
HAL Id: hal-00181287
https://hal.science/hal-00181287v1

Submitted on 23 Oct 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

C Compiler Retargeting Based on Instruction Semantics
Models

Jianjiang Ceng, Manuel Hohenauer, Rainer Leupers, Gerd Ascheid, Heinrich
Meyr, Gunnar Braun

To cite this version:
Jianjiang Ceng, Manuel Hohenauer, Rainer Leupers, Gerd Ascheid, Heinrich Meyr, et al.. C Com-
piler Retargeting Based on Instruction Semantics Models. DATE’05, Mar 2005, Munich, Germany.
pp.1150-1155. �hal-00181287�

https://hal.science/hal-00181287v1
https://hal.archives-ouvertes.fr

C Compiler Retargeting Based on Instruction Semantics Models

Jianjiang Ceng, Manuel Hohenauer,
Rainer Leupers, Gerd Ascheid, Heinrich Meyr

Integrated Signal Processing Systems
Aachen University of Technology

Gunnar Braun
CoWare, Inc.

Dennewartstrassse 25-27
Aachen, Germany

Abstract

Efficient architecture exploration and design of applica-
tion specific instruction-set processors (ASIPs) requires re-
targetable software development tools, in particular C com-
pilers that can be quickly adapted to new architectures. A
widespread approach is to model the target architecture in
a dedicated architecture description language (ADL) and
to generate the tools automatically from the ADL specifica-
tion. For C compiler generation, however, most existing sys-
tems are limited either by the manual retargeting effort or
by redundancies in the ADL models that lead to potential
inconsistencies. We present a new approach to retargetable
compilation, based on the LISA 2.0 ADL with instruction se-
mantics, that minimizes redundancies while simultaneously
achieving a high degree of automation. The key of our ap-
proach is to generate the mapping rules needed in the com-
piler’s code selector from the instruction semantics infor-
mation. We describe the required analysis and generation
techniques, and present experimental results for several em-
bedded processors.

1.. Introduction

With the increasing industrial acceptance of ASIPs as
SoC building blocks, retargetable C compilers have be-
come important tools in the system-level design flow. For
instance, the embedded processor design tool suites from
CoWare, Target Compiler Technologies, and Tensilica in-
corporate retargetable compilers that can be quickly adapted
to varying target architectures.

In contrast to traditional compilers that target only a sin-
gle processor architecture, retargetable compilers can gen-
erate code for different targets based on an external, editable
processor model. They serve two main purposes in the de-
sign flow. First, they are required in processor architecture
exploration. In this phase, the initial ASIP architecture gets
fine-tuned for the intended applications which are mostly
given in the form of C code. Second, retargetable compil-
ers (possibly enhanced with target-specific code optimiza-
tion techniques) can be used to quickly generate production

compilers needed by the ASIP end users for software devel-
opment.

In the domain of compiler construction for general-
purpose processors, retargetable compilation has been a
subject of research for quite some time. Systems like GCC
[1] or LCC [2] have been successfully used for various
CISC and RISC processors. In the context of ASIP design,
where a tight link to hardware and SoC design flow is re-
quired, two mainstream approaches to retargetable compi-
lation can be identified. The first one builds on a predefined,
yet configurable processor core (e.g. Xtensa, ARCtangent)
that can be optimized by the user via addition of custom ma-
chine instructions. In this case, semi-custom compiler sys-
tems (such as a modified GCC) can be used, and retargeting
is implemented by making new instructions available to the
compiler in the form of intrinsics. While this approach of-
fers the advantage of reusing well-proven compiler tools, it
restricts the flexibility of ASIPs and requires manual (and
non-portable) C source code modifications.

The second approach is based on the paradigm of ar-
chitecture description languages (ADLs) that permit high-
level (i.e. beyond RTL) modeling of processors for early
design phases such as architecture exploration and system-
level verification. The challenge in retargetable compilation
based on ADL models, however, is the large variety of po-
tential target architectures, which is essentially only lim-
ited by ADL’s capabilities. The ADL approach permits very
high flexibility in ASIP design, but demands advanced tech-
niques for efficient compiler retargeting.

