
HAL Id: hal-00181214
https://hal.science/hal-00181214

Submitted on 23 Oct 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

FORAY-GEN: Automatic Generation of Affine
Functions for Memory Optimizations

Ilya Issenin, Nikil Dutt

To cite this version:
Ilya Issenin, Nikil Dutt. FORAY-GEN: Automatic Generation of Affine Functions for Memory Opti-
mizations. DATE’05, Mar 2005, Munich, Germany. pp.808-813. �hal-00181214�

https://hal.science/hal-00181214
https://hal.archives-ouvertes.fr

FORAY-GEN: Automatic Generation of Affine Functions for Memory
Optimizations*

Ilya Issenin, Nikil Dutt
Center for Embedded Computer Systems, Donald Bren School of Information and Computer Sciences

University of California, Irvine, CA 92697; {isse,dutt}@ics.uci.edu

Abstract

In today’s embedded applications a significant portion of
energy is spent in the memory subsystem. Several approaches
have been proposed to minimize this energy, including the use
of scratch pad memories, with many based on static analysis of
a program. However, often it is not possible to perform static
analysis and optimization of a program’s memory access
behavior unless the program is specifically written for this
purpose. In this paper we introduce the FORAY model of a
program that permits aggressive analysis of the application’s
memory behavior that further enables such optimizations since
it consists of ‘for’ loops and array accesses which are easily
analyzable. We present FORAY-GEN: an automated profile-
based approach for extraction of the FORAY model from the
original program. We also demonstrate how FORAY-GEN
enhances applicability of other memory subsystem optimization
approaches, resulting in an average of two times increase in
the number of memory references that can be analyzed by
existing static approaches.

1. Introduction*

Customization of memory subsystem in embedded
applications is an important part of system design that helps to
achieve required power consumption and performance.

Recently a lot of attention has been paid to the use of a
scratch pad memory (SPM) in the custom memory subsystems
[5][6][7][8][9][10]. Scratch pad memories have lower power
consumption than caches [1] and have predictable latency,
which is important for real time applications.

 Currently, many automated techniques for determining
scratch pad configurations rely on compile-time analysis of the
program; unfortunately these analysis approaches limit the
scope of such memory optimizations, since they assume that
the program is written in well structured manner, where all
repeating accesses to the memory occur inside for loops and
furthermore, all memory accesses are generated by array
references with affine index expressions (which we name the
FORAY form). However, our studies show that many real
embedded applications are not written in this form. For
example, Figure 1 shows code segments of the jpeg application
from the MiBench benchmark suite [4], that contain many

*
 This work was partially supported by NSF grants CCR-0203813 and

CCR-0205712.

memory/array access that do not follow the FORAY form: not
all loop structures are for loops, and arrays are accessed using
pointers rather than index expressions; furthermore, the
iterators of for loops are not used in the index expressions of
array references. Currently existing memory optimization
approaches [5][6][7] are unable to analyze such source codes
automatically. This limitation significantly reduces the
opportunity for memory optimization and motivates the need
for our automated approach.

We overcome these problems in this paper through two
contributions. First, we introduce the FORAY model of a
program, which is another C program that contains an
abstraction of the memory behavior of the original program
written in the FORAY form; this FORAY model of the
program can be aggressively analyzed and optimized using
existing memory subsystem optimization approaches. Second,
we present FORAY-GEN, an approach that automatically
generates the FORAY model for a given input program,
thereby enabling a wider reach for aggressive optimization of
the memory subsystem with minimal manual intervention or
analysis. Our experimental results show that using FORAY-
GEN, we are able to achieve on average a two times increase in
the number of analyzable memory references, which in turn
greatly increases the scope of memory optimizations.

2. Related work

There has been extensive research in using scratch pad
memories for storing frequently used data. Some of the
approaches [8][9][10] divide all the data used by a program
into data objects and profile the application to determine how
often and when these data objects are accessed. The most
frequently used ones are relocated to scratch pad memory.
These techniques do not require any knowledge about the
program except declarations of data objects and the
information about their use which is obtained by profiling.

for (ci = 0; ci < cinfo->num_components; ci++)
 for (coefi = 0; coefi < DCTSIZE2; coefi++)
 *last_bitpos_ptr++ = -1;

currow = 0;
while (currow < numrows)
 for (i = rowsperchunk; i > 0; i--) {
 result[currow++] = workspace;
 }

Figure 1. Excerpts from the MiBench benchmark

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

However, such approaches typically do not handle fine-
grain array placement, i.e., determining and placing the most
frequently used parts of the arrays in the scratch pad memory
in order to improve power and performance.

