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Buffer Insertion Considering Process Variation *

A comprehensive probabilistic methodology is proposed to solve the buffer insertion problem with the consideration of process variations. In contrast to a recent work, we point out, for the first time, that the correlation between the required arrival time and the downstream loading capacitance must be considered in order to solve the problem "correctly". We develop an efficient bottom-up recursive algorithm to calculate the joint probability density function that accurately captures the above correlation, and propose effective pruning rules to exclude probabilistically inferior solutions. We verify our buffer insertion using timing analysis with both device and interconnect variations, and show that compared to the conventional buffer insertion algorithm using nominal device and interconnect parameters, our new buffer insertion methodology can reduce the probability of timing violation by up to 30%.

INTRODUCTION

Ultra deep submicron process exhibits significant variations [START_REF] Borkar | Parameter variations and impacts on circuits and microarchitecture[END_REF] [START_REF] Bowman | Impact of die-to-die and within-die parameter fluctuations on the maximum clock frequency distribution[END_REF]. One of the causes is due to critical dimension being scaled quicker than the development of its controlling process technology [START_REF] Visweswariah | Death, taxes and failing chips[END_REF]. The variability of physical dimensions such as the effective channel length of a transistor is therefore proportionately increasing. As a result of these effects, the performance of manufactured circuits differs significantly from what a circuit simulator predicates under nominal circuit parameters.

Studies on process variations have been mainly focused on variability modeling and statistical timing analysis (STA). For example, [START_REF] Jess | Statistical timing for parametric yield prediction of digital integrated circuits[END_REF] proposed three approaches to compute the probability density functions (p.d.f.) that describe the timing distribution of the circuits. [START_REF] Agarwal | Computation and refinement of statistical bounds on circuit delay[END_REF] advocates to estimate circuit timing variations by computing bounds. However, there are very few works on design optimization that consider process variation effects. For example, essential to high performance circuit design, buffer insertion has been studied extensively in literature e.g., [START_REF] Van Ginneken | Buffer placement in distributed RC-tree networks for minimal Elmore delay[END_REF] and [START_REF] Alpert | Wire segmenting for improved buffer insertion[END_REF]. Yet, none of them has considered the effect of process variations. To the best of our knowledge, the only work that entails such a flavor is by [START_REF] Khandelwal | A probabilistic approach to buffer insertion[END_REF], where a buffer insertion problem that considers the effect of wire length variation has been formulated. However, as we shall point out in Section 3, an unrealistic assumption is made in [START_REF] Khandelwal | A probabilistic approach to buffer insertion[END_REF] in an attempt to solve such a problem.

The major contribution of this paper is two-fold: (1) we formulate a buffer insertion problem with the consideration of process variations for both devices and interconnects; and

(2) we propose a comprehensive probabilistic methodology to solve the above problem efficiently. Preliminary experiment results have shown that by using our methodology, the timing constraints can be satisfied with a much higher probability than the conventional design under nominal values [START_REF] Van Ginneken | Buffer placement in distributed RC-tree networks for minimal Elmore delay[END_REF].

The rest of the paper is organized as follow. Section 2 gives the preliminary and modeling aspects of this work. We formulate the problem for buffer insertion considering process variation (BIPV) in Section 3. Section 4 discusses the details of the algorithm and the methodology for solving the BIPV problem. We present experiment results in Section 5 and conclude the paper with discussion of our future work in Section 6.

PRELIMINARY AND MODELING

Buffer Insertion Preliminary

For simplicity of presentation, we follow the same argument as [START_REF] Van Ginneken | Buffer placement in distributed RC-tree networks for minimal Elmore delay[END_REF] by assuming that the routing tree is given as a binary routing tree and the legal buffer positions (nodes) are directly after the branching points of the tree1 . For a given buffered routing tree, we associate every legal buffer position t in the tree with two numbers: the input loading capacitance (or downstream loading capacitance) Lt and the required arrival time Tt. Denoting c and r as interconnect's unit length capacitance and sheet resistance, respectively, we model each interconnect segment in the routing tree with length l i as a π model, where the resistance is given by r × li, and the capacitance is given by c × li. For a given technology, we associate each buffer from the library with three numbers: the input capacitance C b , the output resistance R b and the intrinsic delay T b . Under the Elmore delay model, the L t and T t can be computed as follows.

