
HAL Id: hal-00181291
https://hal.science/hal-00181291v1

Submitted on 23 Oct 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Design Flow for Application-Specific Networks on
Chip with Guaranteed Performance to Accelerate SOC

Design and Verification
Kees Goossens, John Dielissen, Om Prakash Gangwal, Santiago Gonzalez

Pestana, Andrei Radulescu, Edwin Rijpkema

To cite this version:
Kees Goossens, John Dielissen, Om Prakash Gangwal, Santiago Gonzalez Pestana, Andrei Radulescu,
et al.. A Design Flow for Application-Specific Networks on Chip with Guaranteed Performance to
Accelerate SOC Design and Verification. DATE’05, Mar 2005, Munich, Germany. pp.1182-1187.
�hal-00181291�

https://hal.science/hal-00181291v1
https://hal.archives-ouvertes.fr


A Design Flow for Application-Specific Networks on Chip with Guaranteed
Performance to Accelerate SOC Design and Verification

Kees Goossens, John Dielissen, Om Prakash Gangwal, Santiago González Pestana,
Andrei Rădulescu, and Edwin Rijpkema

Philips Research Laboratories, Eindhoven, The Netherlands

Abstract
Systems on chip (SOC) are composed of intellectual property

blocks (IP) and interconnect. While mature tooling exists to design
the former, tooling for interconnect design is still a research area.
In this paper we describe an operational design flow that gener-
ates and configures application-specific network on chip (NOC) in-
stances, given application communication requirements. The NOC

can be simulated in SystemC and RTL VHDL. An independent per-
formance verification tool verifies analytically that the NOC in-
stance (hardware) and its configuration (software) together meet
the application performance requirements. The Æthereal NOC’s
guaranteed performance is essential to replace time-consuming
simulation by fast analytical performance validation. As a result,
application-specific NOCs that are guaranteed to meet the appli-
cation’s communication requirements are generated and verified
in minutes, reducing the number of design iterations. A realistic
MPEG SOC example substantiates our claims.

1 Introduction
A SOC is naturally composed of computation and storage ele-

ments (intellectual property blocks or IP) that are interconnected
by communication elements (busses, networks on chip or NOC). In
this paper, we focus on NOC interconnects because of their modu-
larity, scalability, and other advantages for large SOCs.

Mature tooling exists to design individual IP, such as RTL syn-
thesis and processor synthesis. Moreover, extensive IP re-use (of
memories, processors, and application-specific blocks) is com-
mon practice. In contrast, an interconnect is specific to a SOC

because the communication requirements depend on the composi-
tion of IP, which is application specific. Its design costs cannot be
amortised over multiple SOCs, because it cannot be re-used whole.
Tools for NOC synthesis are therefore essential for fast and effi-
cient SOC design. These tools depend on the modularity of NOCs;
i.e. (application-specific) NOCs are composed of two re-usable
parametrised components: routers and network interfaces (NI).

In this paper we describe our design flow to dimension and gen-
erate application-specific NOC instances, given the communication
requirements of the application. The NOC hardware (router and
NI topology), and the IP port to NI port mapping are described in
XML, which are translated to synthesisable RTL VHDL, and to Sys-
temC. Minimum buffer sizes can also be computed. Every NOC

instance is programmable, and its configuration (software) is gen-
erated in XML format for SystemC and VHDL simulation, and in C
format for embedded processors in the SOC. VHDL simulation is
bit and cycle-accurate, and SystemC transaction-level simulation
is flit-accurate. If IP are not yet available for simulation, traffic
generators are used that mimic their communication behaviour, as
specified in the application communication requirements. A pow-
erful new element in our design flow is performance verification,

described below.

Impact of guaranteed NOC services on design flows
One of the major challenges in SOC design is ensuring that

the SOC fulfills the (real-time) application requirements under all
circumstances, such as video throughput and latency for set-top
boxes, or packet loss and throughput for network processors. As-
suming the IPs have the right performance (operations per second,
storage capacity, etc.), we must generate a NOC with the right per-
formance. We will show that using a NOC with guaranteed services
(such as minimum throughput, maximum latency and jitter, etc.)
as opposed to a best-effort NOC has important benefits for a design
flow. In particular, this results in a fundamental difference in how
performance is validated.

