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Elena Dubrova
Royal Institute of Technology, IMIT/KTH, 164 46 Kista, Sweden

Abstract

Structural testing techniques, such as statement and
branch coverage, play an important role in improving de-
pendability of software systems. However, finding a set of
tests which guarantees high coverage is a time-consuming
task. In this paper we present a technique for structural
testing based on kernel computation. A kernel satisfies the
property that any set of tests which executes all vertices
(edges) of the kernel executes all vertices (edges) of the
program’s flowgraph. We present a linear-time algorithm
for computing minimum kernels based on pre- and post-
dominator relations of a flowgraph.

1 Introduction

Software testing is the process of executing a program
with the intent of finding errors [1]. Testing is a major con-
sideration in software development. In many organizations,
more time is devoted to testing than to any other phase of
software development. On complex projects, test develop-
ers might be twice or three times as many as code develop-
ers on a project team.

Thorough software testing is required for improving
dependability of real-time computing applications using
software-embedded systems. A number of serious accidents
in the past has been caused by incomplete software testing,
including the Therac-25 radiation overdoses [2], the crash
of the British destroyer Sheffield [3], the accidents of Ari-
ane 5 [4] and Airbus A320-211 [5].

There are two types of software testing: functional and
structural. Functional testing (also called behavioral test-
ing, black-box testing, closed-box testing), compares test
program behavior against its specification. Structural test-
ing (also called white-box testing, glass-box testing) checks
the internal structure of a program for errors. For example,
suppose we test a program which adds two integers. The
goal of functional testing is to verify whether the imple-
mented operation is indeed addition instead of e.g. multipli-
cation. Structural testing does not question the functionally
of the program, but checks whether the internal structure is

consistent. A strength of the structural approach is that the
entire software implementation is taken into account dur-
ing testing, which facilitates error detection even when the
software specification is vague or incomplete.

The effectiveness of structural testing is normally ex-
pressed in terms of test coverage metrics, which measure
the fraction of code exercised by test cases. Common test
coverage metrics are statement, branch, and path cover-
age [1]. Statement coverage requires that the program under
test is run with enough test cases, so that all its statements
are executed at least once. Decision coverage requires that
all branches of the program are executed at least once. Path
coverage requires that each of the possible paths through the
program is followed. Path coverage is the most reliable met-
ric, however, it is not applicable to large systems, since the
number of paths is exponential to the number of branches.

In this paper we present a technique for structural testing
which finds a part of program’s flowgraph, called kernel,
with the property that any set of tests which executes all
vertices (edges) of the kernel executes all vertices (edges)
of the flowgraph. We present an linear-time algorithm for
computing kernels of a minimum size based on pre- and
post-dominator relations of a flowgraph.

A related previous work is an algorithm presented in [6].
First, it constructs pre- and post-dominator trees of the pro-
gram’s flowgraph. Then, both trees are combined and the
resulting graph is reduced by merging its strongly con-
nected components and eliminating composite edges im-
plied by dominator transitivity. The obtained super block
dominator graph represents kernels of the flowgraph.

The main difference between the presented algorithm
and the algorithm [6] is that we compute only one mini-
mum kernel for a given flowgraph instead of all possible
ones, which clearly can be done with less computational ef-
fort. The presented O(|V |+ |E|) algorithm computes mini-
mum kernels directly from pre- and post-dominator trees of
a flowgraph with |V | vertices and |E| edges, without con-
structing the super block dominator graph. We prove that
the resulting kernel is minimum. No proof of minimality is
given in [6].

Other related works include: Bertolino and Marre’s al-
gorithm [7] for finding path covers in a flowgraph, in
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which unconstrained arcs are analogous to the leaves of the
dominator tree; Ball’s [8] and Podgurski’s [9] techniques
for computing control dependence regions in a flowgraph,
which are similar to the super blocks of [6]; Agarwal’s algo-
rithm [10], whi addresses the coverage problem at an inter-
procedural level.

The paper is organized as follows. Section 2 gives an
overview of coverage techniques. Section 3 states the pre-
liminaries. In Section 4, kernels are introduced. Sec-
tion 5 presents an algorithm for computing minimum ker-
nels. Section 6 shows use of kernels in branch coverage.
Section 7 concludes the paper.

2 Statement and Branch Coverage

In this section, we give a brief overview of statement and
branch coverage techniques.

2.1 Statement Coverage

Statement coverage (also called line coverage, segment
coverage [11], C1 [1]) examines whether each executable
statement of a program is followed during a test. An exten-
sion of statement coverage is basic block coverage, in which
each sequence of non-branching statements is treated as one
statement unit.

The main advantage of statement coverage is that it can
be applied directly to object code and does not require pro-
cessing source code. The disadvantages are:

• Statement coverage is insensitive to some control
structures, logical AND and OR operators, and switch
labels.

