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Introduction

Increasing transistor density and system interconnect scalability limitations necessitate the introduction of Networks On Chip (NoCs) as a viable, scalable packet-switched micro-network interconnect scheme, alternative to bus architectures. Many NoC architectures have recently been proposed [START_REF] Rijpkema | Trade-offs in the design of a router with both guaranteed and best-effort services for networks on chip[END_REF][START_REF] Karim | On-chip communication architecture for OC-768 network processors[END_REF][START_REF] Saastamoinen | Interconnect IP node for future system-on-chip designs[END_REF][START_REF] Dall | ×pipes: a Latency Insensitive Parameterized Network-on-chip Architecture For Multi-Processor SoCs[END_REF]. A NoC is depicted in Figure 1.

Topology selection is an integral part of a NoC design flow. Regular (such as mesh or fat tree) topologies have been adopted for interconnecting homogeneous cores [START_REF] Dally | VLSI Architecture: Past, Present and Future[END_REF][START_REF] Kumar | A network on chip architecture and design methodology[END_REF][START_REF] Guerrier | A generic architecture for on-chip packet switched interconnections[END_REF][START_REF] Liang | aSOC: A Scalable, Single-Chip communications Architecture[END_REF] in the first generation of NoC approaches. For a heterogeneous system however, such as [START_REF] Yamauchi | A 0.8 W HDTV video processor with simultaneous decoding of two MPEG2 MP@HL streams and capable of 30 frames/s reverse playback[END_REF], a regular topology selection may lead to overdesigning and is therefore not favorable in most current NoCs [START_REF] Murali | Bandwidth Constrained Mapping of Cores onto NoC Architectures[END_REF]. For this reason, several researchers are currently focusing their efforts on developing complete application-specific NoC synthesis flows, where topology and network bulding blocks are customized at instantiation time [START_REF] Murali | SUNMAP: A Tool for Automatic Topology Selection and Generation for NoCs[END_REF][START_REF] Saastamoinen | Interconnect IP node for future system-on-chip designs[END_REF].

The performance advantage of application-specific NoCs has been convincingly demonstrated at the architectural level [START_REF] Murali | SUNMAP: A Tool for Automatic Topology Selection and Generation for NoCs[END_REF][START_REF] Pinto | Efficient Synthesis of Networks On Chip[END_REF][START_REF] Ho | A Methodology for Designing Efficient On-Chip Interconnects on Well-Behaved Communication Patterns[END_REF]. It is a well-known fact, however, that instantiation-time flexibility through automatic synthesis has a price in terms of silicon efficiency [START_REF] Chinnery | Closing the Gap Between ASIC & Custom: Tools and Techniques for High-Performance ASIC Design[END_REF]. Hence, a key issue for NoC synthesis approaches is to demonstrate that the architectural headroom of synthesized NoCs with respect to less flexible, homogeneous NoCs is maintained throughout the logic and physical synthesis steps.

Our work addresses precisely this issue. It details a complete NoC design flow based on ×pipes Lite, a new, synthesis-oriented flow for the ×pipes library. This new version maintains most of the architectural advantages of the original proposed library [START_REF] Dall | ×pipes: a Latency Insensitive Parameterized Network-on-chip Architecture For Multi-Processor SoCs[END_REF], such as latency insensitive design, packet-switched communication with source routing and wormhole flow-control, and interface support for error control. However, ×pipes Lite was re-designed from scratch to be low-latency and synthesis-friendly. The contribution of this work is two-fold: first, it discusses architectural optimizations and specification tuning steps that have been developed to achieve high synthesis efficiency; second, it provides extensive post-synthesis implementation analysis to bound the design space that can be spanned by our flexible building blocks.

The outline of this work is as follows: Section 2 surveys related work. Section 3 analyzes the ×pipes Lite architecture and introduces the proposed design flow. Section 4 provides a comparison between the proposed and the original ×pipes architecture. Section 5 provides an insight on the issues addressed by utilizing SystemC as a synthesis frontend language. Section 6 details the synthesis experimental results. Section 7 concludes the paper.

