
HAL Id: hal-00181274
https://hal.science/hal-00181274

Submitted on 23 Oct 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

CAFFEINE: Template-Free Symbolic Model Generation
of Analog Circuits via Canonical Form Functions and

Genetic Programming
Trent Mcconaghy, Tom Eeckelaert, Georges Gielen

To cite this version:
Trent Mcconaghy, Tom Eeckelaert, Georges Gielen. CAFFEINE: Template-Free Symbolic Model
Generation of Analog Circuits via Canonical Form Functions and Genetic Programming. DATE’05,
Mar 2005, Munich, Germany. pp.1082-1087. �hal-00181274�

https://hal.science/hal-00181274
https://hal.archives-ouvertes.fr


CAFFEINE: Template-Free Symbolic Model Generation of Analog 

Circuits via Canonical Form Functions and Genetic Programming 

Trent McConaghy, Tom Eeckelaert, Georges Gielen 

K.U. Leuven, ESAT-MICAS 

Kasteelpark Arenberg 10 

B-3001 Leuven, Belgium 

Abstract 
This paper presents a method to automatically 

generate compact symbolic performance models of 

analog circuits with no prior specification of an equation 

template.  The approach takes SPICE simulation data as 

input, which enables modeling of any nonlinear circuits 

and circuit characteristics.  Genetic programming is 

applied as a means of traversing the space of possible 
symbolic expressions.  A grammar is specially designed to 

constrain the search to a canonical form for functions.  

Novel evolutionary search operators are designed to 

exploit the structure of the grammar.  The approach 

generates a set of symbolic models which collectively 

provide a tradeoff between error and model complexity.  
Experimental results show that the symbolic models 

generated are compact and easy to understand, making 

this an effective method for aiding understanding in 

analog design.  The models also demonstrate better 

prediction quality than posynomials. 

1 Introduction 

Symbolic models of analog circuits have many 

applications.   Fundamentally, they increase a designer’s 

understanding of a circuit, which leads to better decision-

making in circuit sizing, layout, verification, and topology 

design.  Automated approaches to symbolic model 

generation are therefore of great interest. 

In symbolic analysis, models are derived via topology 

analysis. [1] is a survey.  Its main weakness is that it is 

limited to linear and weakly nonlinear circuits.   

Leveraging SPICE simulations in modeling is 

promising because simulators readily handle nonlinear 

circuits, as well as environmental effects, manufacturing 

effects, and different technologies. Simulation data has 

been used to train neural networks as in [2,3,4]. However, 

such models provide no insight. 

The aim of symbolic modeling is to use simulation 

data to generate interpretable mathematical expressions 

that relate the circuit performances to the design variables.   

In [5,6], symbolic models are built from a posynomial 

template. The main problem is that the models are 

constrained to a template, which restricts the functional 

form and in doing so also imposes bias.  Also, the models 

have dozens of terms, limiting their interpretability.  

Finally, the approach assumes posynomials can fit the 

data; in analog circuits there is no guarantee of this, and 

one might never know in advance. 

The problem we address in this paper is how to 

generate symbolic models with more open-ended 

functional forms (i.e. without a pre-defined template), for 

arbitrary nonlinear circuits, and at the same time ensure 

that the models are interpretable. A target flow that 

reflects these goals is shown in Figure 1.   

We approach the question by using genetic 

programming (GP) [7] as a starting point.  GP generates 

symbolic expressions without the using a template, but 

those functions are overly complex.  So, we extend GP 

via a grammar specifically designed to have interpretable

symbolic models.  We name the approach CAFFEINE: 

Canonical Functional Form Expressions in Evolution. 

Figure 1: Template-free symbolic modeling flow 

The contributions of this paper are as follows: 

• To the best of our knowledge, a first-ever tool to do 

template-free symbolic modeling, with the flexibility of 

SPICE simulations therefore allowing modeling of any 

nonlinear circuits. 

• A means to make the models compact and 

understandable, yet with arbitrary accuracy; in fact 

providing a tradeoff between accuracy and complexity.  