In this paper, we describe a novel technique of compiler
retargeting for LISA 2.0, a C/C++ based industrial ADL
[3]. The proposed technique allows for a high degree of au-
tomation by extracting the core part of the compiler back-
end (the code selector that maps intermediate code to as-
sembly) from the ADL model largely without user inter-
action. In this way, a high speedup in compiler generation
is achieved, that eventually contributes to a more efficient
ASIP design flow. Our technique is based on the instruc-
tion semantics information in LISA 2.0 models which pro-
vides a higher abstraction view of instruction behaviors than
C/C++ descriptions.

The remainder of this paper is structured as follows. In

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

section 2, we provide a survey of related works. Section 3
gives a brief system overview, while section 4 summarizes
LISA’s instruction semantics modelling concept. The focus
of this paper is the automatic generation of code selectors.
Section 5 this described in detail. The results of two case
studies are given in section 6, and section 7 gives conclud-
ing remarks.

2.. Related work
Early retargetable compilers for ASIPs include FlexWare

[4], SPAM [5], and RECORD [6]. The last one builds on
the MIMOLA modeling language and extracts code selec-
tor descriptions that can be further processed by iburg [7] to
generate a code selector. The range of possible target archi-
tectures is limited, though, mainly due to the use of special-
ized processor modeling formalisms.

ASIP design systems using dedicated ADLs in-
clude AVIV [8], CHESS [9], Mescal [10], Expression [11],
ASIPMeister [12], and ArchC [13], some of which in-
clude retargetable C compilers. Several of these systems fo-
cus on a specific class of ASIP architectures, e.g. DSP or
VLIW, while others limit flexibility through a predefined li-
brary of processor components. Such kind of constraints
is introduced by the fact that different processor develop-
ment tools can hardly share the same description of instruc-
tions. For example, the generation of instruction set simu-
lators requires a very detailed behavior description, while
C compiler generation needs a clear description of instruc-
tion semantics without any structural or internal behavioral
detail. So far, such contradictory demands are solved by in-
troducing specific ADL constructs which provide informa-
tion for the generation of different tools. For example, in
the Expression ADL, there exist dedicated operation map-
ping sections that guide the code selector generation, while
simulator generation is driven by other language con-
structs.

nML [9] and AXYS LISA [14] both have a hierarchi-
cal structure of descriptions, similar to the LISA 2.0. How-
ever, few information about their compiler generation is
available. We have described an earlier version of the LISA
2.0 based retargetable compiler framework in [15]. Though
most of the compiler components can be generated automat-
ically, the code selector generation still requires some man-
ual efforts. The technique proposed in this paper aims to
further automate the code selector description generation.

3. System overview
C compiler generation is part of the LISA ASIP design

flow sketched in fig. 1. A retargetable C compiler is in-
tegrated with CoWare’s LISATek Processor Designer tool
suite [3] that supports ASIP design by generating soft-
ware development tools, synthesizable HDL models, and
co-simulation interfaces from the LISA 2.0 processor mod-
els. With this approach, ASIP design is simplified due to a

high degree of automation and the fact that just one proces-
sor model is needed for the entire design flow.

Figure 1. LISA 2.0 Based Design Flow

The main challenge of the compiler retargeting in this
design flow is adaptation of the compiler backend (or code
generator). A backend generally has a code selector, a
register allocator, and an instruction scheduler. We use
the CoSy system from ACE [16] as compiler development
framework. The CoSy system contains a complete C/C++
frontend, a set of processor independent optimization en-
gines and a retargetable compiler backend. The register al-
locator provided by the CoSy needs the names of allocat-
able registers to generate a target specific register alloca-
tor. In [15], works have been done to extract these infor-
mation from LISA 2.0 models. We implemented our own
instruction scheduler. Techniques, which are used to auto-
matically generate scheduler descriptions, are described in
[17]. The code selector generation in our previous work re-
lied on a semi-automatic GUI based approach. Based on a
LISA 2.0 model, compiler designers can use a GUI to spec-
ify code selector’s mapping rules. According to our expe-
rience, this part of work is the most time consuming part
in the whole retargeting process. Moreover, for a designer
without enough compiler knowledge, it is difficult to deter-
mine if the created rules are complete for a working C com-
piler or not. Hence, further automation of the code selector
generation is desired.