Related Work

The most advanced SoC communication architectures used in industry today represent evolutionary solutions with respect to shared busses. For instance, the Sonics MicroNetwork [START_REF] Wingard | MicroNetwork-Based Integration for SoCs[END_REF] is a TDMA-based bus which can easily adapt to the data-word width, burst attributes, interrupt schemes and other critical parameters of the integrated cores, while providing very high bandwidth utilization. Another example is the STBus interconnect [START_REF] Strano | OCP STBUS Plug-in Methodology[END_REF], a high-performance communi- Early works in [START_REF] Benini | Networks on Chips: A New SoC Paradigm[END_REF][START_REF] Dally | Route Packets, not Wires: On-Chip Interconnection Networks[END_REF] pointed out the need for more scalable architectures for on-chip communication, and therefore to progressively replace shared busses with on-chip networks. Many NoC architectures have been proposed in the literature, but in most cases the design methodologies and tools are still in the early stage.

Most early NoC proposals are packet switched and exhibit regular structure. The NOSTRUM network [START_REF] Kumar | A network on chip architecture and design methodology[END_REF] adopts a mesh based approach. The Scalable Programmable Integrated Network (SPIN) [START_REF] Guerrier | A generic architecture for on-chip packet switched interconnections[END_REF] is another regular, fat-tree-based network architecture. The Linkoeping SoCBUS [START_REF] Wiklund | SoCBUS: switched network on chip for hard real time embedded systems[END_REF] is a two-dimensional mesh network which uses a packet connected circuit to set up routes through the network. In [START_REF] Karim | On-chip communication architecture for OC-768 network processors[END_REF] the use of the octagon communication topology for network processors is presented. Moreover, the implementation of a star-connected on-chip network supporting plesiochronous communication among system components is described in [START_REF] Lee | An 800MHz Star-Connected On-Chip Network for Application to Systems on a Chip[END_REF]. These NoCs provide scalable network fabrics for homogeneous system (e.g. symmetric chip-multiprocessors), but they do not allow arbitrary heterogeneous topology instantiation.

Significant steps in the direction of instantiation-time flexibility have been taken in the Aethereal NoC design framework, presented in [START_REF] Rijpkema | Trade-offs in the design of a router with both guaranteed and best-effort services for networks on chip[END_REF], which aims at providing a complete infrastructure for developing heterogeneous NoCs with end-to-end quality of service guarantees. The network supports guaranteed throughput (GT) for real time applications and best effort (BE) traffic for timing unconstrained applications. Aethereal's NI is highly configurable (it supports several session-layer standards, a variable number of ports, etc.), but the switch architecture is quite rigid. Furthermore, from the implementation viewpoint, both the NI and the switch make use of custom hard-macro FIFO buffers. These structures are not synthesizeable and they must be manually re-tuned when migrating to new technologies.

Support for heterogeneous architectures requires highly configurable network building blocks, customizable at instantiation time for a specific application domain. For instance, the Proteo NoC [START_REF] Saastamoinen | Interconnect IP node for future system-on-chip designs[END_REF] consists of a small library of predefined, parameterized components that allow the implementation of a large range of different topologies, protocols and configurations. ×pipes NoCs [START_REF] Dall | ×pipes: a Latency Insensitive Parameterized Network-on-chip Architecture For Multi-Processor SoCs[END_REF] push this approach to the limit, by instantiating an application specific NoC from a library of synthesizeable soft macros (Network Interface -NI, switch and link). The components are highly parameterizable and provide reliable and latency insensitive operation. The main drawbacks with the first ×pipes architecture are the high complexity of its basic building blocks, and the lack of a complete synthesis path to silicon implementation (NoC cost is only estimated using high level models [START_REF] Wang | Orion: A Power-Performance Simulator for Interconnection Networks[END_REF]). Both issues are fully addressed in this work.