Final models are highly predictive. 

• For GP, a specially designed grammar and related 

operators to ensure that all functions explored follow a 

canonical form, making them directly interpretable. 

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05) 
1530-1591/05 $ 20.00 IEEE 



This paper is organized as follows.  Section 2 defines 

the problem.  Section 3 gives background on GP, on 

which sections 4 and 5 build to describe CAFFEINE and 

the grammar.  Section 6 has results; section 7 concludes.    

2 Problem Formulation 

The problem that we address is formulated as follows: 

Given:

• A set of {x(t),y(t)},t=1..N data samples where x(t) is 

a d-dimensional design point t and y(t) is a corresponding 

circuit performance value measured from simulation of 

that design. 

• No model template 

Determine: 

• A set of symbolic models
*

f F∈  that together 

provide the optimal tradeoff between prediction error and 

some measure of complexity.   

Speed of model building is not considered a goal at 

this point; that is left to future research. 

3 Background: Genetic Programming 

Genetic Programming (GP) [7] is an evolutionary 

algorithm, with the distinguishing characteristic that GP 

individuals (points in the design space) are trees.

GP has issues to be addressed before it can be useful 

in symbolic model generation.  GP-evolved functions can 

be notoriously complex and un-interpretable; e.g. [7] 

showed functions so bloated that they take up a full page 

of dense text.  Also, overfitting is a risk because 

prediction quality does not influence model choice. 

The functional form of results from canonical GP is 

completely unrestricted.  While this sounds great 

compared to the restrictions of fixed-template regression, 

it actually goes a little too far.  Most importantly, an 

unrestricted form is almost always difficult to analyze.  

Also, an unrestricted form can cause undesirable biases in 

the search, such as tuning too many parameters which 

may even be redundant, or making it difficult for to add / 

remove basis functions.  The challenge is to find a way to 

restrict the form enough to overcome these problems, 

without constraining away any possible forms.   

4 CAFFEINE 

CAFFEINE uses GP as a starting point, but extends it 

in order to properly address template-free symbolic 

modeling.  It attacks the issues of complexity and 

interpretability in two main ways: a multi-objective 

approach that provides a tradeoff between error and 

complexity, and a specially designed grammar to 

constrain the search to specific functional forms without 

cutting out good solutions.  It also performs special post-

processing to further improve models. In CAFFEINE, the 

overall expression is a linear sum of weighted basis 

functions; therefore, each individual is a set of GP trees. 

4.1 Multi-Objective Approach 

CAFFEINE uses a state of the art multi-objective

evolutionary algorithm, namely NSGA-II [8].  NSGA-II 

returns a set of individuals that, collectively, trade off 

error and complexity (i.e. a nondominated set).   

“Error” is normalized mean-squared error.  

“Complexity” is dependent on the number of basis 

functions, the number of nodes in each tree, and the 

exponents of “variable combos” (VCs, described later): 

nvc( )

,

1 1

complexity( ) ( nnodes( ) vccost( ))

M
jf

b k j

j k

f w j vc

= =

= + +� �  (1) 

where wb is a constant to give a minimum cost to each 

basis function, nnodes(j)  is the number of tree nodes of 

basis function j, nvc(j) is number of VCs of basis 

function j, and 
dim 1

vccost(vc) abs(vc(dim))

d

vc
w

=

= � .

 The approach accomplishes simplification during 

generation by maintaining evolutionary pressure towards 

lower complexity.  The user avoids an a priori decision 

on error or complexity because the algorithm generates a 

set of models that provide tradeoffs of alternatives. 

5 Grammar and Operators 

In GP, a means of constraining search is via a 

grammar, as in [9]. Evolutionary operators must respect 

the derivation rules of the grammar, i.e. only subtrees 

with the same root can be crossed over, and random 

generation of trees must follow the derivation rules.  A 

basis function is the leaf nodes (terminal symbols) of the 

tree; internal nodes (nonterminal symbols) reflect the 

underlying structure; the tree root is the start symbol.  