If node t is obtained by adding a wire of length li at its direct downstream node n, then

Lt = Ln + c • li (1) 
T t = T n -r • l i • L n - 1 2 • r • c • l 2 i . (2) 
If node t is obtained by adding a buffer at its direct down-stream node n, then

Lt = C b (3) Tt = Tn -T b -R b • Ln. (4) 
If node t is obtained by merging two nodes m and n, then

Lt = Ln + Lm (5) Tt = min(Tn, Tm). (6) 
It has been proved in [START_REF] Van Ginneken | Buffer placement in distributed RC-tree networks for minimal Elmore delay[END_REF] that the buffer insertion problem, without considering process variation, can be solved optimally via dynamic programming. Moreover, by properly defining the dominance relationship (or pruning rule) between two solutions, i.e., solution (L1, T1) dominates solution (L 2 , T 2 ) if condition L 1 < L 2 and T 1 > T 2 are satisfied, [START_REF] Van Ginneken | Buffer placement in distributed RC-tree networks for minimal Elmore delay[END_REF] proved that by keeping only dominating solutions at every node, the dynamic programming approach can solve the problem in polynomial time without loosing optimality.

Device and Interconnect Variations

Device variation and interconnect variation are considered as two typical effects of process variations in this work. Because of the process variations in gate thickness, doping density and channel length, buffers' C b , R b , and T b deviate from their respective nominal values. We model such an effect by describing them as random variables that are characterized by a joint probability density function (j.p.d.f.) g(C b , R b , T b ), whose domain is given by ΩC b b ,T b . Due to variations in masking, the manufactured interconnect width and space are also different from their nominal values. We model such an effect by assuming that interconnect's c and r are random variables and that they can be described by the j.p.d.f. as h(c, r), whose domain is given by Ωc,r. As the mechanisms of inducing variations on devices and interconnect are different, it is reasonable to assume that the device and interconnect variations are mutually independent.

BIPV PROBLEM FORMULATION

Formulation 1. Buffer Insertion considering Process Variation (BIPV) Problem: Given the topology of a routing tree with parasitic capacitance and resistance, required arrival times and loading capacitances specified at all sinks, determine the placement of buffers in the routing tree such that the probability of the required arrival time at the root meeting the design specification is maximized with the consideration of process variations for both interconnect and devices, and as a secondary objective, the number of buffers used are minimized.

Even though the conventional buffer insertion problem can be solved optimally via dynamic programming [START_REF] Van Ginneken | Buffer placement in distributed RC-tree networks for minimal Elmore delay[END_REF], solving BIPV problem "optimally" becomes much complicated. The difficulty lies in that:

• Lt and Tt are no longer fixed values, but two random variables. How do we compare two random solutions to tell that one is better than the other?

• Lt and Tt are interdependent, as both are complicated functions of all downstream random variations. Therefore, j.p.d.f., instead of their respective p.d.f., should be used to correctly characterize Lt and Tt.

Obviously, the conventional deterministic dominance relationship between two solutions is no longer applicable. A straight forward extension is to use the mean value as a metric to compare two random solutions. Despite the simplicity of this metric, however, by using the following small example, we show that this simple parametric scheme do not suffice to provide a good guideline for designers to distinguish different design alternatives.

Suppose we are given four buffer insertion solutions, and for simplicity, we assume that all solutions have the same loading capacitance L with different required arrival time Tt, which is described by a discrete probability mass function. The four solutions are: (A) (L, T 1 ) with P(T 1 = 100) = 1; (B) (L, T2) with P(T2 = 200) = 0.5 and P(T2 = 0) = 0.5; (C) (L, T3) with P(T3 = 1000) = 0.1 and P(T3 = 0) = 0.9; (D) (L, T4) with P(T4 = 200) = 0.9 and P(T4 = -800) = 0.1.

It is obvious that the above four solutions have very different characteristics and designers definitely want to distinguish them for a given design. However, after some simple calculations, we find that all four solutions result in the same mean value of 100 for the required arrival time Tt. Therefore, if the metric is purely based on the mean values, we cannot distinguish the above four designs at all! It may seem tempting for people to argue that they can extend the mean value metric (first order moment) by including variance (second order moment) or even higher order moments as additional metrics to compare solutions. But it is easy to construct cases such that none of the above simple metrics would work in order to distinguish different solutions with variations 2 .