4. Instruction semantics

The LISA 2.0 processor models comprise resource spec-
ifications (e.g. registers, memories, and pipelines) and oper-
ations. Operations contain machine descriptions from dif-
ferent views such as assembly syntax, pipeline timing, bi-
nary encoding, and behavior. In the standard LISA 2.0 be-
havior view of instructions, plain C/C++ code is used for
sake of highest flexibility and simulation speed. Since the
same behavior may be described with numerous syntactic
variances in C/C++, it is generally not possible to accurately
extract the high-level semantic meaning of the instructions
automatically from it. Therefore, we added a semantics view
of operations that captures behavior at a higher abstraction
level [18].

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

Our approach is to capture instruction semantics explic-
itly by using a limited and precisely defined set of micro-
operations, similar to MIMOLA. Each micro-operation de-
scribes a computation on the processor resources that can
typically be executed by a data path component. For exam-
ple, the _ADD operator in fig. 2 represents an addition opera-
tion. The side effects of instructions are captured by annota-
tion besides the micro-operations. The _C and _Z in the ex-
ample indicate that carry flag and zero flag are affected by
the calculation. Rs1 and Rs2 are input operands. The right
arrow denotes Rd as the destination of the result. As men-
tioned before, LISA 2.0 processor models have a hierarchi-
cal structure. Rd, Rs1 and Rs2 in this example all refer to the
reg_32 operation. Then, the semantics of the reg_32 oper-
ation defines those of the operands. In LISA, a concise se-
mantics description is achieved through using such a struc-
ture.

OPERATION ADD IN pipe.EX{
DECLARE{ GROUP Rs1, Rs2, Rd = { reg_32 }; }
...
SEMANTICS{ _ADD|_C, _Z|(Rs1, Rs2)->Rd; }

}

Figure 2. LISA Operation with Semantics

The semantics view of LISA 2.0 ignores all structural de-
tails like pipelining, and provides a clean and unambiguous
instruction behavior description. This can be used for sev-
eral purposes. In [19], we have presented a technique for
synthesizing instruction-set simulators from the instruction
semantics. Since the semantics description is much sim-
pler than the C/C++ description, this helps accelerating the
modelling process in early architecture exploration when
the concrete micro-architecture is not fully determined. An-
other important use of the semantics is compiler generation,
especially code selector generation.

5. Code-selector description generation
The code selector generator in CoSy uses the dynamic

programming tree matching algorithm [20]. It requires a
tree grammar description of the target instruction set. The
same approach is used in other code selector generators, e.g.
iburg [7]. A tree grammar G = (N, T, P, S) consists of fi-
nite sets N and T of nonterminal and terminal symbols, re-
spectively, as well as a set P of mapping rules and a start
symbol S ∈ N [7]. The terminals T essentially describe
the operations of the source language (e.g. C) and thus are
target machine independent. Likewise, the start symbol S
requires no special retargeting effort. Only the nontermi-
nals, N , and the rules, P , need to be adapted to the tar-
get machine. N basically reflects available registers, mem-
ories, and addressing modes, while P defines how source
language operations are implemented by the target instruc-
tions. Each mapping rule in P has the form of a tree pattern
that may serve to cover a data-flow graph fragment during
code selection. In the following sections, we describe how

N and P are automatically generated from instruction se-
mantics information.

5.1. Nonterminal generation
In tree grammar descriptions, nonterminals act as tem-

porary variables connecting different grammar rules. For
code selectors, they represent temporary storage locations
like registers and memories that the compiler can use. De-
pending on the type of locations, nonterminals can be di-
vided into four categories: register nonterminals represent-
ing the compiler usable registers, immediate nonterminals
carrying the constant values that can be directly encoded in
instruction codings, addressing mode nonterminals encap-
sulating the addressing modes, and condition nonterminals
which are normally flag registers that are affected by differ-
ent instructions.

In LISA 2.0 processor models, accesses to these stor-
age location or processor resources are normally described
in a wrapper operation, like the operation reg_32 in fig.
3. In the instruction semantics description a set of micro-
operators are provided to capture the semantics of the wrap-
pers. The _REGI operator in the example stands for a regis-
ter access. Its operand GPR is the name of the LISA resource
that is used as register bank. The index of the accessed reg-
ister is given by index, a LISA label whose value is deter-
mined by the instruction coding. Another important infor-
mation, the bit-width of the registers, is specified with the
notation <0,32> which means the register is 32 bit wide and
the least significant bit is bit 0. Given this operation, a reg-
ister nonterminal is generated, which can hold any type of
data when its size fits.

