Ilia Polian

Alejandro Czutro

Bernd Becker

Evolutionary Optimization in Code-Based Test Compression

Keywords: Test compression, code-based compression, evolutionary algorithms 1. L MVs v (1), v (2)

We provide a general formulation for the code-based test compression problem with fixed-length input blocks and propose a solution approach based on Evolutionary Algorithms. In contrast to existing code-based methods, we allow unspecified values in matching vectors, which allows encoding of arbitrary test sets using a relatively small number of codewords. Experimental results for both stuck-at and path delay fault test sets for ISCAS circuits demonstrate an improvement compared to existing techniques.

Introduction

Test data compression becomes increasingly popular for distributing test complexity between automatic test equipment and on-chip structures. By transferring compressed information from the tester and decompressing it on-chip, the requirements on IC's pin throughput can be significantly reduced while on-chip hardware cost is kept in check. Most test compression techniques proposed so far are based either on codes or on reseeding.

Code-based approaches assign a codeword C(v) to a sequence of test data v (an input block). For instance, v could be 10011101, and C(v) could be 110. Then, if 110 is transmitted from the tester, an on-chip decoder would generate the sequence 10011101 and apply it to the circuit under test. Schemes based on run-length codes [START_REF] Jas | Test vector decompression using cyclical scan chains and its application to testing core-based designs[END_REF], selective Huffman codes [START_REF] Jas | Scan vector compression/decompression using statistical coding[END_REF], Golomb codes [START_REF] Chandra | Test data compression for system-on-a-chip using golomb codes[END_REF], frequency directed codes [START_REF] Chandra | Frequency-directed run length codes (FDR) codes with application to system-on-achip test data compression[END_REF], VIHC codes [START_REF] Gonciari | Improving compression ratio, area overhead, and test application time for system-on-a-chip test data compression/decompression[END_REF], LZ77 [START_REF] Wolff | Multiscan-based test compression and hardware decompression using lz77[END_REF], mutation codes [START_REF] Reda | Reducing test application time through test data mutation encoding[END_REF], packet-based codes [START_REF] Khoche | Packet-based input test data compression techniques[END_REF] and non-linear combinational codes [START_REF] Reddy | On test data volume reduction for multiple scan chain designs[END_REF] have been proposed.

Reseeding is a technique that is applied to a pseudorandom pattern generator in order to omit those parts of its sequence that are not needed for testing. If the control information (on which patterns to omit) is fed by the tester, reseeding becomes a test compression method. Pseudorandom pattern generators used in reseeding architectures so far include LFSRs [START_REF] Krishna | Test vector encoding using partial LFSR reseeding[END_REF][START_REF] Zacharia | Decompression of test data using using variable-length seed LFSRs[END_REF], multiple-polynomial LFSRs [START_REF] Hellebrand | Built-in test for circuits with scan based on reseeding of multiple-polynomial linear feedback shift register[END_REF][START_REF] Hellebrand | Generation of vector patterns through reseeding of multiplepolynomial linear feedback shift registers[END_REF], twisted-ring counters [START_REF] Chakrabarty | Built-in test pattern generation for high performance circuits using twistedring counters[END_REF] and folding counters [START_REF] Hellebrand | A mixedmode BIST scheme based on reseeding of folding counters[END_REF].

Further test compression techniques include Embedded Deterministic Test [START_REF] Rajski | Embedded deterministic test[END_REF], which is based on a ring generator unfolding low-bandwidth test data from the tester and feeding them into the scan chains of the circuit under test. It has been proposed to use a reconfigurable switch [START_REF] Tang | On reducing test data volume and test application time for multiple scan chain designs[END_REF] or a reconfigurable interconnection network [START_REF] Li | Deterministic BIST based on a reconfigurable interconnection network[END_REF] for this purpose. A test compression architecture based on reconfiguring some of the scan flip flops into pseudo-random pattern generators is presented in [START_REF] Krishna | 3-stage variable length continuous-flow scan vector decompression scheme[END_REF].