Another common practice that people tend to adopt is to ignore the dependence between Lt and Tt. For example, in [START_REF] Khandelwal | A probabilistic approach to buffer insertion[END_REF] where the wire length is the only source of variation3 , it is assumed that there is no correlation between L t and T t , so that the pruning rules can be carried out based on simple multiplication of their respective p.d.f.s. However, this assumption does not hold in general. For example, if a downstream node n is connected to an upstream node t through an interconnect of length l, then from (1) and ( 2), we can clearly see that any increase in l by δ increases L t by cδ while decreases T t by rδ + 1 2 rc(2δl + δ 2 ). Treating T t and Ct as two independent parameters ignores the fact that increasing l in fact collectively decreases Tt and increases Ct, thus causing the solution to degrade much more quickly than before. Therefore, the j.p.d.f. must be used to correctly describe L t and T t 's interdependence.

BIPV ALGORITHMS

Algorithm Overview

We follow the same dynamic programming paradigm as [START_REF] Van Ginneken | Buffer placement in distributed RC-tree networks for minimal Elmore delay[END_REF] to solve the BIPV problem. The overall algorithm (BIPV-ALG) is shown in the top block of Fig. 1. We first traverse the routing tree bottom-up once and build a set of dominant BIPV solutions for all sub-trees. After we reach the root, we pick an optimal solution from the set of kept dominant solutions, optimizing for the required arrival time and the number of buffers inserted. We then back-track the chosen optimal solution to determine the solution for each sub-tree recursively. The key part to this algorithm is the bottom-up traversal of the routing tree. Therefore, we also present the detailed bottom-up algorithm in the bottom block of Fig. 1.

BIPV-ALG(t)

Input: root of the routing tree t.

Output: Solution to BIPV problem. Z = BIPV-BOTTOM-UP-ALG(t); 

Z * = PICK-BEST-SOL(Z); BACK-TRACK-SOL(Z * ); BIPV-BOTTOM-UP-ALG(t) /*

Computation of J.P.D.F.

According to (1) and (2), or (3) and ( 4), we know that the upstream variations do not change the distribution of Lt and Tt, as Lt and Tt are only functions of node t's downstream random variations. Therefore, L t and T t 's distributions are independent of their upstream random variations. Moreover, if (Lt1, Tt1) and (Lt2, Tt2) share some (or do not share any) common down-stream paths, then Lt1, Tt1, Lt2, and Tt2 are mutually correlated (or independent).

Even thought (Lt, Tt) depend on their downstream random variations in a complicated way, the way we compute (L t , T t ) is via the recursive equations according to either (1) and (2), or (3) and (4), or ( 5) and [START_REF] Van Ginneken | Buffer placement in distributed RC-tree networks for minimal Elmore delay[END_REF]. Therefore, we develop an efficient algorithm to compute the j.p.d.f. of (Lt, Tt) in a recursive fashion while we traverse the routing tree. This is particularly useful in the context of dynamic programming, because only incremental computation is necessary at each node. To develop the recursive computation formula, we employ the multivariate transformation technique [START_REF] Hogg | Introduction to Mathematical Statistics[END_REF]. We denote the j.p.d.f. of node t's direct downstream nodes as fL n ,T n with its domain given by ΩL n ,T n .

J.P.D.F. after Adding a Wire

To compute the j.p.d.f. of (L t , T t ) obtained from ( 1) and (2) via the multivariate transformation technique, we introduce two new random variables X and Y as follows:

X = c; ( 7 ) Y = r; ( 8 ) 
Lt = Ln + c • li; ( 9 ) 
Tt = Tn -r • li • Ln - 1 2 • r • c • l 2 i . (10) 
By transforming variables, we obtain c = X;

( 1 1 ) r = Y ;

( 1 2 )

L n = L t -X • l i ; ( 1 3 
)

Tn = Tt + Y • li • Lt - 1 2 • Y • X • l 2 i . (14) 
It is easy to verify that the mapping between (c, r, Ln, Tn) and (X, Y, L t , T t ) is a one-to-one mapping. Therefore, the Jacobian is given by