Using a NOC with best-effort services, any method can be used
to generate a NOC. Then, the NOC performance must be validated
by simulating the complete SOC (i.e. NOC and IPs) because the
behaviours of IPs and NOC may be interdependent and influence
each other. Simulation of a single trace is relatively slow, and the
number of traces is huge. Therefore, given that not all possible
traces can be simulated, no 100% guarantee can be given that per-
formance requirements are met. Moreover, the performance ob-
served in the simulated traces and the worst-case performance of a
system may differ substantially, which means that adding a “safety
margin” (e.g. sizing a buffer to twice the maximum observed dur-
ing simulation) is not safe (e.g. see Section 3.6).

Only analysis can cover all cases. However, the distributed
arbitration in NOCs often leads to statistical performance mod-
els [1,9], which offer no guarantee that performance requirements
are always met.1 NOCs with guaranteed services take provisions
in their architectures to offer connections with guaranteed per-
formance, such as absence of data loss, minimum throughput,
and maximum latency. This enables analytical reasoning about
NOC performance. Examples are Æthereal [6, 8], Nostrum [14],
aSOC [13], using time-division-multiple-access (TDMA) schemes,
and [5, 12] using (virtual)-circuit-switching schemes.

NOC communication guarantees have several positive effects
on the design flow. First, all IPs and the NOC are decoupled [19],
meaning that the communication behaviour of one IP cannot affect
that of other IPs. As a result, they can be designed and validated
independently (compositionality). (In contrast to best-effort NOCs
where all IPs and NOC have to simulated together.) Second, the
NOC performance model can be used to generate an application-
specific NOC that meets the communication requirements under all
circumstances (correct by construction). Third, the performance of

1With 99.9% of packets meeting their required service [1], for every
high-definition video frame 2000 pixels are too late. Delayed control traffic
(e.g. programming a DMA engine for every 100Hz frame) can have much
larger impact, and would occur every 10 seconds.

1

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05) 
1530-1591/05 $ 20.00 IEEE 



any given NOC (hand made, or generated by a tool) can be analyt-
ically verified to fulfill application requirements or not, instead of
using simulation. As a result, verification time is shortened, and
fewer design cycles are necessary. However, the use of guaranteed
services relies on the explicit description of the communication re-
quirements (or behaviour) of the IPs. This information is normally
already available as part of the specification of SOC.

Overview
In this paper we describe a design flow that addresses the two

problems that we identified above: the need for tools to quickly
and efficiently generate application-specific NOCs, and the require-
ment for SOC and NOC performance validation. In Section 2 we
describe the prerequisites for our NOC design flow. In Section 3
we define the design flow and explain its inputs (e.g. application
requirements), outputs (NOC hardware and software, and resulting
performance), and details of the individual tools (generation, con-
figuration, verification, and simulation). We apply our design flow
in Section 4, where we generate several NOCs for a MPEG SOC.
For 16 IPs and a single task graph containing 21 guaranteed con-
nections, the tools automatically dimension and generate the Sys-
temC and VHDL for a NOC with 3 routers and 6 NIs, and 21 traffic
generators and their mapping. Including the configuration, buffer
sizing and performance verification, this takes less than a minute.
We review related work (Section 5), and conclude in Section 6.

2 NOC Design Flow Prerequisites
In this section we first describe the prerequisites for a design

flow, independent of the NOC services.
To be able to generate an application-specific NOC, the NOC

must be modular, i.e. be constructed of simpler, re-usable
parametrised components: the router and network interface (NI).
At design time, these components must be instantiated and con-
nected in an appropriate topology. Moreover, the IP ports must be
connected to particular NI ports (mapping). The result is a struc-
tural description (hardware) of the NOC. The router and NI of the
Æthereal NOC have been documented in [17,18], here we mention
only the relevant features. For the purposes of the design flow,
the router is parametrised by its arity (number of input and output
ports), and the best-effort queue sizes. Here, we fix the router link
width to 32 bits. The NI is parametrised by the number of ports (to
which IP ports can be connected, as specified in the mapping), the
number of connections per port, and the buffer sizes per connec-
tion. The type of the IP and NI ports (AXI, various DTL profiles,
their word width, etc.) is also a parameter, but kept fixed in this
paper. The NOC as a whole is parametrised by the size of the slot
table, and by the operating speed (500MHz in all examples, which
is the speed of the router and NI implementations).

All instances of the Æthereal NOC are (re)configurable at run
time. This means that the NIs can be (re)programmed at run-time,
using standard memory-mapped IO ports on the NOC, to support
a variety of connections [17]. (Routers are stateless and require
no configuration.) Within the NOC’s hardware limits (number of
connections per port, slot table size, credit counter bit widths, etc.)
connections can be configured with different (guaranteed) prop-
erties, such as throughput and latency, by programming the path
from master to slave, the number of slots and flow-control cred-
its, etc. A configuration for a use case, is a list of NOC memory
registers and their values.