• Statement coverage only checks whether the loop body
was executed or not. It does not report whether loops
reach their termination condition. In C, C++, and
Java programs, this limitation affects loops that con-
tain break statements.

As an example of the insensitivity of statement coverage
to some control structures, consider the following code:

x = 0;

if (condition)

x = x + 1;

y = 10/x;

If there is no test case which causes condition to
evaluate false, the error in this code will not be detected
in spite of 100% statement coverage. The error will ap-
pear only if condition evaluates false for some test case.
Since if-statements are common in programs, this problem
is a serious drawback of statement coverage.

2.2 Branch Coverage

Branch coverage (also referred to as decision coverage,
all-edges coverage [12], C2 [1]) requires that each branch
of a program is executed at least once during a test. Boolean
expressions of if- or while-statements are checked to be
evaluated to both true and false. The entire Boolean expres-
sion is treated as one predicate regardless of whether it con-
tains logical AND and OR operators. Switch statements,
exception handlers, and interrupt handlers are treated simi-
larly. Decision coverage includes statement coverage since
executing every branch leads to executing every statement.

An advantage of branch coverage is its relative sim-
plicity. It allows overcoming many problems of statement
coverage. However, it might miss some errors as demon-
strated by the following example:

if (condition1)

x = 0;

else

x = 2;

if (condition2)

y = 10*x;

else

y = 10/x;

The 100% branch coverage can be achieved by
two test cases which cause both condition1 and
condition2 to evaluate true, and both condition1
and condition2 to evaluate false. However, the er-
ror which occurs when condition1 evaluates true and
condition2 evaluates false will not be detected by these
two tests.

The error in the example above can be detected by exer-
cising every path through the program. However, since the
number of paths is exponential to the number of branches,
testing every path is not possible for large systems. For
example, if one test case takes 0.1× 10−5 seconds to ex-
ecute, then testing all paths of a program containing 30 if-
statements will take 18 minutes and testing all paths of a
program with 60 if-statements will take 366 centuries.

Branch coverage differs from basic path coverage,
which requires each basis path in the program flowgraph
to be executed during a test [13]. Basis paths are a mini-
mal subset of paths that can generate all possible paths by
linear combination. The number of basic paths is called the
cyclomatic number of the flowgraph.

3 Preliminaries

A flowgraph is a directed graph G = (V,E,entry,exit),
where V is the set of vertices representing basic blocks of
the program, E ⊆ V ×V is the set of edges connecting the
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algorithm EXAMPLE
b1;
while(b2) {

for(b3) {
b4;
for(b5) {

if(b6) b7;
else b8;

}
if(b9) break;

}
switch(b10) {

case 1: while(b11) b12;
case 2: if(b13) b14;

else continue;
default: b15;

break;
}
b16;

}
b17;

end

Figure 1: Example C program.

vertices, and entry and exit are two distinguished vertices
of V . Every vertex in V is reachable from entry vertex, and
exit is reachable from every vertex in V .

Figure 2 shows the flowgraph of the C program in Fig-
ure 1, where bl,b2, . . . ,b17 are blocks whose contents are
not relevant for our purposes.

A vertex v pre-dominates another vertex u, if every path
from entry to u contains v. A vertex v post-dominates an-
other vertex u, if every path from u to exit contains v.

By Pre(v) and Post(v) we denote sets of all nodes which
pre-dominate and post-dominate v, respectively. E.g. in
Figure 2, Pre(5) = {1,2,3,4} and Post(5) = {9,10,17}.

Many properties are common for pre- and post-
dominators. Further in the paper, we use the word domi-
nator to refer to cases which apply to both relationships.

Vertex v is the immediate dominator of u, if v dominates
u and every other dominator of u dominates v. Every ver-
tex v ∈ V except entry (exit) has a unique immediate pre-
dominator (post-dominator), idom(v) [14]. For example, in
Figure 2, vertex 4 is the immediate pre-dominator of 5, and
vertex 9 is the immediate post-dominator of 5. The edges
(idom(v),v) form a directed tree rooted at entry for pre-
dominators and at exit for post-dominators. Figures 3 and 4
show the pre- and post-dominator trees of the flowgraph in
Figure 2.

The problem of finding dominators was first considered
in late 60’s by Lorry and Medlock [14]. They presented an
O(|V |4) algorithm for finding all immediate dominators in a
flowgraph. Successive improvements of this algorithm were
done by Aho and Ullman [15], Purdom and Moore [16],
Tarjan [17], and Lengauer and Tarjan’s [18]. Lengauer and
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Figure 2: Flowgraph of the program in Figure 1.