×pipes Lite Architecture and Synthesis Flow

×pipes Lite is a SystemC library of highly parameterizable, synthesizeable NoC Network Interface, switch and link modules, optimized for low-latency and highfrequency operation. Communication is packet switched, with source routing (based upon street-sign encoding) and wormhole flow control.

×pipes utilizes OCP 2.0 [START_REF]Open Core Protocol[END_REF] as a means to interface with the SoC cores. Adhering to OCP's master/slave semantics, two NI interfaces are implemented for a peer-to-peer communication between two cores. Network communication is transparent to the application. Transferred packets are fragmented into units of fixed size, called flits.

NI Architecture

The ×pipes NI is designed as a bridge between an OCP interface and the NoC switching fabric. Its purposes are the synchronization between OCP and ×pipes timings, the packeting of OCP transactions into ×pipes flits and vice versa, the computation of routing information, and the buffering of flits to improve performance.

The ×pipes NI is designed to comply with version 2.0 of the OCP specifications. In addition to the core OCP signals, support includes for example the ability to perform both non-posted or posted writes (i.e. writes with or without response) and various types of burst transactions, including reads with single request and multiple responses. This allows for thorough exploration of bandwidth/latency tradeoffs in the design of a system.

To provide complete deployment flexibility, the NI is parameterizable in both the width of OCP fields and of ×pipes flits. Depending on the ratio between these parameters, a variable amount of flits is needed to encode an OCP transaction. For any given transaction, some fields (such as the OCP MAddr wires, specific control signals, routing information) can be transmitted just once; in contrast, other fields (such as the OCP MData or SData wires) need to be transmitted repeatedly, for example during a burst transaction. Thus, the NI is built around two registers; one holds the transaction header, while the second one holds the transaction payload. The first register samples OCP signals once per transaction, while the second is refreshed on every burst beat.

A set of flits encodes the header register; subsequently, multiple sets of flits are sent towards the fabric, each encoding a snapshot of the payload register subsequent to a new burst beat. Sets of payload flits are pushed out until transaction completion. Header and payload content is never allowed to mix in the same flit, thus simplifying the required logic. Routing information is attached to the header flit of a packet by checking the transaction address against a Look-Up Table (

LUT).

As shown in Figure 3, two NIs are implemented in ×pipes, named "initiator" (attached to system masters) and "target" (attached to system slaves). A master-slave device will need two NIs, an initiator and a target, for operation. Each NI is additionally split in two submodules, one for the request and one for the response channel. These submodules are loosely coupled: whenever a transaction requiring a response is processed by the request channel, the response channel is notified; whenever the response is received, the request channel is unblocked. The mechanism is currently supporting only one outstanding non-posted transaction, but can be extended should any attached core need this feature.

The ×pipes interface of the NI is bidirectional; for example, the initiator NI has an output port for the request channel and one input port for the response channel (the target NI is dual). The output stage of the NI is identical to that of the ×pipes switches, for increased performance. The input stage is implemented as a simple dual-flit buffer with minimal area occupation, but still makes use of the same flow control used by the switches.

Switch Architecture

The ×pipes switch models the basic building block of the NoC switching fabric. It implements a 2-cycle-latency, output-queued router that supports fixed and round robin priority arbitration on the input lines, and a flow control protocol with ACK/nACK, Go-Back-N semantics.

Allocation of inputs towards specific output lines is handled at the Allocator module. Multiple Allocators exist in a switch, each driving one of its output ports (O i ).