The works [5][6][7] are complementary to the above
techniques and are focused on optimization of array accesses.
To determine the parts of the array that are going to be reused
and which can be placed in the scratch pad memory, a static
analysis of the program is performed. This requires all memory
accesses (that need to be analyzed) to be expressed as array
accesses with affine index expressions (i.e., the FORAY form).
Using static analysis ensures that selected array references
always expose expected behavior regardless of the input data.
Unfortunately, application developers write code in styles
suited to individual tastes, and therefore do not always express
memory references in the FORAY form. Indeed our studies
show that existing benchmarks and source codes contain many
memory references that are not written in the FORAY form.
This either limits the scope of these scratch pad memories
optimization techniques, or requires system designers to
manually transform the memory references in the input code to
follow the FORAY form. Such manual transformation is
cumbersome, time-consuming, and prone to errors; it rapidly
becomes infeasible for large applications. For example, the
jpeg application [4] has more than 30000 lines of code with
hundreds of loops. Limiting the scope of manual
transformations may result in many missed opportunities.

The work of Franke et al. [3] addresses the problem of
converting pointer accesses to array accesses with explicit
index functions by performing compile-time analysis of the
code. However, since static pointer analysis without any
restrictions is intractable, many assumptions about the program
structure are made.

Our FORAY-GEN approach automatically generates code
in the FORAY form by performing additional dynamic
analysis that exposes memory references in the FORAY form.
Indeed, we are able to discover all memory references that
actually behave as array references with affine index
expressions but expressed in any other way in a source program.

3. Design flow using FORAY-GEN

We now outline the use of FORAY-GEN in the context of
typical memory subsystem optimization techniques.

First, we define the FORAY model: it is a C program
consisting of any combination of for loops and array
references (FORAY), with all array index expressions being
affine functions of outer loop iterators. Array references can
also have partial affine index expressions, which is described
in more detail is Section 4. Note that the FORAY model
captures the memory behavior of only those memory
references in the original program whose access addresses can

be described by affine function of outer loop iterators. All other
accesses or program functionality are left out of the model.
Thus the FORAY model is not functionally equivalent to the
original program, but is an abstraction enabling aggressive
memory analysis that faithfully captures all memory references
that are amenable to optimization by current memory
optimization approaches; it is exclusively used for enhancing
the reach of such optimizations.

The FORAY models for the examples in Figure 1 are
shown in Figure 2, where the memory access behavior is
restructured into well structured for loops containing array
references with affine index expressions.

The use of the FORAY model in the context of typical SPM
subsystem optimization techniques is shown in Figure 3. In
Phase I, FORAY-GEN takes legacy C code as input and
generates a FORAY model of the application. In Phase II, this
FORAY model is optimized using a typical approach for
designing a scratch pad memory subsystem (expanded in the
shaded call-out of Figure 3). These SPM optimizations
typically scan the memory accesses (in FORAY form) and
perform compile-time (static) analysis of which data is reused
and can be placed to the buffers in the scratch pad memory.
Several buffer configurations are suggested and one of them is
selected during the design space exploration. The output of
Phase II contains FORAY model source code that is changed
to access the scratch pad memory and perform the necessary
data transfers between scratch pad buffers and main memory
Finally in Phase III, (i.e., after determining which arrays
benefit from being placed in the scratch pad memory), the
designer can manually back-annotate the modified FORAY
model code into the original program. At the end of this entire
flow, the legacy C code is transformed into C code containing
aggressive scratch pad memory optimizations.