OPERATION reg_32{
DECLARE{ LABEL index; }
CODING { value=0bx[4] }
SEMANTICS { _REGI(GPR[index])<0,32>; }
...

}

Figure 3. Register Wrapper Operation

Similar to the register nonterminals, the generation of the
immediate and the addressing mode nonterminals is based
on two related micro-operators, _IMMI and _INDIR. Once
these micro-operators are detected, the generator will cre-
ate the corresponding nonterminals. Generally, the condi-
tion nonterminals represent the flag registers; their existence
then depends on the use of four predefined flags, carry (_C),
zero (_Z), overflow (_O), and negative (_N) flags. For ex-
ample, the semantics statement in fig. 2 has the side effects
of writing the carry and zero flag. Accordingly, a condition
nonterminal is generated. These four kinds of nonterminals
are processor specific elements in the mapping rules. They
are created before the generation of the mapping rules.

5.2. Mapping Rule Generation
In general a mapping rule (a.k.a. tree rewriting rule) con-

sists of three parts: a tree pattern, the result of the rule which
is normally a nonterminal, and one or several associated

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

machine instructions. The tree pattern represents a C level
computation which can be performed by the processor. The
input operand(s) of the computation is(are) also nontermi-
nals. To generate mapping rules for a working code selec-
tor description, two questions need to be answered. The first
one is, what tree patterns are needed to cover the complete
set of C level operations for the target processor, and the
second is, how the C level operations are mapped to the ma-
chine instructions.

5.2.1. Basic Rules A complete code selector description
must cover all the operations that the C language might
need. Since the C language does not change, the C level op-
erations needed to be covered by a code selector are actu-
ally fixed. This makes it possible that a set of mapping rule
templates can be prepared without the knowledge of a tar-
get processor. We created a set of such templates, and call
them basic rules. Table 1 lists a basic rule and a CoSy map-
ping rule side by side. The mirPlus operator in both rules
is a C level addition operation defined in CoSy. There are
two major differences between basic rules and CoSy map-
ping rules. First, the operands in the tree patterns of the ba-
sic rules are placeholders, like a, b, and c, instead of non-
terminals nt_reg used in CoSy rules. From a basic rule, it
is very easy to create tree patterns fitting the target proces-
sor by replacing the placeholders with nonterminals gener-
ated in the previous step. In the generator, the basic rules
needed by a complete coverage of C operations are put to-
gether in a so called basic library. It is used by the code se-
lector generation for all target architectures.

Basic Rule CoSy Mapping Rule
COSYIR mirPlus(a,b)→c; RULE o:mirPlus(a:nt reg,b:nt reg)→c:nt reg;
PATTERN {_ADD(a,b)→c;} EMIT {

fprintf(outfile, “add %s=%s, %s”, c, a, b);
}

Table 1. Basic Rule and CoSy Rule

The second major difference between basic rules and
CoSy rules is that a CoSy rule has assembly instructions as-
sociated, e.g. the fprintf function prints an assembly in-
struction to the output file, while a basic rule has one or
several semantics statements. In the generation procedure,
when the suitable tree patterns are available, the next task
is to find instructions that can perform the C operations in
the tree pattern. This requires the semantics linked with the
basic rules. The generator searches the instruction seman-
tics described in the LISA model and selects the suitable in-
struction based on the result of the matching of the seman-
tics.

In principle, most of the C operations can be covered
by single instructions, which is the simplest case. We call
this one-to-one mapping: one C operation maps to one ma-
chine instruction. However, ASIP designers always try to
make the architecture as simple as possible, only if the ap-
plication can be executed efficiently. Rarely used instruc-
tions might be left out of the design, but they are needed by

a complete C compiler. One-to-many mapping is then used,
which implements a C-level operation with a sequence of
instructions. Moreover, the ASIP designers not only sim-
plify the instruction set but also add instructions for pro-
gram hot spots. These instructions accelerate the program
execution by performing many C-level operations at once.
To utilize them in a compiler, many-to-one mapping rules
are needed. The following sections describe how the in-
structions are selected for these three kinds of mapping rules
with the help of instruction semantics information.