Even though grammars can usefully constrain search, 

none have yet been carefully designed for functional 

forms.  In designing such a grammar, it is important to 

allow all functional combinations (even if just in one 

canonical form).  This includes an arbitrary number of 

products of expressions, and of sums of expressions.  Any 

desired single-input, dual-input, etc should be allowed.   

The CAFFEINE grammar maintains functions in a 

“canonical form” and meets those goals:   

REPVC => ‘VC’ | REPVC ‘*’ REPOP | REPOP
REPOP => REPOP ‘*’ REPOP | 1OP ‘(‘ ‘W’ ‘+’
REPADD ‘)’ | 2OP ‘(‘ 2ARGS ‘)’ | ... 3OP, 4OP
etc
2ARGS => ‘W’ ‘+’ REPADD ‘,’ MAYBEW | MAYBEW ‘,’
‘W’ ‘+’ REPADD
MAYBEW => ‘W’ | ‘W’ ‘+’ REPADD
REPADD => ‘W’ ‘*’ REPVC | REPADD ‘+’ REPADD
2OP => ‘DIVIDE’  | ‘POW’ | ‘MAX’ | ...
1OP => ‘INV’ | ‘LOG10’ | ...

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05) 
1530-1591/05 $ 20.00 IEEE 



Terminal symbols are in quotes.  Each nonterminal 

symbol has a set of derivation rules separated by ‘|’.  The 

start symbol is REVPC; one tree is used for each basis 

function; basis functions are linearly weighted using least-

squares learning. Basis function operators include: 

creating a new individual by randomly choosing >0 basis 

function from each of 2 parents; deleting a random basis 

function; adding a randomly generated tree as a basis 

function;  copying a subtree from one individual to make 

a new basis function for another. 

The root is a product of variables and/or nonlinear 

functions (REPVC and REPOP).  Within each nonlinear 

function is a weighted sum of basis functions (REPADD).  

Each basis function can be, once again, a product of 

variables and/or nonlinear functions. And so on.   

 The grammar is context-free, with two exceptions for 

the sake of enhanced search:  

• Weights (W). A real value is stored in the range  

[ ]2 * , 2 *B B− + at each W node.  During interpretation of 

the tree the value is transformed into 

[ ] [ ] [ ]1 , 1 1 , 10.0e B e B e B e B− + − − − +∪ ∪ .  B is user-set, e.g. 

10. In this way parameters can take on very small or very 

large negative or positive values.  Zero-mean Cauchy 

mutation [10] is  an operator on the real value. 

• Single-basis rational combinations of variables

(VC).  With each VC a vector is stored, with integer 

value per design variable as the variable’s exponent.  An 

example vector is [1,0,-2,1], which means 
2

1 4 3
( * ) ( )x x x .

For interpretability, real-valued and fractional-valued 

exponents are not allowed.  VC operators include: one 

point crossover, and randomly adding or subtracting to an 

exponent value. 

POW(a,b) is a
b
.  Via 2ARGS with MAYBEW, either 

the base or the exponent (but not both) can be constants.   

The designer can turn off any of the rules if they are 

considered unwanted or unneeded.  For example, one 

could easily restrict the search to polynomials or rationals, 

or remove potentially difficult-to-interpret functions such 

as sin and cos.  The designer could change or extend the 

operators or inputs, e.g. include wi , li, and wi / li .

5.1 CAFFEINE Post-Processing 

After the evolutionary run is complete, simplification 

after generation (SAG) is performed on each of the final 

set of models in the tradeoff.  SAG is accomplished via 

the Predicted Residual Sums of Squares (PRESS) statistic 
( )

( )
t

tξ −

 [11] coupled with forward regression [12].  PRESS 

approximates leave-one-out cross-validation on the linear 

parameters; forward regression prunes basis functions that 

harm predictive ability.  This gives predictive robustness 

to the linear parameters.  

After that, the tradeoff models are evaluated on test 

data, and filtered down to only models that are on the 

tradeoff of testing error and complexity.  Such a final step 

might not be possible with more deterministic approaches 

having more homogenous results, but the stochastic 

nature of CAFFEINE, causing more heterogeneous 

results, makes such filtering possible.  

