 G1... Gm−1 can be applied in two
directions:
Forward application is a rewriting rule of the form
GiG(i+1) mod m... G(i+p−1) mod m → G−1

(i−1) mod m

G−1
(i−2) mod m... G−1

(i+p) mod m, where 0 ≤ i, p ≤ m − 1.
Backward application is a rewriting rule of the form
G−1

i G−1
(i−1) mod m... G−1

(i−k+1) mod m → G(i+1) mod m

G(i+2) mod m... G(i−k) mod m, where 0 ≤ i, p ≤ m − 1.

Note, that template application requires the inverse be
available for each gate type considered. Correctness of this
definition follows from the four observations above.

A clear benefit of templates is the reduction of the num-
ber of rewriting rules and the consequent storage saving. In
fact, one template occupies the same storage space as a sin-
gle rewriting rule but is capable of storing up to 2m2 non-
redundant rewriting rules. Assuming the trivial circuit cost
metric where each gate has a cost of one, the number of
regular non-redundant rewriting rules can be as high as m2

for odd m and m(m − 1) for even m. For basic gate sets
where the number of non-redundant rewriting rules is infi-
nite or grows exponentially (for instance, using Toffoli gates
with multiple controls results in an exponential growth of
the number of rewriting rules), further compaction through
classification is required. Depending on the form of the ba-
sic gates the classification approaches may vary [12, 13].

The following Lemma is useful as it allows for a decrease
in the number of gates that must be matched in order for a
template to be applied as a regular rewriting rule.

Lemma 1. Assume a trivial cost metric where the cost of
a circuit is calculated as a linear term with unit weights.
Then, application of a template G0G1... Gm−1 for a pa-
rameter p = p0 is equivalent to its application for parame-
ter p = p1 := 	m

2 
+1 and p0−p1 applications of an AA−1

template.

Proof. For simplicity, assume that the template
G0G1... Gm−1 is applied forward for parameter i = 0,
that is, starting with the gate G0. Then, for the parame-
ter p = p1, the sequence of gates G0G1... Gp1−1 in the cir-
cuit to be simplified can be moved together and will be re-
placed with G−1

m−1G
−1
m−2... G−1

p1
. For j = 0, 1, 2, ... and

while p0 − p1 − j > 0 gate Gp1+j can be moved to G−1
p1

and the gate-inverse rule applies to delete them both. It
can be easily seen that after p0 − p1 such applications of
gate-inverse rules the circuit will take the form equiva-
lent to the one achieved by application of G0G1... Gm−1

for parameter p = p0.

4. Templates: application

To identify templates, we first find all templates of the
form ABAB. Such templates applied for parameter p = 2
result in construction of the rewriting rule AB → BA. That
is, they define when the two gates can be moved past each
other. We call such templates moving rules and apply them
to move gates to form matches leading to reduction via other
templates.

Second, we find all templates of the form AA−1, which
we call gate-inverse rules. This is straightforward as well,
since every self-inverse gate A forms the template AA and
every pair of gates A and B, where B = A−1 forms one
template of the form AB.

Subsequent templates are found by identifying increas-
ingly longer sequences of gates that realize the identity
function and which can not be reduced by other templates.

As a general approach, we provide a complete classifi-
cation of the templates of small size and then supplement
those by a set of templates that appear to be useful when
a specific synthesis procedure is applied. For example, if
a synthesis procedure tends to use a specific type of sub-
circuit of cost µ which is neither optimal (assume an opti-
mal cost of ν) nor can be simplified by a small size com-
plete set of templates, a template with total cost µ + ν can
be created using Observation 2 (followed by a generaliza-
tion process when and if needed). In this paper, we do not
construct any of these supplementary type templates, since
we focus on using templates when any synthesis algorithm
is used to find the initial circuit.

We now illustrate a set of quantum templates using NOT,
CNOT and controlled-sqrt-of-NOT gates. We first describe
the moving rule. Assuming gate A has control set CA (CA

is an empty set in the case of an uncontrolled gate) and tar-

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05) 
1530-1591/05 $ 20.00 IEEE 



� � � �

� � � �

� � � � � � � � � � � � � � � �

Figure 1. Quantum templates.

get TA and gate B has control set CB and target TB , these
two gates form a moving rule if, and only if, TA �∈ CB and
TB �∈ CA. Recall that NOT and CNOT are self-inverses and
controlled-V and controlled-V + are the inverses of each
other. These observations can be used to construct the gate-
inverse template. All other templates that we have identified
are shown in Figure 1, where V (or V +) is substituted for all
occurrences of V0 and V + (or V ) is substituted for all occur-
rences of V1, i.e. the substitutions is consistent and distinct
for V0 and V1. The templates reported here were found by
inspection. We are currently developing a program to find
larger templates and to verify completeness.

When applying templates, the smaller ones are tried first.
This means that more general (smaller) rewriting rules are
used first after which more specific rules are considered.