The Æthereal NOC offers both best-effort and guaranteed ser-
vices. The design flow described in this paper can be used for any

4

NOC generation

NOC configuration

NOC performance

verification

SystemC &

RTL VHDL
NOC simulation

topology.xml,vhdl

gt-perf.xml,html gtbe-perf-sysc.xml,html

constraints.xml

communication.xls
communication.xml

mapping.xml,vhdl

gtbe-perf-vhdl.xml,html

configuration.xml,c

tg.xml,vhdl

tg generation

ip.xml

RTL synthesis

& back-end

sm
a
lle

st
 m

e
sh

 l
o
o
p

b
u
ff

e
r 

si
zi

n
g

Figure 1. The Æthereal NOC Design Flow

mix of services. However, the advantage of NOCs with guaranteed
services, as discussed at length in the introduction, is that the they
implement router and NI arbitration schemes that allow analytical
reasoning about the performance of guaranteed connections inde-
pendently of the behaviour of other connections. This prerequisite
is essential for correct-by-construction NOC generation and con-
figuration, as well as compositional NOC performance verification
(of any NOC, hand-made or generated), see Sections 3.3 to 3.5.

The final prerequisite for a design flow is the description of
the application communication requirements. It is not possible
to generate a NOC without knowing what the requirements of the
application using it will be. This will be described in Section 3.1
because this information is given as an input to the design flow.

The prerequisites are therefore: a modular NOC offering guar-
anteed services with parametrised components (router, NI), and a
description of the application requirements. The next section uses
these foundations to offer a NOC design flow.

3 NOC Design Flow
Figure 1 shows the NOC design flow, which is fully imple-

mented. Input files are underlined and shown at the top. The
tools that we will discuss are shown by boxes; for simplicity some
format conversion tools are not shown (in particular xls→XML,
XML→VHDL, and XML→HTML). Below, we discuss each of the
files and tools in turn. Although a major motivation for NOCs is
their promise to improve back-end issues, such as global timing
closure, we omit details of the “RTL synthesis and back-end.”

First, however, note that NOC generation and configuration are
interdependent, and part of one complex optimisation problem
(find topology, mapping, and throughput assignments that min-
imise the number of routers, NIs, buffer sizes, and latencies). If
this is done correctly (by construction), no performance verifica-
tion and simulation is required (for guaranteed connections). Sim-
ulation is still useful, e.g. to check if the communication behaviour
of IPs has been correctly characterised. With guaranteed services,
this can be checked independently for every connection.

Nonetheless, our design flow has been split into separate tools
(generation, configuration, verification) for several reasons. First,

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05) 
1530-1591/05 $ 20.00 IEEE 



breaking the design flow in smaller steps, simplifies steering or
overriding heuristics used in each of the individual tools, enhanc-
ing user control. Second, it reduces the complexity of optimisa-
tion problem, and simpler, faster heuristics can be used. Higher-
level optimisation loops involving multiple tools can then be easily
added, such as the “smallest mesh loop,” cf. Section 3.3. Third,
parts of the flow can be more easily customised, added, or replaced
by the user to tailor the flow or improve its performance. For ex-
ample, mesh XY routing can be replaced by load-balancing turn-
prohibiting routing. Finally, redundancy in the sense of checking
what should be generated automatically and correct by construc-
tion, such as simulation and performance verification (of guaran-
teed connections), minimises impact of potential programming er-
rors, and acts as a safety net when allowing the user to manually
create or modify intermediate results.

The design flow is very simple for the user. It is based on a
makefile with few targets corresponding to the major activities:
generate, configure, gtverify, simsystemc, and simvhdl. All files
are in XML, which is human readable, but also robust and extensi-
ble. The user can use the flow in fully automatic mode (supply only
the required underlined input files), or manually create or modify
selected intermediate files (topology.xml, mapping.xml, configu-
ration.xml, tg.xml). In case of manual intervention the remainder
of the flow works automatically. For example, an automatically
generated NOC can be configured manually, yet still have its per-
formance automatically verified. The input files contain all in-
formation (options, settings, etc.), for deterministic batch-mode
replay of results.