Figure 2: Schematic of high-speed CMOS OTA 

6 Experiments 

6.1 Experimental Setup 

A prototype CAFFEINE system was written in about 

2000 lines of Matlab code.  The grammar was defined in a 

separate text file and parsed by the CAFFEINE system.  

Single-input operators allowed were: x , loge(x),

log10(x), 1/x, abs(x), x2
, sin(x), cos(x), tan(x), max(0, x),

and min(0,x), 2
x
, 10

x
, where x is an expression.  Double-

input operators allowed are x1+x2, x1*x2, max(x1,x2),

min(x1,x2), power(x1,x2), and x1/x2. Also, lte(testExpr,

condExpr, exprIfTestLessThanCond, elseExpr) and 

lte(testExpr, 0, exprIfTestLessThan0, elseExpr) were 

used. Any input variable could have an exponent in the 

range {…,-2, -1, 1, 2, …}.  While real-valued exponents 

could have been used, that would have harmed 

interpretability. 

The circuit being modeled is a high-voltage CMOS 

OTA as shown in Figure 2.  The goal is to discover 

expressions for low-frequency gain (ALF), unity-gain 

frequency (fu), phase margin (PM), input-referred offset 

voltage (voffset), and the positive and negative slew rate 

(SRp, SRn).  To allow a direct comparison to the 

posynomial approach [6], an almost-identical problem 

setup was used, as well as identical simulation data. The 

only difference is that because scaling makes the model 

less interpretable, neither the inputs nor outputs were 

scaled; the one exception is that fu is log-scaled so that 

mean-squared error calculations and linear learning are 

not wrongly biased towards high-magnitude samples of fu.

The technology is 0.7 �m CMOS.  The supply voltage 

is 5V.  Vth,nom is 0.76V and –0.75V for NMOS and PMOS 

devices, respectively. The load capacitance is 10 pF. 

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05) 
1530-1591/05 $ 20.00 IEEE 



Good training data is essential to the methodology.  

The choice of design variables and sampling  

methodology determines the extent to which the designer 

can make inferences about the physical basis, and what 

regions of design space the model is valid in.  We used an 

operating-point driven formulation [13], where currents 

and transistor drive voltages comprise design variables 

(13 variables in our case).  Device sizings could have 

been used instead; it all depends on designer preference.  

Full orthogonal-hypercube Design-Of-Experiments 

(DOE) sampling of design points was used, with scaled 

dx=0.1 (the simpler problem of dx=0.01 is ignored in this 

paper) to have 243 samples with three simulations each, 

some of which did not converge. Simulation time for one 

sample was about 1 s, or 4 min for all samples; this is 

fully dependent on the circuit, analyses, and experimental 

design being used.  These samples, otherwise unfiltered, 

were used as training data inputs.  Testing data inputs 

were also sampled with full orthogonal-hypercube DOE 

and 243 samples, but with dx=0.03.  Thus, in this 

experiment we are creating a somewhat localized model; 

one could just as readily model a broader design space.   

 The run settings were: maximum number of basis 

functions = 15, population size 200, 5000 generations, 

maximum tree depth 8, and parameter range 

[ ] [ ] [ ]1 10, 1 10 0.0 1 10,1 10e e e e− + − − ∪ ∪ − + . All operators 

had equal probability, except parameter mutation was 5x 

more likely.  Complexity measure settings were wb = 10, 

wvc = 0.25. Just one run was done for each performance 

goal, for 6 runs total.  (The aim was proof-of-concept, not 

efficiency.)  Each run took about 12 hours on a 3 GHz 

Pentium IV Linux workstation.  After each run, SAG 

(section 5.1) was done, taking about 10 min. 