J = ∂c ∂X ∂c ∂Y ∂c ∂L t ∂c ∂T t ∂r ∂X ∂r ∂Y ∂r ∂L t ∂r ∂T t ∂L n ∂X ∂L n ∂Y ∂L n ∂L t ∂L n ∂T t ∂T n ∂X ∂T n ∂Y ∂T n ∂L t ∂T n ∂T t = 1 0 0 0 0 1 0 0 -li 0 1 0 1 2 • Y • l 2 i li • Lt -1 2 • X • l 2 i Y • li 1 = 1. (15) 
As c and r are independent of Ln and Tn, the j.p.d.f. of (c, r, Ln, Tn) is given by: fc,r,L n ,Tn = h(c, r) • fL n ,Tn . Therefore, we obtain the j.p.d.f. of (X, Y, Lt, Tt) as follows:

fX,Y,L t,Tt = |J| • fc,r,L n,Tn (c, r, Ln, Tn)

( 1 6 ) = h(c, r) • fL n,Tn (Ln, Tn) = h(x, y) • fL n ,T n (Lt -X • li, Tt + Y • li • Lt - X • Y • l 2 i 2 )
Then the j.p.d.f. of (L t , T t ) is obtained by

fL t ,Tt = ¡ Ω X,Y (L t ,T t ) fX,Y,L t ,Tt dXdY, (17) 
where Ω X,Y (L t , T t ) is the domain for X, Y in terms of L t and Tt. Knowing c and r's domain Ωc,r and (Ln, Tn)'s domain ΩL n,T n, we can deduce ΩX,Y (Lt, Tt) according to ( 7), (8) ( 9) and (10).

J.P.D.F. after Adding a Buffer

To compute the j.p.d.f. of (Lt, Tt) obtained from (3) and (4) via the multivariate transformation technique, we introduce three new random variables X, Y and Z as follows:

X = L n ; ( 1 8 ) Y = R b ; ( 1 9 ) Z = T b ;
( 2 0 )

Lt = Cb; ( 2 1 ) Tt = Tn -Tb -Rb • Ln. ( 22 
)
By transforming variables, we obtain

Cb = Lt; ( 2 3 ) R b = Y ; ( 2 4 ) T b = Z;
( 2 5 ) Ln = X;

( 2 6 )

Tn = Tt + Z + Y • X. (27) 
It is easy to show that the mapping between (C b , R b , T b , Ln, Tn) and (X, Y, Z, L t , T t ) is a one-to-one mapping. Therefore, the Jacobian is given by

J = ∂C b ∂X ∂C b ∂Y ∂C b ∂Z ∂C b ∂L t ∂C b ∂T t ∂R b ∂X ∂R b ∂Y ∂R b ∂Z ∂R b ∂Lt ∂R b ∂Tt ∂T b ∂X ∂T b ∂Y ∂T b ∂Z ∂T b ∂L t ∂T b ∂T t ∂L n ∂X ∂L n ∂Y ∂L n ∂Z ∂L n ∂L t ∂L n ∂T t ∂T n ∂X ∂T n ∂Y ∂T n ∂Z ∂T n ∂L t ∂T n ∂T t = 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 Y X 1 0 1 = -1. ( 28 
)
As C b , R b , and T b are independent of Ln and Tn, the j.p.d.f. of (C b , R b , T b , L n , T n ) is given by: f C b ,R b ,T b ,Ln,Tn =g(C b , R b , T b ) • f Ln,Tn . Therefore, we obtain the j.p.d.f. of (X, Y, Z, Lt, Tt) as follows:

fX,Y,Z,L t ,T t = |J| • fC b ,R b ,T b ,Ln,Tn = g(C b , R b , T b ) • fL n ,T n (29) = g(Lt, Y, Z) • fL n ,T n (X, Tt + Z + Y • X).
Then j.p.d.f. of (L t , T t ) is obtained by

fL t ,T t = ¡ Ω X,Y,Z (Lt,Tt)
fX,Y,Z,L t ,T t dXdY dZ, (30)

where Ω X,Y,Z (X, Y, Z) is the new domain for X, Y and Z in terms of L t and T t . Knowing C b , R b and T b 's domain ΩC b ,R b ,T b and (Ln, Tn)'s domain ΩL n ,T n, we can deduce ΩX,Y,Z(X, Y, Z) according to (18), ( 19), (20), ( 21) and (22).