Assuming that one input is currently owning access to O i , it is maintained in its state until a tail flit arrives. Arbitration is subsequently performed upon receipt of a header flit
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Allocator [START_REF] Benini | Networks on Chips: A New SoC Paradigm[END_REF] Allocator [START_REF] Guerrier | A generic architecture for on-chip packet switched interconnections[END_REF] Flow Control In [START_REF] Benini | Networks on Chips: A New SoC Paradigm[END_REF] In [START_REF] Guerrier | A generic architecture for on-chip packet switched interconnections[END_REF] In [START_REF] Kumar | A network on chip architecture and design methodology[END_REF] In An input flit can be rejected, and therefore nACKed, due to one or more of the following reasons:
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• The output line is occupied by a previous transmitting packet. • The buffering space for output O i is already filled.

• Another header flit requesting the same output is concurrently appearing on another input port, and arbitration is won by the latter. If a flit A is dropped, then all subsequent incoming flits are dropped as well, until flit A reappears at the input, adhering to a Go-Back-N flow control mechanism.

After a packet has won the arbitration, its header flit is properly adjusted in order to prepare for the next switch along the routed path to the slave. More specifically, routing information pertaining the current switch is rotated away; this allows positioning of the per-hop routing bits at a fixed offset within the flits.

The switch is parameterizable in the number of its inputs and outputs, its arbitration policy (fixed priority or roundrobin,) as well as in the size of the buffering at the outputs. A 4x3 instantiation is depicted in Figure 4.

Link Architecture

A solution to overcome the interconnect-delay problem consists of pipelining links. The link data introduction rate is decoupled from link delay by trading it with latency. The NoC NI and Switch modules are designed in such a way that their behavior does not depend on the latency of the communication channels (latency insensitive operation) [START_REF] Carloni | Theory of Latency-Insensitive Design[END_REF]. Pipelining has been used both for data and control lines.

Design Flow

The design flow is shown in Figure 2. The ×pipes compiler instantiates the desired NoC by means of configuration scripts that are either automatically generated in a previous step, or manually specified [START_REF] Murali | SUNMAP: A Tool for Automatic Topology Selection and Generation for NoCs[END_REF].

Configuration scripts detail general, core (NI), switch, and link specific parameters. General parameters comprise flit size, and core address space. Core (NI) parameters include type (master/slave/both), address on the NoC and the switch connection endpoint. Switch parameters include the number of inputs and outputs, along with the output buffering capacity. Finally, link parameters comprise the switch endpoints that they connect to, along with the number of their pipeline stages.

×pipes Lite Design Revision

The original ×pipes design is essentially a full-featured NoC specification, addressing all aspects of a NoC design flow, including error control at the switch level, with parameterization pushed to the extreme. ×pipes Lite has instead been designed from the ground up to be a library of fully synthesizeable, low-latency, high-frequency NoC modules. In this context, architectural changes have been performed onto the original ×pipes library [START_REF] Dall | ×pipes: a Latency Insensitive Parameterized Network-on-chip Architecture For Multi-Processor SoCs[END_REF].

One key observation driving the development of ×pipes Lite is that NoCs typically provide abundant and scalable bandwidth, but they lack in providing low-latency services. In order to address this limitation, one of the most noticeable differences between ×pipes Lite and the first version of ×pipes is the dramatic reduction in pipeline depth, with no compromises on the frequency target. Switches, for example, now incur in a latency of just two cycles, against seven in the previous design. Network interfaces underwent a similar redesign, with four fewer pipeline stages in output channels and one less in input channels. This significant improvement was achieved by removing the logic related to virtual channel management and to error detection, even though the switch protocol still supports retransmissions. A side benefit of the shortening of ×pipes pipelines is greatly reduced buffering requirements, which drastically reduces synthesized area and increases achievable frequency.

Additional area savings, again compounded with latency improvements, were achieved by slightly constraining the ×pipes packet format. In contrast with the original specification, which aimed at maximum packing of information within the flits, a format with fixed field offsets and an immediate forwarding policy was chosen as more effective area-and latency-wise. Unnecessary bloat of synthesized hardware was also avoided by assuming routing information to fit in the first flit of a packet, by enforcing a fixed worst-case width, and by preventing header and payload content to mix within the same flit.