We use normalized mean-squared error on the training 

data and separate testing data, which are standard 

measurements in regression literature.  Testing error is 

ultimately the more important measure. These measures 

are identical to two of the three posynomial “quality of 

fit” measures [6]: qwc is training error, and qtc is testing 

error.  (qwc and qtc are identical as long as the constant ‘c’ 

in the denominator is zero, which [6] did.)  We ignore qoc,

which measured the error at just one training point. 

6.2 Results and Discussion 

Let us first see if CAFFEINE generates tradeoffs 

between training error (qwc) and complexity, as expected. 

Figure 3 illustrates tradeoff results.  In each instance, 

CAFFEINE generates a tradeoff of about 50 different 

models.  As expected, a zero-complexity model (i.e. just a 

constant) has the highest training error of 10-25%; the 

highest complexities have the lowest training error, of 1-

3%.  Since only one run was done for each performance 

characteristic, the reliability of the algorithm is promising.     

As expected, the number of basis functions usually 

rises with the complexity.  This is not always the case, 

however, as larger trees increase complexity too; the 

plateaus and dips in the basis function curves show that 

this does indeed occur. In every case, CAFFEINE used 

the maximum allowed number of basis functions (15) to 

achieve the lowest error.  Undoubtedly, error could have 

been reduced further, but models with 15 basis function 

models are already at the edge of interpretability.    

The testing error (qtc) is also shown in Figure 3.  We 

see that unlike training error, it is not monotonically 

decreasing as complexity rises.  This means that some less 

complex models are more predictive than more complex 

ones.  However, if we prune the models down to the ones 

that give a tradeoff between testing error and complexity, 

we get the rightmost column of Figure 3. These 5-10 

models for each performance goal are of the most interest.   

It is notable that the testing error is lower than the 

training error in almost all cases.  This sounds promising, 

but such behavior is rare in the regression literature, and 

made us question what was happening.  It turns out there 

is a valid reason: recall that the training data is from 

extreme points of the sampling hypercube (scaled 

dx=0.10), and the testing data is internal to the hypercube 

(dx=0.03).  This testing data tests interpolation ability.  

Thus, models that really are predictive should be able to 

interpolate well, even at the cost of a perfect fit to the 

extreme points.  In any case, to validly have testing error 

lower than training error demonstrates the strength of the 

CAFFEINE approach.  

Let us now examine the actual symbolic models 

generated by CAFFEINE.  We ask: “what are all the 

symbolic models that provide less than 10% error in both 

training and testing data?” Table I shows those functions 

(fu has been converted to its true form by putting the 

generated function to the power of 10).  We see that each 

form has up to 4 basis functions, not including the 

constant.  For voffset, a constant was sufficient to keep the 

error within 10%.  We see that a rational functional form 

was favored heavily; at these target errors only one 

nonlinear function, ln( ), appears (for ALF).  That 

expression effectively says that the order of magnitude of 

some input variables is useful.   

  One can examine the equations in more detail to gain 

an understanding of how design variables in the topology 

affect performance.  For example, ALF is inversely 

proportional to id1, the current at the OTA’s differential 

pair.  Or, SRp is solely dependent on id1 and id2 and the 

ratio id1 / id2.  Or, within the design region sampled, the 

nonlinear coupling among the design variables is quite 

weak, typically only as ratios for variables of the same 

transistor. Or that each expression only contains a 

(sometimes small) subset of design variables.  Or, that 

transistor pairs M1 and M2 are the only devices affecting 

five of the six performances (within 10%).   

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05) 
1530-1591/05 $ 20.00 IEEE 



Figure 3: The two leftmost columns show generated models’ training error (qwc), testing error (qtc), and number 
of bases vs. complexity for each performance goal; all models in the tradeoff of training error vs. complexity are 

shown.  The rightmost column shows only models that are on the tradeoff of testing error vs. complexity too. 