J.P.D.F. after Merging Two Solutions

To compute the j.p.d.f. for (Lt, Tt) after merging two solutions according to ( 5) and ( 6), we introduce two new random variables as follows:

X = L m (31) Y = T n + T m (32) Lt = Ln + Lm (33) Tt = min(Tn, Tm) ( 3 4 ) 
Because of the min-function, there is no one-to-one mapping relation between (Lm, Tm, Ln, Tn) and (X, Y, Lt, Tt), thus we cannot use the multivariate transformation technique to compute the j.p.d.f. of (L t , T t ) directly. But we note that the original domain ΩL m,Tm,Ln ,Tn for (Lm, Tm, Ln, Tn) can be divided into two disjoint sub-domains Ω1 and Ω2, where Ω1 is the sub-domain with Tm ≤ Tn and Ω2 is the other subdomain with Tm > Tn. For each disjointed sub-domain, we can show that there exists a one-to-one mapping between (L m , T m , L n , T n ) and (X, Y, L t , T t ), thus we can compute the j.p.d.f. for each sub-domain by using the multivariate transformation technique. Then by combining the two subdomains' j.p.d.f., we can compute the j.p.d.f. for the whole domain [START_REF] Hogg | Introduction to Mathematical Statistics[END_REF]. We first find the j.p.d.f. for sub-domain Ω1 with Tm ≤ Tn. We have:

Tt = min(Tm, Tn) = Tm (35)
After transformation of variables, we have

Lm = X; ( 3 6 ) L n = L t -X; ( 3 7 ) T m = T t ; ( 3 8 ) T n = Y -T t . ( 39 
)
The Jacobian is given by 

J = ∂Lm ∂X
= 1 0 0 0 -1 0 1 0 0 0 0 1 0 1 0 -1 = 1. ( 40 
)
As (Lm, Tm) is independent of (Ln, Tn), the j.p.d.f. of (Lm, Tm, Ln, Tn) is given by: fL m ,T m ,L n ,T n =fL m ,T m • fL n ,T n , Therefore, we can obtain the j.p.d.f. of (X, Y, Lt, Tt) in sub-domain Ω1 as follows:

fΩ 1 = |J | • fL m ,T m ,L n ,T n = fL m ,T m • fL n ,T n = fL m ,T m (X, Tt) • fL n ,T n (Lt -X, Y -Tt). (41)
Similarly, for the sub-domain Ω2 with Tm > Tn, We have:

fΩ 2 = |J| • fL m,Tm,Ln ,Tn = fL m,Tm (X, Y -Tt) • fL n ,Tn (Lt -X, Tt). ( 42 
)
Combining ( 41) and ( 42) together, we obtain the The j.p.d.f. for (X, Y, L t , T t ) in the whole domain Ω X,Y,Lt,Tt as follows [START_REF] Hogg | Introduction to Mathematical Statistics[END_REF]:

f X,Y,Lt,Tt = f Ω 1 (X, Y, L t , T t ) + f Ω 2 (X, Y, L t , T t ) (43) = f Lm ,Tm (X, T t ) • f Ln,Tn (L t -X, Y -T t ) + fL m ,Tm (X, Y -Tt) • fL n ,Tn (Lt -X, Tt)
Then the j.p.d.f. of (L t , T t ) is obtained by

f Lt,Tt (L t , T t ) = ¡ Ω X,Y (Lt,Tt) f X,Y,Lt,Tt dXdY, ( 44 
)
where ΩX,Y (Lt, Tt) is the new domain for (X, Y ) in terms of L t and T t . Knowing (L m , T m )'s domain Ω Lm,Tm and (L n , T n )'s domain Ω Ln,T n , we can deduce Ω X,Y (L t , T t ) from (31),(32), ( 33) and (34).

J.P.D.F. Initialization

To carry on the above recursive computation of j.p.d.f., we have to set up the initial conditions starting from sinks. As sink's L s and T s are constants and buffers are always inserted at sink's upstream node with a wire between them, (1) and ( 2) should be used for j.p.d.f. initialization. After transformation of variables, we have:

c = (Lt -Ls)/li; ( 4 5 ) r = 2(Ts -Tt) (Lt + Ls)li . (46)
Therefore, the Jacobian is given by