5.2.2. One-to-one mapping As the simplest map-
ping method of all, one-to-one mapping is first used by the
generator to find suitable instructions. The semantics state-
ments of the basic rules are compared with the instruc-
tion semantics in the LISA model. Since some side effects
in a real instruction might not be interesting to a C com-
piler, a successful one-to-one mapping does not require
two totally identical semantics patterns. For example, sup-
pose the generator tries to find a suitable instruction for the
basic rule in table 1, and the semantics of the LISA opera-
tion depicted in fig. 2 is examined. Because the writing to
carry and zero flag does not influence the result of an arith-
metic addition in C level, the side effects in the instruction
semantics are then ignored by the generator, and the in-
struction is chosen for the tree pattern generated from
the basic rule. Eventually, a complete one-to-one map-
ping rule, in the form of the CoSy rule in table 1, is cre-
ated.

Such adaptation in the one-to-one mapping can only
compromise those effects not affecting the calculation re-
sults. Micro-operators still must be exactly the same for
both compared semantics. If, due to the simplification made
by the designers, a processor does not have the instruction
to provide a one-to-one mapping, one-to-many mapping is
then used.

5.2.3. One-to-many mapping In one-to-one map-
ping, the semantics statements in the basic rules are used
by the generator to find a suitable instruction. However, if
a processor does not have one instruction which can com-
plete the calculation or operation, the generator needs to
find a sequence of instructions, i.e. one-to-many map-
ping. For this purpose, it is important for the gener-
ator to know how the semantics statement in a basic
rule can be implemented through a set of other seman-
tics statements without affecting the result of computation.
This is achieved by using the semantics transforma-
tions.

A semantics transformation specifies a sequence of se-
mantics statements which together performs the same com-
putation carried out by the original statement. An exam-
ple can be found in fig. 4. The _NEG micro-operator rep-
resents a two’s complement negation. The specified trans-
formation provides a mathematically equivalent solution to
do the negation operation. _NOT is the one’s complement

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

micro-operator. A two’s complement can be done by do-
ing a one’s complement and plus one. With this transforma-
tion available, if the generator fails to find an instruction do-
ing negation, it will then look for two instructions to do the
complement and the addition operations sequentially.

ORIGINAL _NEG(a)->b;
TRANSFORM {

_NOT(a)->b;
_ADD(b,1)-b;

}

Transformation

mirNeg(reg)->reg; _NEG(reg)->reg;

Unmapped Rule

mirNeg(reg)->reg;

_NOT(reg)->reg;

_ADD(reg,1)->reg;

not reg, reg

add reg, reg, 1

Tree Pattern Semantics

Assembly

Figure 4. One-to-many Mapping

In principle this approach can be used to lower any op-
eration, only if an equivalent transformation exists and can
be expressed in the form of semantics statements. In the
LISA compiler generator, a set of commonly used transfor-
mations are provided by default in a so called transforma-
tion library. Because of the variance of different instruc-
tions implemented in various architectures, it is not pos-
sible to specify a transformation library that can fit every
ASIP under design. We provide the transformation library
in form of a text file, so that if a C operation needs to be im-
plemented with a very specific sequence of instructions the
designer can create a custom transformation himself.

5.2.4. Many-to-one mapping Many-to-one mapping is
especially important for ASIP design, because ASIPs heav-
ily employ instructions that perform composite operations
to accelerate application execution. However, since the de-
signers can implement arbitrary combinations of opera-
tions in one instruction, it is difficult for the generator to
prepare the tree patterns without knowing what the in-
structions do. Our approach is analyzing the instruction
semantics in the LISA model and try to create a tree pat-
tern with several C level operations out of it.

Take the MAC (Multiply and Accumulate) instruction,
which is a commonly used composite operation, as an ex-
ample. Suppose the ASIP designer describes its semantics
with the semantics statement in fig. 5. Two micro-operators
are used, _ADD and _MULII. _MULII is a signed integer mul-
tiplication. The generator has the knowledge of the mapping
between the semantics micro-operators and the CoSy tree
pattern nodes. With this knowledge, it can then create a cor-
responding tree pattern from the instruction semantics with-
out user interaction. In the example, mirPlus is the CoSy
tree pattern node corresponding to the micro-operator _ADD,
and mirMult maps to the _MULII operator. If the source
code contains a concatenated multiply and addition opera-
tion, this many-to-one mapping rule will tell the code selec-
tor to use the MAC instruction instead of two separate multi-
ply and addition instructions.

mac reg, reg, reg, reg _ADD (reg, _MULII (reg, reg) -> reg;