3.1 Specification of the Application Requirements
The starting point of the design flow is the description

of the application’s communication requirements (communica-
tion.xls,xml). An application consists of a number of task graphs,
or use cases. Each of these contains a number of tasks, to be exe-
cuted in hardware or software, using storage, and communicating
using the NOC. For the design flow only the communication is rel-
evant, i.e. which ports on which IPs communicate with each other.
Figure 2 shows an example specification in Microsoft Excel. This

Figure 2. MPEG Application Communication Specification.

is the de facto format for design documentation, and readily avail-
able from SOC designers. The Excel document is translated to
XML, which the user can also write directly. An Excel document
represents a single application, and each worksheet represents a

single use case. (Currently, multiple use cases are entered as in-
dependent applications.) A use case is specified as a list of con-
nections. A connection specifies a communication between a mas-
ter port and a slave port, the required (minimum) bandwidth, the
(maximum) allowed latency, and burst size for read and/or write
data, and the traffic class (best-effort or guaranteed).

3.2 Specification of the IP
The second input file is the specification of the architecture

around the NOC. The ip.xml file, an example of which is shown in
Figure 3, contains a list of all IPs connected to the NOC and the IP

ports. Each port has a number of attributes, such as protocol (AXI,
various DTL profiles), and data word width. (Currently, all ports
are of type DTL MMIO (memory-mapped IO) or MMBD (memory-
mapped block data), with 32-bit data words.) The ip.xml file is
used to generate the right protocol-conversion shells for NIs [17].

<architecture id="MPEG">
<IP id="display">
<initiator id="p1" protocol="MMBD" word="32"/>

</IP>
<IP id="decoder">
<initiator id="interp" protocol="MMBD" word="32"/>
<initiator id="mc" protocol="MMBD" word="32"/>
<initiator id="fifo" protocol="MMBD" word="32"/>

</IP>

Figure 3. Part of the IP description of MPEG example.

3.3 NOC Generation and IP Mapping
The first tool in the design flow is the NOC dimensioning and

generation and IP mapping tool. It uses the application com-
munication specification communication.xml, the IP specification
ip.xml, and the NOC generation constraints constraints.xml. The
tool defines the design-time hardware topology.xml: the number
of routers, network interfaces, and topology. Parameters are spec-
ified for the NOC (flit duration, number of slots in TDMA table),
for each router (arity, best-effort buffer size), and for each NI in-
stance (number of NI ports, connections per port, buffer sizes per
connection). To reduce NOC cost, all routers and NIs are dimen-
sioned precisely for the application, giving many different router
and NI instances per NOC. Modular router and NI architectures are
therefore essential. Figure 4 shows a partial topology.xml.

<AENetwork id="MPEG" flitClk="6" slots="128">
<AERouter id="R0000" iq="8">
<AEPort id="NI" link="L_0000" />
<AEPort id="South" link="L_0000_0100" />
<AEPort id="West" link="L_0000_0001" />

</AERouter>
<AENI id="NI0101">
<AEPort id="Router" link="L_0101" />
<SlaveP id="CONFIG" conn="1" iq="4" oq="4"/>
<MasterP id="display.p1" conn="1" iq="40" oq="21"/>
<MasterP id="decoder.mc" conn="1" iq="40" oq="21"/>
<MasterP id="decoder.fifo" conn="1" iq="40" oq="21"/>
...

</AENI>

Figure 4. Part of the Topology Description of MPEG example.

A synthesisable RTL VHDL description of the NOC is also pro-
duced, in a form compatible with the standard Philips back-end
design flow. An area estimate of the NOC is given (using a model
calibrated with existing router and NI implementations [17, 18]).

The buffers per connection in the NIs are dimensioned to avoid
stalling of data by hiding the round-trip delay of credits for loss-
less connections, and to compensate for difference in master and

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05) 
1530-1591/05 $ 20.00 IEEE 



slave burst sizes. Although they are part of the hardware, they
are not computed at this point in the design flow, because they de-
pend on the configuration, which is computed later. As an example
of the flexibility of the design flow, for guaranteed connections,
the buffer sizes computed by the NOC performance validation tool
can be back-annotated in the topology.xml file, as indicated by the
dashed arrow labelled “buffer sizing” in Figure 1.