 Note that the amount of back-annotation required by the
designer is significantly less than the efforts needed to
manually convert the whole original program to FORAY form,
since only a few arrays are typically selected to be placed in
scratch pad memory.

for (int i528=0; i528<3; i528++)
 for (int i531=0; i531<64; i531++)
 A[2147447520+4*i531+256*i528]

for (int i1632=0; i1632<1; i1632++)
 for (int i1635=0; i1635<16; i1635++)
 A[268494504+4*i1635]

Figure 2. FORAY models of the programs in Figure 1

I. FORAY-GEN

Legacy C code

FORAY model

II. Traditional SPM analysis
and code transformation

Transformed FORAY
model code

III. Back annotate FORAY
model to legacy

C code (manually)
Legacy C code with scratch

pad memory support

Design flow in [5]:
1. Identify for loops
and array accesses.
2. Analyze access
patterns and suggest
scratch pad buffer
configurations.
3. Explore and select
buffers to be placed in
SPM.
4. Modify source code
to reflect buffer
configurations.

Figure 3. The use of FORAY model in memory
subsystem design

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

The main contribution of this paper is the automation of
Phase I (FORAY-GEN) in this flow. Note that in Phase II, the
generated FORAY model can be used by any scratch pad (such
as [5][6][7]) or other memory optimization techniques.

4. FORAY-GEN

We now describe our profile-based FORAY-GEN approach,
as outlined in Algorithm 1 (Figure 5).

 First, in Step 1 of Algorithm 1 we annotate the loop
structures (for, do and while loops) in the source code of a
program with checkpoints. Each checkpoint statement is
converted later into special assembler instructions that instruct
the simulator to add information about execution of the
checkpoint to the trace file. An example of an original and the
annotated program is shown in Figure 4(a) and (b).

In Step 2 of Algorithm 1 we profile the compiled program
by running it on an instruction set simulator. The simulator
records the information about each memory access (instruction
address and address of access) as well as the information about
all checkpoint instruction executed in the trace file. The trace
file for the program in Figure 4(a) is shown in Figure 4(c).

 In Step 3 of Algorithm 1 we process the trace file generated
in the previous step and reconstruct the program loop structure
(Step 3.1). In addition to that, during the same pass on the trace
file, for each memory reference we try to find an affine
expression that can describe all the access addresses of this
reference (Step 3.2). These steps are discussed in more detail
later in this section.

In Step 4 of Algorithm 1 we use a heuristic that filters out
all memory references that cannot be effectively predicted by
an affine function. We leave only the references that

• have affine index expression that includes at least one
iterator (by this condition we exclude all references that
do not have regular access patterns);

• have been executed no less than Nexec times;

• address at least Nloc different memory locations.
The constants Nexec and Nloc are selected to leave only

references that may benefit from being placed in the scratch
pad memory by array-oriented design techniques. In our
experiments we used the values of 20 and 10 correspondingly
to eliminate small arrays that can fit in the scratch pad
completely (and thus can be handled by other techniques like
[8][9][10] with less overhead) and to eliminate references
which do not exhibit a lot of reuse.

The resulting FORAY model for the program in Figure 4(a)
is shown in Figure 4(d).

Next, we describe our implementation of the trace file
analysis (Steps 3.1 and 3.2 of FORAY-GEN in Algorithm 1).

Reconstructing loop structure from trace (Step 3.1 of
Algorithm 1)

Figure 6 outlines the algorithm we developed that
reconstructs the loop/reference structure of the original
program from the trace file (Step 3.1 of the Algorithm 1).

Algorithm 2: Building the loop structure of a program
Input: trace file
Output: a tree with loop and memory reference nodes
1. Read next record from the trace file.
2. If it is memory access information, call Algorithm 3 (see below).
3. If it is checkpoint, depending of the type of checkpoint

(beginning-of-the-loop, beginning-of-the-loop-body or end-of-
the-loop-body checkpoint), move current loop node pointer up
or down in the tree or create a new loop node.

4. Go to Step 1.

Figure 6. Algorithm outline for loop structure
reconstruction

The loop/reference structure of the program is represented
as a tree with loop and memory reference nodes. During the
processing of the trace file each loop node also maintains the
current value of a variable that counts the number of loop
iterations. The values of these iterators are used for
determining index expressions in Step 3.2 of the Algorithm 1.