SemanticsAssembly

mirPlus (reg, mirMult (reg, reg) -> reg;

Tree Pattern

Figure 5. Many-to-one Mapping

5.2.5. Semantics Intrinsics Generally, the many-to-one
mapping works for the arithmetic instructions whose se-
mantics can be described with a chain of micro-operations
like in the example 5. However, it is not applicable to
those instructions performing multiple data assignments,
e.g. SIMD (Single Instruction Multiple Data) instructions.
Since the tree matching algorithm covers one sub-tree at
a time, it is not possible to do SIMD instruction mapping
without changing the internal intermediate representation of
the source code. Another approach to utilize such instruc-
tions is using compiler known functions (a.k.a compiler in-
trinsics) which are directly translated into corresponding in-
structions by a compiler. For this, we use semantics intrin-
sics to describe those instructions who have complex se-
mantics that cannot be used by tree matchers, like SIMD in-
structions. In LISA 2.0 models, the semantics intrinsics are
used as customer micro-operators, e.g. the "_DADD" in the
example 6. For the generator, the real semantics of the in-
trinsics is no more important, since creating corresponding
function definition is a straightforward one-to-one transla-
tion.

“_DADD”(reg, reg)->reg; int _DADD(int a, int b);

C FunctionSemantics Intrinsics

Figure 6. Semantics Intrinsics

6. Experimental results
To examine the efficiency of our compiler generator, we

have done case studies using the ST220 and PP32 proces-
sors as target architectures, the same as in our previous work
[15]. Since the instruction semantics description of LISA
2.0 is quite straight forward, it is very easy for a LISA model
developer to extend a model with semantics. For our two
driver architectures, on average, it took 2 man weeks to de-
velop the semantics models [18]. Based on them, most of
the mapping rules needed by a C compiler are automatically
generated. The CPU time used by the generator is negligi-
ble. However, both processors need a few custom transfor-
mations to cover some C operations. Table 2 provides the
statistics of the generated rules for both processors and the
number of custom transformations.

The custom transformations of both processors are
mainly used to cover operations which cannot be executed
with one machine instruction such as the signed/unsigned
division and the modulo operation. Several standard li-
brary functions are invoked by the transformations to
accomplish such operations. For ST220, a transforma-

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

tion is used to perform the one’s complement opera-
tion with a ST220 specific instruction that does bitwise
not and or (NOR) at once. PP32 also has some very spe-
cific transformations. For example, the load of a 32 bit im-
mediate value is done with two instructions. The first one
loads the higher half of the value into the target regis-
ter and left shift the result by 16 bits. The second one adds
the lower 16 bits to the target register.

one-to-one one-to-many many-to-one user trans.
ST220 176 13 5 9
PP32 71 19 0 12

Table 2. Rule Statistics of ST220 & PP32

The generated compilers have been verified using the Su-
pertest compiler validation test suite of the CoSy system.
The code quality is examined against our previous work
in [15]. The results are pretty close. The semantics gener-
ated compilers have an average of 5% cycle count over-
head, and the code size is about 18% larger. These over-
heads are mainly due to the fact that the basic rules used for
the mapping rule generation are designed to be conserva-
tive, so that they can be used by all architectures. The man-
ually crafted code selector has a more aggressive instruc-
tion selection policy, e.g. the integral promotion for some
of the C arithmetic operators was omitted with the assump-
tion that the values in the registers are always correctly sign
or zero extended. In general, the code quality produced by
the generated compiler still cannot compete with the hand-
written highly optimized compiler. However, the major fo-
cus of this work is to push the automation of compiler gen-
eration to its edge.

7. Conclusions
In this paper, we have presented a novel approach to au-

tomatically generate C compilers from the LISA instruc-
tion semantics models. Though using a semantics descrip-
tion introduces certain redundancies, they are kept minimal
and local in the model. Three different mapping rule gen-
eration methods were developed. With them, compiler de-
signers only need to take care of architecture specific fea-
tures of their processors. The generator will do most of the
work automatically. Moreover, since the semantics actually
describes the instruction behavior, it is much easier for the
ASIP designers to use them. Less compiler knowledge is re-
quired to build a compiler using our approach. A user exten-
sible library is employed in our generator, so that flexibil-
ity is kept. Two contemporary processors were tested, and
both present promising results. However, the code quality of
both compilers can only be considered as results from out-
of-box compilers. To improve it, further code optimization
techniques are needed. In future, we will focus our work
on providing ASIP designers a retargetable interface to the
compiler, so that they can develop specific optimization for
ASIP code generation.