To illustrate how templates are applied, consider the ex-
ample of a non-optimal quantum circuit for the 3-bit full
adder with 10 gates which in a non-linear metric yields a fi-
nal cost of 9 [6]. The original circuit presented in [6] does
not appear to be correct since for the input pattern 0100 it
gives 1111 as output instead of the expected 1011. The cir-
cuit shown in Figure 2A corrects this.

In the circuit in Figure 2A, gates 5 and 7 (counting from
the left) can be moved together and form a gate-inverse pair.
We move them together and delete them by applying the
gate-inverse template. This results in the circuit in Figure
2B. Next, we notice that gates 4, 6 and 8 in this circuit can
also be brought together (gates 4 and 8 should be moved to-
wards gate 6). They match gates 5,1 and 2 in the rightmost
upper template in Figure 1. Figure 2C shows the three gates
brought together, and Figure 2D illustrates the resulting cir-
cuit after the template is applied.

The circuit that we found using templates simplification
(Figure 2D) is the optimal (for a given input-to-output as-
signment) reported in [6]. It took our program 1.16 seconds
(elapsed time) to simplify the circuit in Figure 2A into the
circuit in Figure 2D. The time reported in [6] to synthesize
such a circuit is 7 hours. This example clearly shows that
templates are useful and effective.

A likely optimal quantum circuit for the 3-bit full adder
can be constructed from the reversible implementation pre-
sented in [14] and shown in Figure 3A. We first substitute

� ��
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Figure 2. Simplification of a 10-gate quantum
network for the 3-bit full adder.
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Figure 3. Simplification of an 8-gate quantum
network for the 3-bit full adder.

quantum circuits for the Peres gates (each of which is a
Toffoli-CNOT pair) see Figure 3B, and then apply the tem-
plates. In this case, gates 4 and 6 can be moved together and
match the gate-inverse template. So, they are both deleted
leading to the circuit in Figure 3C.

5. Experimental results

Even though the set of gates NOT, CNOT, controlled-
V and controlled-V + has been used by several authors
[4, 6, 10, 16] as elementary building blocks, there are not
many quantum circuits reported. However, there are a num-
ber of reversible circuits [2, 8, 11, 12, 14, 15] using gen-
eralized Toffoli and Fredkin [5] gates. Generalized Fredkin
gates can be implemented as a circuit containing two CNOT
gates and one generalized Toffoli gate [16]. The generalized
Toffoli gate itself can be realized as a circuit with CNOT,
controlled-V and controlled-V + gates [4, 10]. Thus, any
Fredkin-Toffoli reversible circuit can be transformed into a
circuit using elementary quantum NOT, CNOT, controlled-
V and controlled-V + gates.

To develop our general synthesis approach, we first con-
sider quantum circuits for the generalized Toffoli gates and
apply our templates to simplify them. Having done that,
to simplify a given reversible circuit we: substitute Toffoli-
CNOT equivalents for any Fredkin gates; substitute simpli-
fied quantum implementations for the Toffoli gates; and ap-
ply the templates to obtain a reduced quantum specification.

Table 1 summarizes the results of applying our templates
to quantum Toffoli gate implementations [4, 10]. Columns
Size, Garbage and Best reported show the size of the Toffoli
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Size Garbage Best Optimized %
reported implementation

4 1 16 15 93.75%
5 2 32 26 81.25%
5 1 42 37 88.1%
6 3 48 38 79.17%
6 1 64 54 84.38%
7 4 64 50 78.13%
7 1 96 80 83.33%
8 5 80 62 77.5%
8 1 128 100 78.13%
9 6 96 74 77.08%
9 1 160 128 80%

10 7 112 86 76.79%
10 1 192 152 79.17%
11 8 128 98 76.56%
11 1 224 176 78.57%

Table 1. Toffoli gate simulations.

gate, the number of auxiliary lines associated with the par-
ticular implementation of this gate, and the gate count in the
best reported quantum circuit with CNOT, controlled-V and
controlled-V + gates. We show the gate counts for our op-
timized implementations and the percentage the size of the
optimized circuit represents with respect to the size of the
best previously reported realization.

The results in Table 1 show that the set of Toffoli gate
size (m+1) realizations with implementation cost of 16m−
32 and garbage lines (m − 2) (for m > 3) are always sim-
plified to size 12m− 22 circuits. We conjecture this will al-
ways be the case.