Test error 
(%) 

Train error 
(%) 

PM Expression 

3.98 15.4 90.2 

3.71 10.6 90.5 + 186.6 * id1    + 22.1 * id2 / vds2   

3.68 10.0 90.5 + 190.6 * id1 / vsg1  +  22.2 * id2 / vds2 

3.39 8.8 90.1 + 156.85 * id1 / vsg1 - 2.06e-03 * id2 / id1 + 0.04 * vgs2 / vds2 

3.31 8.0 91.1 - 2.05e-3 * id2 / id1 + 145.8 * id1 + 0.04 * vgs2 / vds2  - 1.14 / vsg1  

3.20 7.7 90.7 - 2.13e-3 * id2 / id1 + 144.2 * id1 + 0.04 * vgs2 / vds2  - 1.00 / (vsg1*vsg3)  

2.65 6.7 90.8 - 2.08e-3 * id2 / id1 + 136.2 * id1 + 0.04 * vgs2 / vds2 -1.14 / vsg1 + 0.04 * vsg3 / vsd5 

2.41 3.9 91.1 - 5.91e-4 * (vsg1*id2) / id1 + 119.79 * id1 + 0.03 * vgs2 / vds2 - 0.78 / vsg1 + 0.03 * vsg1 / vsd5  
-2.72e-7 / (vds2*vsd5*id1) +  7.11 * (vgs2*vsg4*id2) - 0.37 / vsg5 - 0.58 / vsg3 - 3.75e-6 / id2 - 5.52e-6 / id1 

Table II: CAFFEINE-generated models of PM, in order of decreasing error and increasing complexity 

Target (%)  Perf. 

qwc qtc

Expression 

ALF 10 10 -10.3 + 7.08e-5 / id1  
  + 1.87 * ln( -1.95e+9 + 1.00e+10 / (vsg1*vsg3)+ 1.42e+9 *(vds2*vsd5) / (vsg1*vgs2*vsg5*id2))

fu 10 10 10^( 5.68 - 0.03 * vsg1 / vds2 - 55.43 * id1+ 5.63e-6 / id1 )

PM 10 10 90.5 + 190.6 * id1 / vsg1  +  22.2 * id2 / vds2

voffset 10 10 - 2.00e-3 

SRp 10 10 2.36e+7 + 1.95e+4 * id2 / id1 - 104.69 / id2 + 2.15e+9 * id2 + 4.63e+8 * id1

SRn 10 10 - 5.72e+7 - 2.50e+11 * (id1*id2) / vgs2 + 5.53e+6 * vds2 / vgs2 + 109.72 / id1

Table I: CAFFEINE-generated symbolic models which have less than 10% training and testing error 

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05) 
1530-1591/05 $ 20.00 IEEE 



By only putting the relevant variables into a model, 

the approach demonstrates the potential to provide 

expressions for circuits with significantly more variables. 

One may improve understanding in another fashion: 

by examining expressions of varying complexity for a 

single performance characteristic.  Low-complexity 

models will show the macro-effects; alterations to get 

improved error point show how the model is refined to 

handle second-order effects.  Table II shows models 

generated for PM in decreasing training and testing error.  

A constant of 90.2, while giving 15 % training error, had 

only 4% test error.  For better prediction, CAFFEINE 

injected two more basis functions; one basis being the 

current into the differential pair id1, the other basis, id2 / 

vds2, the ratio of current to drain-source voltage at M2.  

The next model turns the input current term into a ratio id1

/ vsg1. Interestingly, and reassuringly, almost all ratios use 

the same transistor in the numerator and denominator.  

Such analyses achieve the aim of this tool: to improve 

understanding of the topology. 

Figure 4: Comparison of CAFFEINE testing error to 
posynomial testing error; also to training error 

We also compared CAFFEINE to the posynomial 

approach using the numbers in [5]. We first compare the 

test and training errors.  To pick a model from a 

CAFFEINE-generated tradeoff for comparison, we fixed 

the training error to what the posynomial achieved, then 

compared testing errors.  Results are in Figure 4.  In one 

case, voffset, CAFFEINE did not meet the posynomial 

training error (0.4%), so it probably could have for more 

basis functions; we instead picked an expression which 

very nearly matched the posynomial approach's testing 

error of 0.8%.  What we saw in previous data, and we see 

again here, is that CAFFEINE has lower testing error than 

training error, which provides great confidence to the 

models.  In contrast, in all cases but voffset, the 

posynomials had higher testing error than training error, 

even on this interpolative data set.  CAFFEINE models' 

testing errors were 2x to 5x lower than the posynomial 

models.  The exception is voffset, where the posynomial 

achieves 0.8% testing error compared to 0.95% for 

CAFFEINE.  With posynomials having weak prediction 

ability even in interpolation, in comparison to more 

compact models, one might question the trustworthiness 

of constraining models of analog circuits to posynomials.   