Tarjan’s algorithm [18] is a nearly-linear algorithm with
the complexity O(|E|α(|E|, |V |)), where α is the standard
functional inverse of the Ackermann function. Linear algo-
rithms for finding dominators were presented by Harel [19],
Alstrup et al. [20], and Buchsbaum et al. [21].

4 Statement Coverage Using Kernels

In this section we present a technique for finding a subset
of the program’s flowgraph vertices, called kernel, with the
property that any set of tests which executes all vertices of
the kernel executes all vertices of the flowgraph. A 100%
statement coverage can be achieved by constructing a set of
tests for the kernel.

Definition 1 A vertex v ∈ V of the flowgraph is covered by
a test case t if the basic block of the program representing v
is reached at least once during the execution of t.

The following Lemma is the basic property of our tech-
nique, as well as the technique presented in [6].

Lemma 1 If a test case t covers u ∈ V, then it covers any
post-dominator of u as well:

(t covers u) ∧ (v ∈ Post(u)) ⇒ (t covers v).

Proof: If v post-dominates u, then every path from u to exit
contains v. Therefore, if u is reached at least once during
the execution of t, then v is reached, too.

�
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Figure 3: Pre-dominator tree of the flowgraph in Figure 2;
shaded vertices are leaves of the tree in Figure 4.

Definition 2 A kernel K of a flowgraph G is a subset of
vertices of G which satisfies the property that any set of tests
which executes all vertices of the kernel executes all vertices
of G.

Let Lpost (Lpre) denote the set of leaf vertices of the post-
(pre-)dominator tree of G. The set LD

post ⊂ Lpost contains
vertices of Lpost which pre-dominate some vertex of Lpost :

LD
post = {v | (v ∈ Lpost) ∧ (v ∈ Pre(u) for some u ∈ Lpost)}.

Similarly, the subset LD
pre ⊂ Lpre contains all vertices of Lpre

which post-dominate some vertex of Lpre:

LD
pre = {v | (v ∈ Lpre) ∧ (v ∈ Post(u) for some u ∈ Lpre)}.
Assume that the program execution terminates normally

on all test cases supplied. Then the following statement
holds.

Theorem 1 The set Lpost −LD
post is a minimum kernel.

Proof: Lemma 1 shows that, if a vertex of a flowgraph is
covered by a test case t, then all its post-dominators are also
covered by t. Therefore, in order to cover all vertices of
a flowgraph, it is sufficient to cover all leaves Lpost in its
post-dominator tree, i.e. Lpost is a kernel.

LD
post contains all vertices of Lpost which pre-dominate

some vertex of Lpost . If v is a pre-dominator of u, and u is
covered by t, then v is also covered by t, since every path
from entry to u contains v as well. Thus, any set of tests
which covers Lpost −LD

post , covers Lpost as well. Since Lpost

is a kernel, Lpost −LD
post is a kernel, too.

Next, we prove that the set Lpost − LD
post is a minimum

kernel. Suppose that there exists another kernel, K′, such
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Figure 4: Post-dominator tree of the flowgraph in Figure 2;
shaded vertices are leaves of the tree in Figure 3.

that |K′| < |Lpost − LD
post |. If v ∈ K′ and v �∈ Lpost , then

v ∈ Post(u) for some u ∈ Lpost . Since every path from u
to exit contains v, if u is reached at least once during the ex-
ecution of some test case, then v is reached, too. Therefore,
K′ remains a kernel if we replace v by u.

Suppose we replaced all v ∈ K′ such that v �∈ Lpost by
u ∈ Lpost such that v ∈ Post(u). Now, K′ ⊆ Lpost . If there
exists w ∈ Lpost −K′ such that, for all u ∈ K′, w �∈ Pre(u)
then there exists at least one path from entry to each u which
does not contain w. This means that there exists a test set,
formed by the set of paths path(u) where path(u) is the
path to u which does not contain w, that covers K′ but not
w. According to Definition 2, this implies that K′ is not a
kernel. Therefore, to guarantee that K′ is a kernel, w must
be a pre-dominator of some u ∈ K′, for all w ∈ Lpost −K′.
This implies that |K′| = |Lpost −LD

post|.
�

The next theorem shows that the set Lpre −LD
pre is also a

minimum kernel.

Theorem 2

|Lpost −LD
post| = |Lpre −LD

pre|.

The proof is done by showing that the proof of minimal-
ity of Theorem 1 can be carried out starting from Lpre.

5 Computing Minimum Kernels

In this section, we present an linear-time algorithm for
computing minimum kernels. The pseudo-code is shown in
Figure 5.