J = ∂c ∂Lt ∂c ∂Tt ∂r ∂Lt ∂r ∂Tt = 1 0 -2(Ts-Tt) (Lt+Ls) 2 -2 (L t +L s )l i = -2 (Lt + Ls)li . (47) 
As the j.p.d.f. for (c, r) is already known as h(c, r), we can obtain the j.p.d.f. of (L t , T t ) as follows:

f Lt,Tt = |J| • h(c, r) = 2 (L t + L s )l i • h( L t -L s l i , 2(T s -T t ) (L t + L s )l i ) (48)

Pruning Rules

A straight-forward way to extend the conventional dominance relationship between two solutions in the presence of process variation is as follows: solution (L1, T1) is said to dominate solution (L2, T2) if condition P (L1 ≤ L2) = 1 and P (T 1 ≥ T 2 ) = 1 are satisfied. In other words, solution (L 1 , T1) always results in a larger required arrival time but with a less loading capacitance when compared to solution (L2, T2). The physical interpretation of this criterion is well understood. However, there are two problems when it comes to practical implementation. First, for a continuous j.p.d.f. for two random variables (L t and T t ), the domain is usually defined over the whole feasible region: i.e., 0 ≤ Lt ≤ ∞ and 0 ≤ Tt ≤ ∞. Therefore, it is almost impossible to satisfy the conditions of P (T1 ≥ T2) = 1 and P (L1 ≤ L2) = 1 for any two given solutions. Second, assuming the first problem can be solved, there is no guarantee that the number of solutions after pruning will increase polynomially. Chances are that it will, most likely, grow exponentially, and this has been experimentally confirmed by [START_REF] Khandelwal | A probabilistic approach to buffer insertion[END_REF]. In the following, we propose a new set of pruning rules that not only solves the above problems, but also supports designers' intuition.

We recognize that for designers, there is always a design goal in their minds when they compare different design alternatives. For the same example as shown in Section 3, if the arrival time for a design is required to be 100, then obviously solution (A) is the best choice, as it satisfies the required arrival time constraints without any uncertainty. On the other hand, if the arrival time is required to be 200, then solution (D) would be the best choice, as this gives the highest probability to satisfy the design requirement.

Based upon the above observations, we give the following definition of dominance relationship between two solutions, which is closely related to designers' willingness to accept uncertainty for a given design. Recall that the (100α) th percentile of a p.d.f. f (x) is a number πα such that the area under f (x) to the left of of πα is α [START_REF] Hogg | Probability and Statistical Inference[END_REF]. That is,

α = ¡ π α -∞ f (x)dx. ( 49 
)
In other words, πα gives a measure of designers preference for certainty in choosing the design parameter x in the presence of variations, such that the final design would have x less than πα with (100α)% certainty.

π α l β π u α π u β π l L1 L2 T2 T1 (a) (b) (1) (1) 
( Suppose designers choose πα l and πα u as Lt's two percentiles with 0 ≤ α l < αu ≤ 1, and π β l and π βu as Tt's two percentiles with 0 ≤ β l < βu ≤ 1, which reflect designers preference for certainty in choosing different solutions (L t , T t ) to the BIPV problem. Then solution (L 1 , T 1 ) is said to dominate solution (L 2 , T 2 ) if the following conditions are satisfied:

π (1) αu < π (2) α l (50) π

(1)

β l > π (2) βu (51) 
Another way to look at this dominance relationship is that solution (L1, T1) has a high probability of producing solutions with a larger required arrival time and a smaller loading capacitance. A graphical interpretation of this dominance relationship is shown in Fig. 2. Knowing α l , α u , β l , and β u , we can compute π α l , π αu , π β l , and π β u according to (49), which requires us to know the p.d.f. of Lt and Tt, respectively. As we already know the j.p.d.f. of (Lt, Tt) from section 4.2, the p.d.f. of Lt and Tt can be computed as two marginal p.d.f.'s of the j.p.d.f., respectively [START_REF] Hogg | Probability and Statistical Inference[END_REF].