References

[1] Free Software Foundation GCC. http://gcc.gnu.org.
[2] C. Fraser and D. Hanson. A Retargetable C Compiler : De-

sign and Implementation. Benjamin/Cummings Publishing
Co., 1994.

[3] Coware Inc. http://www.coware.com.
[4] C. Liem, P. Paulin, and A. J. M. Cornero. Industrial Expe-

rience Using Rule-driven Retargetable Code Generation for
Multimedia Applications. 8th Int. Symp. on System Synthe-
sis(ISSS), 1995.

[5] G. Araujo. Code Generation Algorithms for Digital Signal
Processors. Ph.D. thesis, Princeton University, Department
of Electrical Engineering, 1997.

[6] R. Leupers and P. Marwedel. Retargetable Generation of
Code Selectors from HDL Processor Models. European De-
sign & Test Conference (ED & TC), 1997.

[7] C. Fraser, D. Hanson, and T. Proebsting. Engineering a Sim-
ple, Efficient Code Generator Generator. ACM Letters on
Programming Languages and Systems, 1(3), 1992.

[8] S. Hanono and S. Devadas. Instruction Selection, Resource
Allocation, and Scheduling in the AVIV Retargetable Code
Generator. 35th Design Automation Conference (DAC),
1998.

[9] J. V. Praet, D. Lanneer, G. Goossens, W. Geurts, and H. D.
Man. A Graph Based Processor Model for Retargetable Code
Generation. European Design and Test Conference (ED &
TC), 1996.

[10] W. Qin and S. Malik. Flexible and Formal Modeling of Mi-
croprocessors with Application to Retargetable Simulation.
Design, Automation, and Test in Europe (DATE), 2003.

[11] A. Halambi, P. Grun, V. Ganesh, A. Khare, N. Dutt, and
A. Nicolau. EXPRESSION: A Language for Architec-
ture Exploration through Compiler/Simulator Retargetabil-
ity. Design Automation & Test in Europe (DATE), 1999.

[12] S. Kobayashi, Y. Takeuchi, A. Kitajima, and M. Imai. Com-
piler Generation in PEAS-III: an ASIP Development Sys-
tem. Int. Workshop on Software and Compilers for Embed-
ded Processors (SCOPES), 2001.

[13] P. Viana, E. Barros, S. Rigo, R. J. Azevedo, and G. Araujo.
Exploring Memory Hierarchy with ArchC. 15th Symposium
on Computer Architecture and High Performance Comput-
ing (SBAC), 2003.

[14] AXYS Design Automation, Inc. http://www.axys.de.
[15] M. Hohenauer, O. Wahlen, K. Karuri, H. Scharwaechter,

T. Kogel, R. Leupers, G. Ascheid, H. Meyr, G. Braun, and
H. van Someren. A Methodology and Tool Suite for C Com-
piler Generation from ADL Processor Models. Design Au-
tomation & Test in Europe (DATE), 2004.

[16] Associated Compiler Experts bv. http://www.ace.nl.
[17] O. Wahlen, M. Hohenauer, R. Leupers, and H. Meyr. In-

struction Scheduler Generation for Retargetable Compila-
tion. IEEE Design & Test of Computers, 2003.

[18] J. Ceng, W. Sheng, M. Hohenauer, R. Leupers, G. Ascheid,
H. Meyr, and G. Braun. Modeling Instruction Semantics
in ADL Processor Descriptions for C Compiler Retargeting.
Int. Workshop on Systems, Architectures, Modeling, and Sim-
ulation (SAMOS), 2004.

[19] G. Braun, A. Nohl, W. Sheng, J. Ceng, M. Hohenauer,
H. Scharwaechter, R. Leupers, and H. Meyr. A Novel Ap-
proach for Flexible and Consistent ADL-driven ASIP De-
sign. Design Automation Conference (DAC), 2004.

[20] A. V. Aho, M. Ganapathi, and S. W. K. Tjiang. Code gener-
ation using tree matching and dynamic pogramming. ACM
Trans. Program. Lang. Syst., 11(4):491–516, 1989.

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