A second output is the mapping.xml file, containing the as-
signment of IP ports to NI ports. The mapping has a signif-
icant impact on the size (i.e. cost) of the NOC and its per-
formance (e.g. Table 1). The constraints.xml file allows the
user to influence the mapping by specifying if sets of ports
must be mapped on the same NI or must be mapped on dif-
ferent NIs, to reflect e.g. floor-planning constraints. For ex-
ample, <SameNI> <Module id="display"> <Module
id="decoder" port="mc"/> </SameNI> places all IP

ports of the display IP, and the decoder’s mc port of Figure 4 on
the same NI.

The NOC topology can be computed in three modes: either a
mesh of given size is generated with a IP mapping, or the small-
est mesh and IP mapping accommodating the application are gen-
erated, or a user-defined topology and IP mapping can be used.
Automatic shortest-path routing can be used in all cases, and XY
routing also in the first two cases. The computation of the smallest
mesh and IP mapping for the given application, depends, like the
buffer computation, on the configuration (e.g. the heuristic slot
allocation may fail). The design flow therefore implements the
automatic loop (the dashed arrow labelled “smallest mesh loop” in
Figure 1) as the makefile target “minmesh.” Determining the maxi-
mum slot table size, which is a hardware constant but also depends
on the configuration, can be computed with a similar loop.

Briefly, the mapping algorithm works as follows, for both best-
effort and guaranteed connections. It balances the IP port band-
widths over the NIs, clustering IP ports that communicate heavily
on the same NI, and then minimising the distance (number of hops)
between heavily communicating NIs, taking care not to overload
any link. Packetisation overhead and latency constraints are ig-
nored at this point.

3.4 NOC Configuration

The generation and mapping tool produces the design-time
hardware (topology.xml and mapping.xml). Using these, the NOC

configuration tool computes the run-time software that contains all
the information to program the hardware. The configuration.xml
file contains the values for all programmable registers of the NIs
(the routers are stateless), such as connection identifiers, and for
each connection, the path from master to slave port, and flow con-
trol credits. For connections with guaranteed throughput or la-
tency (as specified by the user in communication.xls), a slot allo-
cation must be determined (i.e. each hop along the path the slot
increases by one, and at most one connection can use a given slot
at a router [18]).

The configuration algorithm works as follows. For each con-
nection a path is generated, like by the mapping tool (or it can be
supplied by the user). The flow control credits are equal to buffer
sizes. Slots are allocated using a heuristic using a combination of
each connection’s path length and required bandwidth.

Figure 5 shows a partial configuration in (equivalent) XML and
C. Section 3.6 describes how the configuration.xml and configura-
tion.c files are used by the SystemC and RTL VHDL simulations.

<Connection master="decoder.mc" cidm="0"
slave="mem.p2" cids="2">

<Request type="GT" path="3 1 0" credits="33"
slots="22 23 24 25 26 27 28 29 30 31 32"/>

<Response type="GT" slots="7 8 9 10 11 12 13"
path="2 1 0" credits="21"/>

</Connection>

open_connection ("decoder.mc",0,"mem.p2",2,
"GT","22-32","3 1 0",33,
"GT","7-13","1",60);

Figure 5. Part of the MPEG example Configuration (XML and C).
Using the topology and configuration the worst-case and aver-

age energy consumption of the NOC can be estimated [4]. This,
and the area estimate of the NOC, computed from the topology, are
important indicators of NOC cost. The verification and simulation
steps, discussed below, compute the NOC performance.

3.5 NOC Verification
The rationale for decomposing the design flow into smaller

tools has been given at the start of this section. Thus, the
NOC hardware (topology.xml) and software (configuration.xml)
are computed sequentially, earlier in the design flow. Therefore,
the generation, mapping, and configuration tools must work with
some simplifying assumptions (e.g. that NI buffers are adequately
sized, ignore latency constraints). As a result, configuration (for
guaranteed connections) may fail for a NOC topology and map-
ping, and latency constraints may not be met for a configured NOC.

For best-effort connections, the latter can only verified by sim-
ulation (next section). For guaranteed services, on the other hand,
Æthereal’s TDMA performance model can be analysed mathemat-
ically, and throughput, latency, and buffer sizes can be computed
for the worst case [6]. Therefore, although the generation and con-
figuration tools do not generate NOCs that are correct by construc-
tion for the specified application, the final verification step checks
whether the NOC topology and configuration are guaranteed to ful-
fill the application requirements or not. Any Æthereal topology
and configuration, automatically or manually generated, can be
verified against its application requirements.