7 Conclusion 

This paper presented CAFFEINE, a tool which for the 

first time can generate interpretable, template-free 

symbolic models of nonlinear analog circuit performance 

characteristics.  CAFFEINE is built upon genetic 

programming, but its key is a grammar that restricts 

symbolic models to a canonical functional form.  

CAFFEINE generates a set of models that collectively 

trade off between error and complexity.  Visual inspection 

of the models demonstrates that the models are 

interpretable.  These models were also shown to be 

significantly better than posynomials in predicting unseen 

data. 

8 References 

                                                          

[1] G. E. Gielen, “Techniques and Applications of Symbolic 

Analysis for Analog Integrated Circuits: A Tutorial Overview”, 

in Computer Aided Design of Analog Integrated Circuits And 

Systems, R.A. Rutenbar et al., eds., IEEE, 2002, pp. 245-261 

[2] P. Vancorenland, G. Van der Plas, M. Steyaert, G. 

Gielen, W. Sansen,  “A Layout-aware Synthesis Methodology 

for RF Circuits,” Proc. ICCAD 01, Nov. 2001, p.358 

[3] H. Liu, A. Singhee, R.A. Rutenbar, L.R. Carley, 

“Remembrance of Circuits Past: Macromodeling by Data 

Mining in Large Analog Design Spaces,” Proc. DAC 02, June 

2002, pp. 437-442    

[4] G. Wolfe, R.Vemuri, “Extraction and Use of Neural 

Network Models in Automated Synthesis of Operational 

Amplifiers.” IEEE Trans. CAD, Feb. 2003 

[5] W. Daems, G. Gielen, and W. Sansen, “An Efficient 

Optimization-based Technique to Generate Posynomial 

Performance Models for Analog Integrated Circuits”,  Proc. 

DAC 02, June 2002 

[6] W. Daems, G. Gielen, W. Sansen, "Simulation-based 

generation of posynomial performance models for the sizing of 

analog integrated circuits," IEEE Trans. CAD 22(5), May 2003, 

pp. 517-534 

[7] John R. Koza. Genetic Programming. MIT Press, 1992. 

[8] K. Deb, S. Agrawal, A. Pratap, T.A. Meyarivan, “A Fast 

Elitist Non-dominated Sorting Genetic Algorithm for Multi-

objective Optimization: NSGA-II,” Proc. PPSN VI, Sept. 2000,  

pp. 849-858 

[9] P. A. Whigham, “Grammatically-based Genetic 

Programming,” Proc. Workshop on GP: From Theory to Real-

World Applications, J.R. Rosca, ed., 1995. 

[10] X. Yao, Y. Liu and G. Lin, ``Evolutionary 

Programming Made Faster,''  IEEE Trans. Evolutionary 

Computation 3(2), July 1999, pp. 82-102 

[11] L. Breiman, “Stacked Regression,” Machine Learning,

vol. 5, 1996, pp. 49-64 

[12] X. Hong, P.M. Sharkey, K. Warwick, "A Robust 

Nonlinear Identification Algorithm Using PRESS Statistic and 

Forward Regression", IEEE Trans. Neural Networks 14(2), 

March 2003, pp. 454-458 

[13] F. Leyn, G. Gielen, W. Sansen, “An Efficient Dc Root 

Solving Algorithm with Guaranteed Convergence for Analog 

Integrated CMOS Circuits”, Proc. ICCAD 98, Nov. 1998 

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05) 
1530-1591/05 $ 20.00 IEEE 