In general, reseeding-based solutions embed test vectors into a pseudo-random sequence, which makes them attractive for testing combinational circuits. However, their applicability to sequential (non-scan), delay or functional test sets is limited. Embedded deterministic test is also designed for full scan-based circuits. In contrast, code-based compression techniques precisely reproduce the original encoded test set (possibly specifying the don't-care bits); they do not reorder the test set or add new vectors to it. Hence, code-based methods have applications for which they are inherently better suited than other compression techniques, irrespective of the achieved compression rates.

Recently, Tehranipour et al. [START_REF] Tehranipour | Nine-coded compression technique with application to reduced pin-count testing and flexible on-chip decompression[END_REF] have proposed a fixedlength input block compression technique based on exactly nine codes (9C compression). The codes are defined with respect to an even number K which is the length of an input block. For instance, let K be 6. Then, the test set is partitioned into 6-bit long pieces, i.e. input blocks. Every input block is mapped to one of the following nine matching vectors (MVs): v (1) = 000 000; v (2) = 111 111; v (3) = 000 111; v (4) = 111 000; v (5) = 111 UUU; v (6) = UUU 111; v (7) = 000 UUU; v (8) = UUU 000; v (9) = UUU UUU. Every vector v (i) is assigned a codeword C(v (i)). For example, if 111000 appears in the test sequence, it will be encoded by C(v (4)).

The symbol U denotes an unspecified value. For instance, 111100 and 111011 both match v (5) (as do other 6 input blocks). In order to distinguish between these 8 possible input blocks, the fill values for the U positions are spec-ified explicitly after the codeword. Thus, the input block 111100 will be coded as C(v (5))100, and 111011 will be coded as C(v (5))011. It is possible to represent 111000 both as C(v (4)) and as C(v (5))000, although the first code will probably be shorter. It is also possible to encode 111000 as C(v (8))111 or as C(v (9))111000. Note that any arbitrary input block can be encoded using v (9) . However, the number of U s in an MV corresponds to the number of fill values that have to be applied after the codeword for that vector; hence, it is better to use MVs with as few U values as possible.

In this paper, we generalize the use of the unspecified value U in fixed-length input block code-based test compression. We allow MVs with 1, 0 and U values on arbitrary positions instead of the fixed MV set v (1) , . . . , v (9) used in 9C compression. We also do not require the number of MVs (and thus codewords) to be 9. So, if the only input blocks starting with 111 are 111100 and 111110, we can use 1111U 0 instead of 111UUU, saving two fill values for each such code. Furthermore, if the test set string includes many input blocks 110100 and 110000, an efficient set of MVs should contain the matching vector 110U 00 (in 9C compression, MVs UUUUUU and UUU000 would be required, respectively). In general, our technique is advantageous when there are input blocks that "almost" match.

Given a test set (that can contain don't-care values), we are looking for a number L of MVs of length K that ensure best compression. K and L are inputs of the algorithm. Since any of the test vectors can have a 0, a 1 or a U on any of its K positions, the space of all possible alternatives is huge. Hence, we employ Evolutionary Algorithms (EAs) [START_REF] Bäck | Evolutionary Algorithms in Theory and Practice[END_REF][START_REF] Goldberg | Genetic Algorithms in Search, Optimization & Machine Learning[END_REF] for optimization. EAs have been employed in many areas of VLSI CAD and design automation [START_REF] Mazumder | Genetic Algorithms for VLSI Design, Layout and Test Automation[END_REF][START_REF] Drechsler | Evolutionary Algorithms for VLSI CAD[END_REF], including test pattern generation [START_REF] Girard | A diagnostic atpg for delay faults based on genetic algorithms[END_REF][START_REF] Keim | Combining GAs and Symbolic Methods for High Quality Tests of Sequential Circuits[END_REF] and BIST configuration [START_REF] Ökmen | On optimizing BIST architecture by using OBDD-based approaches and genetic algorithms[END_REF][START_REF] Polian | Evolutionary optimization of Markov sources for pseudo random scan BIST[END_REF], but not in test compression. We assign codewords to the determined MVs using Huffman coding [START_REF] Huffman | A method for the construction of minimumredundancy codes[END_REF]. Experimental results for ISCAS circuits show a substantial improvement compared to 9C compression.