Given the topology.xml, mapping.xml, configuration.xml files
the verification tool computes the worst-case (minimum) through-
put, (maximum) latency, and (minimum) buffer sizes per con-
nection. These are compared to the requirements (communi-
cation.xml) and shown in an intuitive colour-coded table (gt-
perf.xml,html), cross-linked with communication.xml,html (Fig-
ure 6). Green entries meet the requirements, red ones do not. Yel-
low buffer sizes meet the requirements but are overdimensioned. It
is possible (and, in fact, the norm) to automatically back-annotate
the computed buffer sizes in the topology.xml file, as can be seen
from the zero slack in the figure.

Figure 6. Performance Verification Output of MPEG example.

The verification checks each GT connection independently.

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05) 
1530-1591/05 $ 20.00 IEEE 



This compositionality is a useful consequence of Æthereal’s TDMA

model. The model is also relatively simple to reason about [6]. As
an example, a lossless (flow-controlled) request-only connection
(e.g. writes without acknowledgements) consists of a outgoing
(master→slave) channel for requests and a return (slave→master)
channel for flow control. First, compute the amount of write data
that can be sent in one slot table revolution. Then compute the
worst-case duration to send a complete burst (this may take sev-
eral slot table revolutions, and includes the worst-case wait for
the initial slot). Add to this the latency in the routers (flit delay
times the length of connection’s path). As a complicating fac-
tor, the availability of request credits must be taken into account:
this depends on the bandwidth and latency of the return channel,
computed similarly. The sizes of the buffers at the master and
slave for both outgoing and return channels are derived from the
above computation. Note that to guarantee throughput or latency
for a connection with only request transactions, the bandwidth and
buffer sizes and credits must be sufficient on both the outgoing and
return channels. Other types of connections are verified similarly.

3.6 NOC Simulation
The verification tool works for guaranteed connections only,

and not for best-effort connections. Moreover, it computes worst-
case throughput and latency numbers and buffer sizes, not actual or
average figures. To assess the average performance of both guar-
anteed and best-effort connections for a particular execution trace
two types of simulation are supported: RTL VHDL and SystemC.
The former is a bit and cycle-accurate simulation of the RTL VHDL

implementation. In the SystemC simulation, the NOC is simulated
at the flit level, and the IP-NI interface is at the transaction level.
The SystemC simulation is orders of magnitude faster than the
VHDL simulation.

Simulation must be flexible to cope with automatically gener-
ated and configured NOCs. For this reason, our SystemC simula-
tion is based on XML files for topology, mapping, NOC configu-
ration, and IP configuration, to enable fast run-time NOC and IP

instantiation and configuration [7].
The configuration is produced as an XML and C file (Figure 5).

The XML file is used by the SystemC and VHDL simulation. The
Æthereal NOC is configured through memory-mapped IO (MMIO)
NOC ports (the id="CONFIG" port in Figure 4), using the NOC

itself [17]. In the VHDL simulation a behavioural IP configures the
NOC, based on configuration.xml. The SystemC simulation can
use configuration.xml directly, or model the MMIO programming.

The configuration.c file is intended to be run on an embed-
ded processor connected to the NOC. The C file contains a func-
tion per use case, e.g. configure usecase one(), that
(re)programs the NOC at run-time, using the MMIO port of pro-
cessor’s NI. For every connection an Æthereal library function
(re/open/close connection) is called with the appropri-
ate parameters (e.g. path, slots, credits; see Figure 5).

Traffic Generation and Measurements
SOC simulation requires that all IPs are available for simula-

tion, as a model (e.g. at a behavioural or cycle-accurate level) or
as an implementation. Early in the design cycle, this is usually not
the case. To enable early SOC simulation to evaluate the NOC per-
formance, our design flow produces XML-configurable SystemC
and VHDL traffic generators, see Figure 1. All IP ports of IPs for
which no model or implementation is available, are modelled with

traffic generators. The traffic is generated according to the IP re-
quirements as given in the communication.xls file. Traffic gen-
erators can be replaced by IP models, as these become available.
At all times, however, a complete SOC can be simulated, in both
SystemC and VHDL.

Figure 7. SystemC Simulation Output of MPEG example.

The traffic generators also automate the measurement of
throughput and latency of all connections in the NOC, for
both SystemC and VHDL, and NI buffer statistics (SystemC
only). The SystemC and/or VHDL results are reported in colour-
coded tables (gtbe-*-perf.xml,html), cross-linked with commu-
nication.xml,html (Figure 7). Like the verification output (Sec-
tion 3.5) green entries meet the requirements, and red ones do
not. Due to simulation artifacts (random number generators in traf-
fic generators, run-in effects due to insufficiently long simulation,
etc.) a guaranteed connection may not use its required bandwidth
(e.g. write data of connection 0). Note that this is due to the traffic
generators, not the NOC: the bandwidth and latency of guaranteed
connections is available, but it is not used.