EXPERIMENT

A preliminary version of the above BIPV algorithm is implemented in C++ on a Linux machine. Because there is no existing work that can take into account the accurate computation of j.p.d.f. for (L t , T t ) in the context of buffer insertion, direct comparison of our work with existing works is not possible. The only work that considered process variation for buffer insertion is [START_REF] Khandelwal | A probabilistic approach to buffer insertion[END_REF], which does not consider either the interconnect parasitic variation or the device variation. Moreover, it is assumed that all random variables are independent, which is not correct in general. Therefore, in the following, we compare our BIPV design with the conventional design under nominal design parameters (DUN) similar to [START_REF] Van Ginneken | Buffer placement in distributed RC-tree networks for minimal Elmore delay[END_REF]. For a given technology, foundry needs to characterize the j.p.d.f. for both devices and interconnects with consideration of process variations. Without loss of generality, we assume that the j.p.d.f. of both interconnect and devices are available to us as user inputs in the following. Normal distribution has been assumed for all test cases, and all parasitic values are adapted from [START_REF] Alpert | Wire segmenting for improved buffer insertion[END_REF] as shown in Table 1. Different combinations of α l , αu, β l , and βu values have been tested for pruning. Because the choice of these values only reflects designers' preference to certainty and does not significantly affect our conclusions, we only report experiment results with αl = βl = 0.2 and αu = βu = 0.8 in the following.

Global interconnects with multiple terminals are used in our experiment. For simplicity, every test case is assumed to have a uniform required arrival time specified at different sink terminals. To make the test case challenging, we set the required arrival time at sinks to be half of the critical path delay without buffers. Results from five test cases are reported in Table 2. Column 2 gives the total number of terminal pins for test cases that are typical for global interconnects. The range of interconnect length between two adjacent Steiner points in the routing tree is reported in column 3. Column 4 gives the required arrival time specified at all sink terminals. Column 5 and 6 are the results measured at the root of the buffered routing trees from the conventional DUN design, while column 7 and 8 are the results from our BIPV design. Column 5 and 7 are the probabilities of the designed buffered routing tree that would violate the required timing constraints. The number in column 6 and 8 are the total number of buffers inserted.

According to Table 2, it clearly shows that the conventional DUN design exhibits very large timing violation when process variations are considered, while our process variation aware BIPV design consistently results in smaller timing violation than the DUN design. Moreover, when the test case becomes larger, the improvement of BIPV design over the DUN design is more significant. For example, for test case 4, the conventional DUN design gives 43% timing violation, while our BIPV design results in only 13% violation, and the relative reduction is 30%. In terms of the total number of buffers inserted in the final buffered routing tree, the BIPV design uses sightly more buffers than the conventional DUN design, but there is never more than one extra buffer in all experiments. This further confirms that the BIPV algorithm inserts buffers at locations such that the probability of achieving timing constraints is optimized.

CONCLUSION AND FUTURE WORK

We have proposed a probabilistic methodology to solve the problem of buffer insertion considering process variations for both devices and interconnects. A very recent work solved the buffer insertion with wire length uncertainty by assuming that there is no correlation between the variations of required arrival time and downstream loading capacitance. We have shown that this assumption does not hold in general and that the j.p.d.f. should be employed to accurately capture the above correlation. We have developed an efficient algorithm to calculate the j.p.d.f. recursively. Our preliminary experiment results have shown that compared to the conventional buffer insertion under the nominal parameters, the proposed variation aware buffer insertion can reduce the probability of timing violation by up to 30%.

Note that the proposed methodology is very general and can be extended to consider other process variation effects. For example, we have assumed that there is no correlation between device and interconnect variations, and that wires not sharing downstream paths are independent. However, in a modern process, the variation between devices and interconnects may be interdependent, and wires nearby may also exhibit correlation due to chemical-mechanical planarization (CMP). One of our future work is to extend the proposed methodology to handle more general process variations, like across-chip-line-width variation (ACLV). We will also study the process variation aware routing topology generation and device sizing problems in the future.
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 1 Figure 1: BIPV Algorithm.

Figure 2 :

 2 Figure 2: Graphic interpretation of dominance relationship between (L1, T1) and (L2, T2), where (a) refers to (50) and (b) refers to (51).

Table 1 : Device and interconnect variations.
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	Parameter	Mean	Standard Deviation
	Buffer input capacitance	0.04 pF	0.01 pF
	Buffer output resistance	180 Ω	30 Ω
	Buffer intrinsic delay	20 ps	5 ps
	Unit wire capacitance	0.08 fF/µm	0.02 fF/µm
	Unit wire resistance	0.08 Ω/µm	0.02 Ω/µm

Table 2 : Experimental result.
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Note that the methodology to be presented in this work does not depend on these assumptions. Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE'05) 1530-1591/05 $
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Readers are encouraged to verified that the last two solutions in the above small example in fact have the same variance.
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