We next consider the derivation of quantum circuits
from Toffoli/Fredkin gate circuits. One of the main obsta-
cles in such an approach is that given a Toffoli gate, there
are multiple ways of substituting an equivalent quantum
circuit. First, Toffoli gates are symmetric with regard to
their control variables, while the corresponding quantum
circuits are not. For m controls, this results in m! substi-
tutions. In addition, the quantum realization of a Toffoli
gate TOF (x1, x2, ..., xm;xm+1) in an n-line circuit, uses
k auxiliary lines (assuming m + k + 1 ≤ n). This gives
(n − m − 1)-choose-k ways of assigning auxiliary lines
for the quantum implementations to the remaining lines in
the circuit. Also, since a Toffoli gate is self-inverse, but its
quantum realizations are not symmetric circuits, the num-
ber of possible substitutions is doubled. Finally, each size
(m + 1) Toffoli gate has two basic quantum realizations
[4, 10] one with only 1 garbage line and the other with
(m−2) garbage lines. This very large search space requires
a heuristic be used.

We first observe that quantum circuits for Toffoli gates

of size (m + 1) that require (m − 2) garbage lines are less
costly and better structured. Thus, it is easier to come up
with a good procedure for substituting these gates in the
circuit to yield the most simplification. We use this imple-
mentation rather than using the implementation with just 1
garbage line which is more expensive. We further substitute
the circuits for the Toffoli gates so that two neighboring Tof-
foli gates would share as many quantum gates as possible.
Since this is not guaranteed to be the best way of replac-
ing a Toffoli gate with a quantum circuit, we are now work-
ing on better ways of substituting the Toffoli gates as well
as utilizing the quantum circuits for Toffoli gates which re-
quire only one auxiliary bit.

Many reversible circuits have constant input val-
ues and garbage outputs. This typically results when a
non-reversible function is mapped to a reversible one prior
to synthesis as a reversible circuit. In these cases, we ap-
ply two additional procedures. First, we look at the
beginning of the circuit for a gate whose control is an in-
put constant. If such a gate can be moved to the beginning
of the circuit one of two transformations applies. If the in-
put constant controlling the gate is zero, the gate can be
removed. If the input constant is one, the constant con-
trol of the gate can be deleted (assuming an uncon-
trolled gate has a lesser cost). The second procedure looks
at the end of the circuit and for every gate with the tar-
get on a garbage output tries to move the gate to be the last
gate affecting that output such that the output is not used af-
ter the gate is applied. Every such gate can be safely deleted
from the circuit since we do not care about the result-
ing values on the garbage lines.

We took several circuits from [11] and compared their
quantum realization costs before and after applying the
above approach. Table 2 summaries the results. Different
circuits for the same function are distinguished by the num-
bers that come after the # sign. Cost before and Garbage
list the quantum gate count and number of garbage lines in
the circuit to be simplified. It can be calculated that given
a reversible circuit on n rails with Toffoli gates of maxi-
mal size M (M < n), the garbage overhead in our Toffoli
gate substitution procedure is 2M − n − 3 when this num-
ber is greater than zero and zero otherwise. Cost after shows
the quantum gate count after reversible gates are substituted
with their simplified quantum circuits and the resulting cir-
cuit is run through the template simplification process.

Finally we present a very good circuit for the 5-bit
Grover oracle function 4mod5. It leaves the first four wires
unchanged and inverts the last wire if, and only if, the first
four wires represent an integer divisible by 5. We first found
a Toffoli gate circuit using a synthesis method we are cur-
rently developing. We then applied the techniques described
above. If we don’t require that the first four lines pass the
inputs unchanged, the circuit is as shown in Figure 4A. If
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Name Garbage Cost Cost %
before after

4mod5#1 4 24 15 62.5%
4mod5#3 4 13 9 69.23%
5mod5#1 8 184 128 69.57%
5mod5#2 8 80 45 56.25%

add3 2 12 6 50%
mod1024adder 0 1975 1521 77.01%

rd53#1 4 277 233 84.12%
rd53#2 4 152 114 75%
rd53#3 5 44 33 75%
rd53#4 4 137 96 70.07%
rd53#5 4 86 68 79.07%

Table 2. Simplification of the benchmarks.
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Figure 4. Circuit for the Grover oracle.

the inputs are required to be passed through unchanged, the
subcircuit in Figure 4B must be appended to the right of the
circuit in Figure 4A.

6. Future work

There are several possibilities to improve our simplifica-
tion approach. In addition to better substitution of quantum
circuits for Toffoli gates and the search for new templates,
we plan to adapt the templates tool for reversible circuits
to minimize the quantum cost instead of the reversible gate
count. This is expected to result in a better starting point for
quantum cost reduction. We are also working on quantum
gate level compaction, which should be possible to accom-
plish using the moving rule and its trivial extensions. Fi-
nally, we are interested in extending templates to other sets
of quantum gates including rotation gates.

7. Conclusion

We have introduced templates for quantum circuit sim-
plification. Templates can be developed for any type of
quantum circuit, and can be applied for various cost met-
rics. We demonstrated the effectiveness of our approach us-
ing a variety of previously published circuits. In particular,
we reduced the sizes of the best known Toffoli gate quan-
tum realizations on average by 19.2% and the costs of a set
of benchmark circuits on average by 30.2%.
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