Note that using simulation as a basis for e.g. buffer dimension-
ing can lead to buffers that are too small. Analytical performance
evaluation shows that connection 3’s write data requires a buffer
of 54 words, but the maximum filling during simulation is only 8.
Overdimensioning all buffers by the same factor of 7 = �54/8�,
would lead to buffers that are up to 6 times too large (7x24 instead
of 28, for connection 3), doubling the NOC size (“simulation,” in
Table 1). Of course, without verification, the factor 7 would have
to be guessed in the first place.

4 MPEG Codec Case Study
We applied the design flow to an existing MPEG codec SOC

with 16 IPs. The architecture uses a single external SDRAM with
three ports to implement all communication between IPs. We
specified the read and write bandwidths and latencies of the 21
guaranteed-throughput connections (Figure 2). Running the de-
sign flow in fully automatic mode (generating the minimum mesh
and smallest slot table, with back-annotated minimum buffer sizes)
resulted in a 2x3 mesh with 128 slots, with a total estimated area of
2.35 mm2 in a 0.13 micron process, in minutes (cf. Table 1). Fig-
ures 4-7 refer to this NOC instance. For comparison, a naive map-
ping (one IP per NI) is almost double the size. “Simulation” shows
that using simulation and a “safe” overdimensioning factor to de-
termine buffer sizes (see Section 3.6), is more than twice as big.
The average worst-case write latency per connection, computed by
the performance verification tool, is more or less constant.

To highlight the scope for manual intervention, we also op-
timised the NOC. We explored several different IP-NI mappings
to improve the IP distribution and clustering, to reduce the con-
straints on the routing and slot table configuration. A 21% smaller

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05) 
1530-1591/05 $ 20.00 IEEE 



Table 1. Comparison of MPEG NOCs.
NI router total area avg wc

generation mesh slots area area area diff latency
automatic 2x3 128 1.83 0.51 2.35 ref 1570 ns

naive 3x6 128 2.17 2.32 4.49 +91% 1583 ns
simulation 2x3 128 4.61 0.51 5.13 +118% 1570 ns
optimised 3x1 8 1.51 0.35 1.86 -21% 399 ns

mesh (3x1, 1.86 mm2) then suffices. Despite the resulting band-
width overallocation, it also reduces the slot table (8 slots), and the
latency (almost four-fold reduction of average worst-case write la-
tency) and buffer sizes (compare Figures 6 and 8). The minimum
buffer sizes were computed by the verification tool and automati-
cally back-annotated in the custom topology.

Figure 8. Performance Verification of Optimised MPEG.

The case study shows that the NOC design flow work gener-
ates a RTL VHDL implementation of a NOC, which has a guaran-
teed performance for the MPEG codec SOC. Retrofitting a NOC

to an existing SOC architecture is possible, although for example,
the single external memory underutilises the parallelism offered
by NOCs. It also shows that manual optimisation gives worthwhile
improvements for a small SOC. We are currently evaluating the de-
sign flow for a very large SOC, and will see if manual optimisations
are still feasible (many IPs and many use cases) and significant.

5 Related Work
QNoC’s design flow [2] is similar to ours, but differs in rely-

ing on system simulation to verify SOC performance, expressed as
statistical properties. They first generate the NOC topology gener-
ation and NI-IP mapping, followed by balancing bandwidth in the
NOC, whereas we perform both at the same time.

XpipesCompiler [11] and NcGEN [3] generate optimised Sys-
temC (and VHDL for NcGEN) descriptions for manually specified
NOC topologies, which can be simulated together with traffic gen-
erators for performance validation.

[10, 15, 16] synthesise NOCs, map IPs, and/or configure NOCs
based on bandwidth requirements and link bandwidths. However,
when using worm-hole routing, the capacity of the links is not in-
dependent, especially in the presence of links of different speeds.
(e.g. a packet spanning a slow and a fast link will reduce the ca-
pacity of the fast link, in the absence of virtual-channel buffering.)
Applying these sophisticated synthesis and mapping algorithms
to NOCs with guaranteed services, requiring the inclusion of NOC

configuration, will be very beneficial for design flows, and speed
up SOC and NOC design.