The remainder of the paper is organized as follows: the next section formally defines the fixed-length input block compression with unspecified values. The compression method, including EA-based calculation of matching vectors, is discussed in Section 3. Experimental results are reported in Section 4. Section 5 concludes the paper.

Problem Formulation

Suppose that the circuit has n inputs and the number of test patterns is T . Let tp (i) denote the i th test pattern, and let tp (i) j denote the j th bit position of the i th test pattern (tp

(i) j ∈ {0, 1, X}; 1 ≤ i ≤ T ; 1 ≤ j ≤ n).
Note that X denotes a don't-care value that can be set to 0 or 1 without violating the fault coverage targets. The overall number of bit positions in a test set is T • n. We con-sider the complete test set as one large string of information

t 1 t 2 . . . t T •n := tp (1) 1 tp (1) 2 . . . tp (2) 1 . . . tp (T) 1 . . . tp (T)
n . Our target is to efficiently encode this string of information.

Let K be a positive integer number. (Note that in contrast to 9C compression it is not required to be odd.) The test set string t 1 . . . t T n is partitioned into fixed-length input blocks of length K, as formalized in the next definition. K should be a divisor of the length T n of the test set string; if that is not the case , the test set string is filled up by adding (K • T n/K -T n) X values in the end.

Definition:

An input block is a subsequence t (j-1)K+1 t (j-1)K+2 . . . t jK of the test set string t 1 . . . t T n (which has the length K), where 1 ≤ j ≤ T n/K (remember that K is a divisor of T n). The k th input block is denoted as

ib (k) ∈ {0, 1, X} K .
2 The fixed-length input block encoding is based on matching vectors to which the input blocks are mapped if they match. Definition: A matching vector (MV) v consists of K bit positions v 1 v 2 . . . v K , where v j ∈ {0, 1, U}, 1 ≤ j ≤ K (where U stands for "unspecified"). An MV v matches an input block ib if there is no bit position j for which either ib j = 1 and v j = 0 or ib j = 0 and v j = 1. (I.e. 1 matches with 1, 0 matches with 0, and X and U match with arbitrary values).

2 Let L be the number of MVs, and let the set of MVs be v (1) , v (2) , . . . , v (L) . Note that as the MVs can contain the U value, different MVs can match the same input block.

Every MV v (i) is assigned a codeword C(v (i)) ∈ {0, 1} * . We allow the codewords to have different length, but we require the whole code {C(v (1)), C(v (2)), . . . , C(v (L))} to be a prefix code, i.e. no codeword is identical to a beginning of a different codeword. An input block that matches an MV is encoded by the codeword of that MV followed by the values in the input block corresponding to unspecified values (U s) in the MV: Definition: Let a matching vector v have N U (v) unspecified values U at the positions u 1 , . . . , u NU (v) (i.e. 2 Our goal is to efficiently encode a test set string t 1 t 2 . . . t T n (which aggregates the whole test set) divided into T n/K input blocks. We formulate the following subproblems:

v u1 = • • • = v u N U (v) = U), 0 ≤ N U (v) ≤ K. Let

Problem Formulation

Given the test set (i.e. the sequence of input blocks ib 1 , ib 2 , . . . , ib T n/K), the size K and the number of MVs L, determine:

2. a prefix code {C(v (1)), . . . , C(v (L))}, such that the sum of the encoding lengths of the input blocks is minimal.

2 Note that the problem solved by Tehranipour et al. [START_REF] Tehranipour | Nine-coded compression technique with application to reduced pin-count testing and flexible on-chip decompression[END_REF] is a special case of our generic formulation: they use L = 9, a fixed set of MVs (specified in the introduction) and also a fixed encoding for the MVs.

Solution Approach

We solve the problem formulated above by iteratively applying the following process to the sequence of input blocks corresponding to the test set:

1. Determine L matching vectors (MVs).

(Covering)

Assign an MV to each input block; calculate the frequency-of-use for each MV.

(Encoding)

Encode the input blocks using the collected frequency-of-use data.