Identifying affine index expressions for memory
references (Step 3.2 of Algorithm 1)

We first give an example of the analysis we perform, and
then describe our algorithm (Algorithm 3) for identifying

(a) Original program
char q[10000];
char *ptr = q;
int i, t1 = 98;
while (t1 < 100) {
 t1++;
 ptr += 100;
 for (i=40; i>37; i--) {
 *ptr++ = i*i % 256;
 }
}

(b) Annotated program
char q[10000]; char *ptr = q;
int i, t1 = 98;
{ CHECKPOINT(12); while (t1 < 100) {
 CHECKPOINT(13); {
 t1++; ptr += 100;
 {CHECKPOINT(15); for (i=40; i>37; i--)
 {CHECKPOINT(16); {
 *ptr++ = i*i % 256;
 } CHECKPOINT(14); }}
} CHECKPOINT(17); }}

(d) FORAY model
for (int i12=0; i12<2; i12++)
 for (int i15=0; i15<3; i15++)
 A4002a0[2147440948+1*i15+103*i12]

(c) Trace file
Checkpoint: 12
Checkpoint: 13
Checkpoint: 15
Checkpoint: 16
Instr: 4002a0 addr: 7fff5934 wr
Checkpoint: 14
Checkpoint: 16
Instr: 4002a0 addr: 7fff5935 wr
Checkpoint: 14
Checkpoint: 16
Instr: 4002a0 addr: 7fff5936 wr
Checkpoint: 14
Checkpoint: 17
Checkpoint: 13

Checkpoint: 15
Checkpoint: 16
Instr: 4002a0 addr: 7fff599b wr
Checkpoint: 14
Checkpoint: 16
Instr: 4002a0 addr: 7fff599c wr
Checkpoint: 14
Checkpoint: 16
Instr: 4002a0 addr: 7fff599d wr
Checkpoint: 14
Checkpoint: 17

 Figure 4. Example of FORAY-GEN model extraction

Algorithm 1: Outline of FORAY-GEN model extraction
1. Annotate the program
2. Profile the program
3. Analyze the trace file and

3.1. Reconstruct loop structure from the trace (Algorithm 2)
3.2. Determine affine index expression for each memory

reference (Algorithm 3)
4. Purge uninteresting memory references

Figure 5. Algorithm outline of FORAY-GEN

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

affine index expressions.
Affine address functions have the following form:

index = const + C1*iter1 + C2*iter2 + … + CN*iterN,

where index is the access address of the memory reference;
const – is some constant term (base memory address); N is the
loop nest level of the memory reference; C1 ..CN are integer
coefficients; and iter1 .. iterN are current values of the loop
iterators (iter1 is the iterator of the innermost loop).

In the example of Figure 4a the exact index expression for
all memory references can be found. However, often it is not
possible to describe access addresses by one affine function.
Two examples of such cases are shown in Figure 7. In the first
case, for each call to the function foo(), a local array A[] may
be allocated to a different memory location. In the second case,
the globally defined array A[] is not reallocated, but the offset
is a data-dependent parameter that is passed to the function
foo(). In both instances, the access addresses within the
function foo() are regular and can be described by one affine
function. However, with every iteration of the outer loops x
and y, the constant term in the index expression changes in an
unpredictable manner. In these cases our analysis algorithm
finds a partial affine index expression for the loop iterators for
which the value of index can be predicted by the expression in
the form of

index = const(iterM+1 .. iterN) + C1*iter1 + … + CM*iterM ,

where M < N; const changes every time with the increment of
iterM+1 .. iterN .

Finding memory references that are expressible as partial
affine index expression enhances existing SPM analysis
approaches [5][6][7]. Indeed, when no full affine index
expression exist, SPM approaches can still perform analysis on
a limited number of loops (which are inside the function foo()
in the example in Figure 7) as if no other outer loops existed
and suggest possible scratch pad buffer configurations that
hold the data reused in loops in function foo().

Algorithm 3 in Figure 8 describes how index expressions
are determined; it is called for each memory access recorded in
the trace file in Step 2 of Algorithm 2.

In Step 1 of Algorithm 3 we create a new memory reference
node if we have not encountered this memory reference in the
current position inside the loop tree.