6 Conclusions
We have described a flexible operational design flow to gener-

ate application-specific network-on-chip (NOC) instances and con-
figurations. The application’s requirements are specified in Excel,

which is readily available from system architects. Application-
specific NOC instances, consisting of routers and network inter-
faces (NIs) are automatically dimensioned and generated. An IP-NI

port mapping is also computed. The result is SystemC and synthe-
sisable RTL VHDL, compliant with the Philips back-end flow.

The NOC hardware is run-time (re)programmable to support
different task graphs. The configuration (software) to program the
network is generated in XML (for SystemC and VHDL simulations)
and in C for embedded processors that program the NOC using
memory-mapped IO. The NOC hardware and configuration can be
simulated in SystemC and VHDL, using custom traffic generators.
These mimic the IP behaviour, as specified in the application re-
quirements; thus, the SOC can be simulated at all times.

A unique feature of our design flow is the fast automatic per-
formance verification: given the NOC hardware and configuration,
the guaranteed minimum throughput, maximum latency, and mini-
mum buffer sizes are analytically computed for all guaranteed con-
nections. The guaranteed communication services of Æthereal are
essential to achieve this. Any NOC instance and configuration can
be verified, whether automatically or manually created. Analyti-
cal performance verification eliminates lengthy simulations for the
guaranteed connections, and hence reduces verification time, lead-
ing to fewer design cycles.

Using the design flow we automatically generated and verified
a NOC for an MPEG codec SOC (2x3 mesh, 2.35 mm2 in 0.13 mi-
cron) in minutes. The design flow’s flexibility was demonstrated
by manually optimising a NOC, leading to a 21% area reduction.

Acknowledgement. S. González Pestana is supported by Marie
Curie Fellowship IST-GH-99-80002-02.

References
[1] E. Bolotin et al. QNoC: QoS architecture and design process for network on

chip. J. of Systems Architecture, 50(2–3):105–128, 2004.
[2] E. Bolotin et al. Automatic hardware-efficient SoC integration by QoS net-

work on chip. In ICECS, 2004.
[3] J. Chan et al. NoCGEN: a template based reuse methodology for networks on

chip architecture. In Proc. Int’l Conference on VLSI Design, 2004.
[4] J. Dielissen et al. Power measurements and analysis of a network on chip.

Submitted, 2004.
[5] T. Felicijan et al. An asynchronous on-chip network router with quality-of-

service (QoS) support. In SoCC, 2004.
[6] O. P. Gangwal et al. Building predictable systems on chip: An analysis of

guaranteed communication in the Æthereal network on chip. In P. van der
Stok, editor, Dynamic and Robust Streaming In and Between Connected
Cnsumer-Electronics Devices. Kluwer, 2005.

[7] S. González Pestana, et al. Cost-performance trade-offs in networks on chip:
A simulation-based approach. In DATE, 2004.

[8] K. Goossens et al. Guaranteeing the quality of services in networks on chip.
In A. Jantsch and H. Tenhunen, editors, Networks on Chip. Kluwer, 2003.

[9] P. Guerrier. Un Réseau D’Interconnexion pour Systémes Intégrés. PhD thesis,
Université Paris VI, Mar. 2000.

[10] J. Hu et al. Energy-aware communication and task scheduling for network-
on-chip architectures under real-time constraints. In DATE, 2004.

[11] A. Jalabert et al. XpipesCompiler: A tool for instantiating application specific
networks on chip. In DATE, 2004.

[12] N. Kavaldjiev et al. A virtual channel router for on-chip networks. SoCC’04.
[13] J. Liang et al. aSOC: A scalable, single-chip communications architecture. In

PACT, 2000.
[14] M. Millberg et al. Guaranteed bandwidth using looped containers in tempo-

rally disjoint networks within the Nostrum network on chip. In DATE, 2004.
[15] S. Murali et al. SUNMAP: A tool for automatic topology selection and gen-

eration for NOCs. In DAC, 2003.
[16] A. Pinto et al. Efficient synthesis of networks on chip. In ICCD, 2003.
[17] A. Rădulescu et al. An efficient on-chip network interface offering guaranteed

services, shared-memory abstraction, and flexible network programming. In
DATE, 2004.

[18] E. Rijpkema et al. Trade offs in the design of a router with both guaranteed
and best-effort services for networks on chip. In DATE, 2003.

[19] M. Sgroi et al. Addressing the system-on-a-chip interconnect woes through
communication-based design. In DAC, 2001.

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05) 
1530-1591/05 $ 20.00 IEEE 