Suppose that the L MVs are fixed. Covering is done by selecting an input block and identifying an MV that matches it. If multiple MVs match an input block, we select the one with the lowest number of U s, as the encoding is more compact for such MVs (Note that it is possible that none of the L MVs matches the input block; in this case, encoding is impossible with this set of L MVs. This can be ruled out by setting all positions of one of the MVs to U .) Encoding is done using Huffman's algorithm.

The solution space for determining L MVs of dimension K (i.e. the number of different sets of L K-dimensional vectors over {0, 1, U}) is 3 KL (or 3 KL /(L!), observing that the ordering of the test vectors is irrelevant), which is a huge number even for relatively small values of K and L. Hence, we apply an evolutionary algorithm for this sub-problem. Details are reported in the sections below.

Matching vector determination

We employ Evolutionary Optimization [START_REF] Bäck | Evolutionary Algorithms in Theory and Practice[END_REF][START_REF] Goldberg | Genetic Algorithms in Search, Optimization & Machine Learning[END_REF] to determine L matching vectors (MVs). We define an individual as a set of L K-dimensional MVs, i.e. a string v C new individuals (children) are generated by applying evolutionary operators (namely crossover, mutation and inversion) to randomly selected individuals from the initial population. The fitness of each of the C children is determined in the same way as for the individuals in the initial population. From these S + C individuals, S having highest fitness (thus leading to the highest compression) are selected to form the new population (second generation).

(1) 1 v (1) 2 . . . v (1) K v (2) 1 . . . v (L) 1 . . . v (L) K of length KL over the alphabet {0, 1, U}.
The crossover operator takes two individuals (parents) and produces two children by exchanging bit positions (genes) of the parents. Note that for our encoding, an individual has KL genes. The resulting children have genes of one parent in several positions and the genes of the other parent in others. The mutation operator generates one child from one parent by replacing one randomly selected gene of a parent by a random value. The inversion operator produces a child by reverting the ordering of the genes between two random positions of a parent.

The evolutionary optimization process stops when a termination condition is satisfied. We used limits on the number of generated legal solutions and on the number of generations in which no fitness improvement was registered as termination conditions. Then, the MV set given by the fittest individual is returned.

Covering

Once the L matching vectors (MVs) are generated, they are sorted in the order of increasing number of U s:

N U (v (1)) ≤ N U (v (2)) ≤ • • • ≤ N U (v (L)
). When matching an input block ib, this sorted list is processed, and the first matching MV v (i) is taken. We will comment on the implications of this technique on the optimality of the overall algorithm in the next section. For every MV v (i) , we calculate its fre-quency F i , i.e. the number of input blocks encoded by v (i) .

Encoding

Given the L MVs v (1) , . . . , v (L) and their frequencies F 1 , . . . F L , the optimal prefix code is obtained by Huffman coding [START_REF] Huffman | A method for the construction of minimumredundancy codes[END_REF]. However, the problem formulation is slightly different here: first, an MV with a frequency of 0 can be simply left out without allocating a codeword to it. Second, due to the existence of the unspecified values (U s) one MV may be subsumed by another. The following example demonstrates a situation in which the Huffman coding algorithm leads to a suboptimal solution due to these specifics: Example: Suppose that the MVs are v (1) = 111U with frequency F 1 = 5, v (2) = 1110 with frequency 3 and v (3) = 0000 with frequency 2. Huffman coding yields C(v (1)) = 0 , C(v (2)) = 10 and C(v (3)) = 11 . Since v (1) contains one U value, it is encoded by | 0 | + 1 = 2 bits; v (2) and v (3) However, 3 input blocks that are matched by v (2) = 1110 are also matched by v (1) = 111U . If we omit v (2) altogether, we can encode v (1) as 0 and v (3) as 1 . Since v (1) now subsumes v (2) , its frequency is now 5+3 = 8. Its encoding is still 2 bits long, while the encoding of v (3) is 1 bit long. The total size of compressed data is 8 • 2 + 2 • 1 = 18 bits, which is less than 20 bits calculated by the Huffman algorithm. 2

The suboptimal result of the example is a consequence of the covering algorithm from the previous section: if the three input blocks had been covered by v (1) rather than v (2) , the Huffman algorithm would have produced the optimal result. Handling such cases explicitly could improve the compression rate.