From the point of view of the core interface, OCP support was updated from version 1.0 to 2.0 of the specifica- tions, significantly improving the support for burst transactions in the process. Single request, multiple responses burst reads are now possible, and write commands can be either with or without response, trading speed for reliability.

Synthesis and Simulation Back-ends

While the original ×pipes library was mostly targeted to functional simulation, the structure and design choices of the ×pipes Lite NoC modules were heavily influenced by the target goals of high-speed, low-latency soft core synthesizeability. Still, simulation functionality was kept as a design objective, with the issue of instantiation-time parameterizability in the foreground. For this reason, we chose to keep a single codebase for the ×pipes Lite library, conditionally adding simulation-or synthesis-specific code when appropriate.

One of the main issues in keeping the simulation and synthesis flows consistent was the need for different configurations of individual instances of the same module. For example, two switches with different numbers of I/O ports or amounts of buffering may coexist in a ×pipes Lite design. While such configuration is easily achieved in a simulation environment, simply by building a generic SystemC class and by passing appropriate parameters to the constructor of every instance at runtime, the issue is more serious if the module needs to be synthesized, because synthesis tools require static code. Our approach was to use a single configurable class for simulation, and adding preprocessor directives when needed to automatically but statically differentiate every instance to be synthesized. For example, the single class switch() used for simulation would be renamed class switch 4 4() and class switch 7 2(), and then appropriately configured, when synthesizing a 4x4 and a 7x2 switch simultaneously.

For increased flexibility, switch I/O ports are instantiated differently during simulation. Code like IN = new sc in<sc bv<FLIT WIDTH> > [SWITCH INPUTS] is utilized, while synthesis resorts to static definitions and multiple class naming. In a dual manner, signal widths which are defined by means of templates in SystemC, can be accurately tuned for synthesis (e.g. sc bv<LOG INPUTS> mux sel), and are set to upper limit values for simulation.

Various non synthesizeable syntactical alternatives were adopted for simulation, in order to improve performance. For example, missing synthesis support for range selection (sc uint<>.range(a, b)) on non-constant a, b led to a code fork, where simulation used the above syntax, while synthesis resorted to a bit-by-bit assignment.

One more complex issue arose with synthesis of NI routing LUTs. Our choice was to integrate the LUT generation and the related code changes within the ×pipes compiler tool. This tool, leveraging on the codebase hooks described above and on its own topology view, generates the customized code base for both simulation and synthesis along with the suitable Design Compiler synthesis scripts, as specified on the provided input script file.

Experimental Results

The feasibility of automatic generation of NoC topologies from parameterizable SystemC source code was thoroughly verified by performing extensive synthesis experiments in 0.13µm technology with Synopsys Design Compiler for all modules. Results were obtained for worst case commercial conditions under an average switching pattern for power.

Configuration parameters for the NIs comprise the flit width and the size of the output buffers. For a variety of NI configurations, total cell power and area results are depicted in Tables 1 and2. A frequency of 1 GHz was achieved for all variations, and is therefore not reported in the tables.

Switches are also parameterizable in terms of flit width and size of the output buffers. In order to study the effect of the number of input and output ports, three switch instances were analyzed, namely 4x4, 4x6 and 6x4. The resulting area and frequency results are depicted in Table 3; a frequency of 1 GHz was achieved for all the 4x4 switch variations. Total cell power results are reported in Table 4.

An exploration of the area/frequency tradeoff was performed on 32-bit 5x5 switches. By varying the target synthesis clock, different area results were reported (see Figure 6). The maximum operating frequency achieved for the 5x5 switch module was 925 MHz. As expected, area re- quirements are almost constant until a certain frequency (800 MHz in this case), after which synthesis efforts to achieve higher operating frequencies result in a steep area increase.