If the current memory reference has been encountered
before, in Step 2 of Algorithm 3 we calculate the number H of
coefficients that have an UNKNOWN value and whose
corresponding iterators have changed their value after the
previous execution of the same memory reference. In variable
k we save the number of one of such iterators.

In Step 3 of Algorithm 3 we calculate the value of an
unknown coefficient if only one iterator with unknown
coefficient has changed its value.

If there are several iterators with unknown coefficients that
have changed their values, in Step 4 of the Algorithm 3 we
mark the current reference as non-analyzable and exclude it
from further consideration. Our experiments show that there
are very few such references in the benchmarks we studied.

In Step 5 of Algorithm 3 we calculate the predicted value of
affine index expression.

int foo() {
 int ret = 0;
 int A[100];
 …
 for (i=0; i<10; i++)
 for (j=0; j<10; j++)
 ret += A[j+10i];
 return ret;
}
int main() {
 …
 for (x=0; x<10; x++)
 for (y=0; j<10; j++) {
 …
 tmp += foo();
 }
}

int foo(int offset) {
 int ret = 0;
 …
 for (i=0; i<10; i++)
 for (j=0; j<10; j++)
 ret += A[j+10i+offset];
 return ret;
}

int main() {
 …
 for (x=0; x<10; x++)
 …
 tmp += foo(lines[x]);
 }
}

Figure 7. Examples when access addresses can
not be described by one affine function

Algorithm 3: Finding array index expressions
Input: memory access information from the trace file; loop
tree and location of the memory reference in it (current loop
node); current values of the loop iterators (from Algorithm 2)
Output: full or partial index expr. for each array reference
Variables: each memory reference node keeps the following
information:
N - loop nest level of the current loop node;
M – number of iterators included in partial index expression;
CONST – constant term of the index expression;
C1..CN – integer coefficients of the iterators in the affine index
expression or UNKNOWN
IT1..ITN - current values of the iterators (from Algorithm 2)
ITP1..ITPN - values of the iterators when the same reference was
executed the previous time
S1..SN – a vector of binary values; used for determining the number
of iterators in the partial affine index expression
IND – address of the current access
INDP – address of the previous access

Begin
1. Search if current memory reference has been already added to

the current loop node (see algorithm 2). If not,
• add the reference node to the current loop node;
• set CONST = IND; M = N;
• for i = 1..N, set Ci = UNKNOWN; Si = 0;
• go to Step 7.

If yes, continue.
2. Calculate H = size of the set HS = {[i]: i = 1..N ITi ITPi Ci

= UNKNOWN}; k ∈ HS.

3. if (H = 1) Calculate ADJ =

≠
≠=

∗
UNKNOWNC

ITPITNi

ii

i

ii

CIT
,,..1

;

 Calculate Ck = (IND – ADJ – INDP) / (ITk – ITPk).
4. if (H > 1) Mark current reference as non-analyzable.
5. Calculate INDC = CONST +

≠
=

∗
UNKNOWNC

Ni

ii

i

CIT
..1

.

6. if (INDC IND) // prediction was wrong; recalculate CONST
 for i = 1..N
 if (ITi = ITPi) Si = 1;
 Calculate CONST = CONST + IND – INDC;
 M = 0; // adjust the number of iterators in the partial index expr.
 for i = 1..N
 if (Si = 0) M = i-1;
7. Return to processing of the next statement in the trace file.

End

Figure 8. Algorithm for finding index expressions

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

In Step 6 of Algorithm 3 we check if this predicted value
matches actual address of the memory access. If the prediction
is wrong, we mark all iterators that have not changed their
values, recalculate the new value of the constant term in the
affine index expression and update the value of M that
specifies the number of iterators included in the partial index
expression. This is done by finding the outermost iterator that
has changed its value in every misprediction case. All
innermost iterators up to that one are forming a partial affine
index expression.

Note that during the building of the FORAY model of a
program, each record in the trace file is accessed only once and
the records are accessed in the order the information is written
to the file. This means that the proposed algorithm can be
executed during profiling (Step 2 of the Algorithm 1) and
there is no need to save the (typically large) trace file. In this
case the space complexity is constant with respect to the
number of instructions profiled.