Experimental Results

We applied our method to uncompacted stuck-at test sets with don't-cares obtained by the method from [START_REF] Kajihara | On identifying don't care inputs of test patterns for combinational circuits[END_REF] for IS-CAS 85 and combinational parts of ISCAS 89 circuits, and to uncompacted path delay test sets with don't-cares for combinational parts of ISCAS-89 circuits generated by the tool TIP [START_REF] Henftling | Bit Parallel Test Pattern Generation for Path Delay Faults[END_REF][START_REF] Tafertshofer | A SAT-based implication engine for efficient ATPG, equivalence checking, and optimization of netlists[END_REF] (with 100% robust path delay coverage). We used the package GAME [START_REF] Göckel | GAME: A software environment for using genetic algorithms in circuit design[END_REF] for evolutionary optimization.

Table 1 summarizes the results for stuck-at test sets. The first two columns contain the name of the circuit and the size of the test set (note that the circuits are sorted with respect to increasing test set size). All other columns quote the compression rate 100% Column '9C' reports the compression rate obtained by our reimplementation of the 9C compression method from [START_REF] Tehranipour | Nine-coded compression technique with application to reduced pin-count testing and flexible on-chip decompression[END_REF] for K = 8 (which yielded best results in that paper). Note that our numbers do not match the figures in that paper, as we use different test sets. Since the compression rates are higher for the test sets that we use than the rates reported in [START_REF] Tehranipour | Nine-coded compression technique with application to reduced pin-count testing and flexible on-chip decompression[END_REF], it would be unfair to quote those results. We did not

 an input block ib be matched by v. The encoding C(ib, v) of ib by v is given by C(v)ib u1 ib u2 . . . ib u N U (v) . The length of the encoding |C(ib, v)| is the sum of the length of C(v) and the number N U (v) of the unspecified values in v. Note that |C(ib, v)| is independent from ib.

Figure 1 Figure 1 :

 11 Figure 1: Evolutionary Algorithm

 are encoded by | 10 | = 2 bits and | 11 | = 2 bits, respectively, resulting in the total size of compressed data of 5 • 2 + 3 • 2 + 2 • 2 = 20 bits.

Table 1 :

 1 • original test set sizesize of compressed data original test set size of various methods. The compression is better for higher values of this number. Experimental results for stuck-at test sets

	Circuit	Test set	Compression rate
		size	9C 9C+HC	EA EA-Best
	s349	624 23.0% 30.0% 54.2%	55.8%
	s344	624 25.0% 33.0% 51.8%	55.8%
	s298	629 19.0% 27.0% 45.2%	51.2%
	s208	722 26.0% 32.0% 47.8%	50.4%
	s400	984 29.0% 36.0% 54.4%	56.4%
	s382	1008 29.0% 36.0% 52.0%	54.2%
	s386	1157	0.0% 13.0% 30.4%	30.6%
	s444	1176 40.0% 43.0% 54.4%	57.8%
	c6288	1216	8.0% 19.0% 17.6%	20.4%
	s510	1850 42.0% 45.0% 57.6%	57.6%
	c432	1944 26.0% 36.0% 49.2%	50.4%
	s526	1944 25.0% 29.0% 46.4%	46.4%
	s1494	2324 -1.0% 11.0% 23.0%	28.9%
	s420	2380 53.0% 55.0% 54.4%	56.2%
	s1488	2436	2.0% 15.0% 25.6%	30.0%
	s832	3404 35.0% 38.0% 43.8%	43.8%
	s820	3496 31.0% 35.0% 42.8%	43.4%
	c499	3854 43.0% 51.0% 45.0%	51.6%
	s713	4104 51.0% 52.0% 61.4%	61.8%
	s641	4212 51.0% 52.0% 60.2%	62.2%
	c880	4680 40.0% 42.0% 47.8%	49.8%
	c1908	4950 -2.0% 10.0% 18.4%	19.0%
	s953	5220 51.0% 53.0% 61.6%	63.2%
	c1355	5289 38.0% 45.0% 40.8%	44.8%
	s1196	6016 34.0% 38.0% 46.2%	46.2%
	s1238	6240 34.0% 37.0% 44.0%	45.8%
	s1423	8463 59.0% 59.0% 61.0%	61.6%
	s838	8509 67.0% 68.0% 66.2%	68.6%
	c3540	10350 36.0% 39.0% 43.8%	44.2%
	c2670	33086 70.0% 70.0% 70.4%	70.6%
	c5315	33108 65.0% 65.0% 66.2%	67.0%
	c7552	60030 63.0% 64.0% 63.2%	63.2%
	s5378	71262 73.0% 73.0% 76.8%	76.8%
	s9234	118560 75.0% 75.0% 76.2%	76.4%
	s35932	133988 71.0% 71.0% 73.8%	73.8%
	s15850	305500 80.0% 80.0% 83.0%	83.0%
	s13207	410200 83.0% 83.0% 85.8%	85.9%
	s38584	1250256 82.0% 82.0% 86.2%	86.2%
	s38417	2068352 84.0% 84.0% 87.0%	87.9%
	Average		42.6% 46.8% 54.2%	55.9%