First, pre- and post-dominator trees of the flowgraph
G = (V,E,entry,exit), denoted by Tpre and Tpost , are com-
puted. Then, the numbers of leaves of the trees, Lpre and
Lpost , are compared. According to Theorems 1 and 2, both,
Lpost − LD

post and Lpre − LD
pre, represent minimum kernels.
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algorithm KERNEL(V,E,entry,exit);
Tpre = PREDOMINATORTREE(V,E,entry);
Lpre = set of leaves of Tpre;
Tpost = POSTDOMINATORTREE(V,E,exit);
Lpost = set of leaves of Tpost ;
if Lpre < Lpost then

K = Lpre −FINDLD(Lpre,Tpost);
else

K = Lpost −FINDLD(Lpost ,Tpre);
return K;

end

Figure 5: Pseudo-code of the algorithm for computing min-
imum kernels.

The procedure FINDLD is applied to the smaller of the sets
Lpre and Lpost .

FINDLD checks whether the leaves Lpre of the tree Tpre

are dominated by some vertex of Lpre in another tree, Tpost ,
or vice versa. In other words, FINDLD computes the set
LD

pre (LD
post).

Theorem 3 The algorithm KERNEL computes a minimum
kernel of a flowgraph G = (V,E,entry,exit) in O(|V |+ |E|)
time.

Proof: The correctness of the algorithm follows directly
from Theorems 1 and 2. The complexity of the KERNEL

is determined by the complexity of computing the Tpre and
Tpost trees. A dominator tree can be computed in O(|V |+
|E|) time [20]. Thus, the overall complexity is O(|V |+ |E|).

�

As an example, let us compute a minimum kernel for
the flowgraph in Figure 2. Its pre- and post-dominator trees
are shown in Figures 3 and 4. Tpre has 7 leaves, Lpre =
{7,8,12,14,15,16,17}, and Tpost has 9 leaves, Lpost =
{1,3,6,7,8,11,13,14,15}. So, we check which of the
leaves of Tpre dominates at least one other leaf of Tpre in
Tpost . Leaves Lpre are marked as shaded circles in Tpost in
Figure 4. We can see that, in Tpost , vertex 16 dominates 12
and 14, and vertex 17 dominates all other leaves of Lpre.
Thus, LD

pre = {16,17}. The minimum kernel Lpre − LD
pre

consist of five vertices: 7,8,12,14 and 15.
For a comparison, let us compute the minimum kernel

given by Lpost − LD
post . The Lpost leaves are marked as

shaded circles in Tpre in Figure 3. We can see that, in Tpre,
vertex 6 dominates 7 and 8, vertex 3 dominates 6, 7 and 8,
vertex 13 dominates 14, and vertex 1 dominates all other
leaves of Lpost . Thus, LD

post = {1,3,6,13}. The minimum
kernel Lpost − LD

post consist of five vertices: 7,8,11,14 and
15. It is easy to see from the flowgraph why vertices 11 and
12 are interchangeable in two minimum kernels.
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Figure 6: Edge pre-dominator tree of the flowgraph in Fig-
ure 2; shaded vertices are leaves of the tree in Figure 7.
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Figure 7: Edge post-dominator tree of the flowgraph in Fig-
ure 2; shaded vertices are leaves of the tree in Figure 6.

6 Decision Coverage Using Kernels

The kernel-based technique described above can be sim-
ilarly applied to branch coverage by constructing pre- and
post-dominator trees for the edges of the flowgraph instead
of for its vertices. Figures 6 and 7 show edge pre- and post-
dominator tree of the flowgraph in Figure 2.

Similarly to Definition 2, a kernel set for edges is defined
as a subset of edges of the flowgraph which satisfies the
property that any set of tests which executes all edges of
the kernel executes all edges of the flowgraph. A 100%
branch coverage can be achieved by constructing a set of
tests for the kernel. Minimum kernels for Figures 6 and 7
are: Lpre−LD

pre = {i,h,k, p,q,t,v,w,x,y} and Lpost −LD
post =

{ f ,g,k,n, p,q,t,w,x,y}.
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7 Conclusion

In this paper we present a technique for structural test-
ing based on kernel computation. A kernel has the property
that any set of tests which executes all vertices (edges) of the
kernel executes all vertices (edges) of the program’s flow-
graph. For large programs, the number of statements and
branches to be covered by tests might be prohibitive. Ker-
nels allow us to reduce the amount of test cases to be con-
structed while preserving a 100% coverage. We present a
linear-time algorithm for computing kernels of a minimum
size based on pre- and post-dominator relations of a flow-
graph.

Future work includes investigating how properties of
dominators can be further exploited. One possibility is
to apply the presented algorithm to testing of finite state
machines (FSMs). Similarly to program coverage, a state
or a transition of the FSM is considered covered if it is
visited during the execution of the input test sequence [22].
Dominator relations can be used to identify kernels for
FSM’s states/transitions.
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