An example illustrating the importance of the estimation of the area and clock frequency of a NoC can be shown by referring to Figure 6 and Figure 5. The diagram in Figure 5 features two alternative topologies for the same system, comprising four processors, four privately accessible memories, and three shared slave devices. Topology (a) leverages upon a single 11x11 switch in a crossbar-like fashion, while topology (b) creates three clusters with 5x5 switches. We integrated these ×pipes topologies within a complete cycle-true simulation environment ( [START_REF] Loghi | Analyzing on-chip communication in a MPSoC environment[END_REF]), and ran an operating system-based benchmark on them, thus stressing the platforms with functional traffic. To complete a benchmark involving interprocessor communication, topology (a) required, as expected, less clock cycles, with about a 10% advantage due to lower access latency towards shared devices.

However, 11x11 ×pipes switches have a maximum working frequency of approximately 780 MHz, while 5x5 switches can reach 925 MHz (a 19% gain). Area-wise, one 11x11 switch requires 0.48 mm 2 , while three 5x5 switches (synthesized for maximum frequency) take 0.51 mm 2 overall. The net result is that the designer can choose the topology with 5x5 switches at maximum frequency, achieving 10% overall faster performance than the "crossbar" topology despite a comparable area footprint. Alternatively, the designer can clock the 5x5 switches about 10% higher than the 11x11 one (850 MHz), achieving roughly similar performance with a total area of 0.42 mm 2 , a saving of 14%. A third alternative is synthesizing 5x5 switches with a frequency constraint of 800 MHz, about the same as the 11x11 one, thus achieving about 10% lower performance but with an overall area of just 0.38 mm 2 -a 34% saving over the 11x11 solution.

Finally, we performed place&route tests on a 5x5 ×pipes switch instance. The layout analysis shows that the area reported by the synthesis tools was an underestimate by less than 10%.

Conclusion

We have presented xpipes Lite, a design flow for the generation of synthesizeable and simulateable models for application-specific Networks on Chip. Synthesis results with commercial tools prove the value and competitiveness of automatic NoC generation. Whereas higher performance can be achieved by custom layout of NoCs, xpipes Lite benefits designers by reducing their effort and allowing them to explore the design space spanned by various NoC topologies and parameters.
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Table 1 . Cell power (mW) for initiator and tar- get NIs.

 1 

	Flit	Output Buffer Stages
	Width (bits)	4	16	64
		Initiator NIs	
	16	22.7	30.4	59.6
	32	33.5	47.7	104.8
	64	49.3	77.1	194.8
	128	87.8 144.5 379.3
		Target NIs	
	16	27.5	34.8	62.6
	32	36.9	51.1	106.9
	64	55.4	82.0	194.3
	128	93.3 151.1 382.5

Table 2 . Area (mm 2 ) for initiator and target NIs.

 2 

	Flit	Output Buffer Stages
	Width (bits)	4	16	64
		Initiator NIs		
	16	0.025 0.037 0.093
	32	0.036 0.061 0.179
	64	0.051 0.111 0.361
	128	0.092 0.186 0.724
		Target NIs		
	16	0.035 0.053 0.110
	32	0.045 0.078 0.193
	64	0.063 0.114 0.352
	128	0.117 0.230 0.701

Table 3 . Area (mm 2 ) and timing for 4x4, 4x6, 6x4 switches.

 3 

Table 4 . Cell power (mW) for 4x4, 4x6, 6x4 switches.

 4 

	Flit	Output Buffer Stages
	Width (bits)	4	16
	4x4 Switches	
	16	31.1	62.7
	32	55.5	116.9
	64	104.4	219.3
	128	199.1	430.5
	4x6 Switches	
	16	42.8	90.1
	32	79.7	170.8
	64	148.2	334.4
	128	283.2	617.3
	6x4 Switches	
	16	35.9	69.1
	32	62.9	123.2
	64	117.2	237.6
	128	223.4	453.5
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