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE'05) 1530-1591/05 $ 20.00 IEEE

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE'05)

Acknowledgment

We would like to thank Kohei Miyase and Seiji Kajihara for providing the stuck-at test sets for ISCAS circuits containing don't-care values.

 [START_REF] Tehranipour | Nine-coded compression technique with application to reduced pin-count testing and flexible on-chip decompression[END_REF]: '0' for 000000; 10 for 111111; 11000 for 000111; '11001' for 111000; '11010' for 111UUU; '11011' for UUU111; '11100' for 000UUU; '11101' for UUU000; and '1111' for UUUUUU (for K = 6; the same assignment applies for other K values). We ran the reimplemented 9C algorithm with this encoding replaced by Huffman coding and report the results in column '9C+HC'.

The results of our proposed approach are given in column 'EA'. We used L = 64 and K = 12; in the evolutionary algorithm, we used the population size S of 10, the number of children C of 5, the crossover probability of 30%, the mutation probability of 30% and the inversion probability of 10%. One of the MVs was set to all-U , such that there were no insolvable instances. We report the average over 5 algorithm runs.

We generated data for numerous values of K and L. While the space does not allow us to include all data, we report our best results in the last column. Additional improvements could be achieved by varying the parameters of the evolutionary algorithm, which we did not do.

Our proposed approach outperforms the original 9C algorithm for all circuits except s838 (but our best result is higher for this circuit). This could be ruled out by adding the 9C matching vector set to the initial population (which we did not). If 9C compression is combined with Huffman coding, it outperforms our method with default values for 6 circuits, and it is more efficient than our best results for two circuits (out of 39). This can be explained by the large size of the solution space; a larger population size or a reduced evolutionary pressure might be appropriate for such circuits.

The last line of the table quotes the average values. It can be seen that our results are considerably better on average than those obtained by 9C compression, both with and without Huffman coding. It can also be seen that the difference between our technique with default values and the best compression rate is relatively small. We conclude that our algorithm is relatively stable with respect to the parameters K and L.

The structure of Table 2 is similar to that of Table 1. We report the results for the proposed method for L = 9 and K = 8 (column 'EA1') and L = 64 and K = 12 (column 'EA2'). Both values are averages over 5 successful algorithm runs with termination after 500 populations without improvement. The All-U MV was included into the population. The proposed methods yields best results for all but two circuits (s420 and s838), and the second set of parameters results in an improvement of the compression from 48.7% for the original 9C compression to 58.6%, on average.

Conclusions

We provided an Evolutionary Optimization-based solution for test set encoding with fixed-length input blocks. For the first time, our problem formulation allows unspecified values (U s) at arbitrary positions of the matching vectors. This enables the employment of compact on-chip decoders for arbitrary test sets. No decoder re-design is required in case of a test set modification, if an all-U matching vector is used; however, the compression rate might suffer. A reconfigurable decoder, into which the codeword/matching vector information can be loaded, would solve this problem.

Experimental results show the superiority of our technique. However, further improvements are possible by fitting the parameters of the Evolutionary Optimization, such as population size and operator probabilities. Another direction for further research is the application of our method in a multiple scan chain environment.