The computational complexity of our approach is
dominated by the number of calls of the Algorithms 2 and 3,
and is linear with respect to the number of profiled instructions.
Since the maximum loop nest level is limited in real programs,
the complexity of the Algorithms 2 and 3 is constant on
average if we use hash tables for the searches in Algorithm 2
and in Step 1 of Algorithm 3.

Inter-function optimizations

Our approach also helps a designer by providing hints on
which functions should be inlined to enable more aggressive
memory optimizations – this is particularly helpful when a
designer attempts to manually restructure code for improved
performance and power.

The FORAY model does not have any special
representation of the hierarchical structure of a program, which
is why functions appear to be inlined in our model. If
FORAY-GEN inlines a function in more than one place, this
provides a hint to programmer that it may be beneficial to
duplicate the function in the original code. In the example
shown in Figure 9 the function foo() is called in two different
places. In those instances the access pattern to array A[] inside
the body of the function is different. Optimizing the function
for the first access pattern can produce suboptimal results for
the case when foo() is called in the loop y. Duplicating the
function as suggested by our approach produces better results
by allowing each access pattern to be optimized separately.

5. Experimental results

We now describe the implementation of the FORAY-GEN
framework presented in Algorithm 1. Our parser for Step 1 of
Algorithm 1 parses source C files of a benchmark and inserts
checkpoint instructions. We use the SimpleScalar functional
simulator [2] for profiling (Step 2 of Algorithm 1). The
simulator was modified to process checkpoint instructions and
to generate the trace file. Steps 3 and 4 of Algorithm 1 are
implemented in a separate program that reads the trace file,
performs analysis and extracts the FORAY model.

To evaluate our approach, we used several benchmarks
from the MiBench suite [4] that contains a set of embedded
codes written in standard “C”. The following benchmarks were

used: jpeg (image compression), lame (MP3 encoder), susan
(image recognition program), fft (Fast Fourier Transformation),
and the gsm and adpcm encoders.

5.1. Advantages of using FORAY-GEN

In this section we present the benefits of using our
automated FORAY-GEN tool to extract FORAY models for
the benchmarks.

First, we estimated the complexity of manual analysis
needed to extract FORAY model that can be automated by our
approach. The number of lines of code in each benchmark and
total number of loops (excluding the loops that were not
executed during profiling) are presented in Table I. Breakdown
of the loops by the type (for, while or do loops) is also
presented.

Table I shows that some of the typical embedded
applications are fairly large and have hundreds of loops.
Manual analysis of every loop in such applications is error-
prone and impractical. We can also conclude that although for
loops are used predominantly in the programs, there are a lot of
other loops (23% on average) that should not be ignored during
the analysis (as described earlier, existing approaches for loop-
based program analysis consider only for loops).

We have also estimated how many of the useful references
for scratch pad memory analysis [5][6][7] are not in the
FORAY form in the original program and thus can not be
analyzed by their static approaches. Table II shows the number
of loops and references that can be expressed in FORAY form
(those that were found by our algorithm and included in the
FORAY model), and percentage of loops and references that
are not in FORAY form in the original program.

As we can see from the Table II, in all the benchmarks
except fft (the shortest one), a considerable number of loops
and memory references (64% and 60% on average) are not in
FORAY form and thus cannot be statically analyzed by
traditional scratch pad memory optimization techniques
without using our approach.

5.2. Memory behavior of the FORAY model

We now analyze the effectiveness of our extracted FORAY
model in capturing the memory behavior of the original
program.

We analyzed three aspects of memory behavior: the number
of memory references, the number of accesses these references
make, and the footprint (the number of different addresses
accessed). Recall that the FORAY model captures only the

int main() {
 …
 for (x=0; x<10; x++) {
 …
 tmp += foo(10*x);
 }
 for (y=0; y<20; y++) {
 …
 tmp += foo(2*y);
 }
}

int foo(int offset) {
 for (i=0; i<10; i++)
 ret += A[i+offset];
 return ret;
}

Figure 9. Example of a code where function
inlining may be beneficial

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

relevant memory references in the original program for SPM
optimizations. All memory references in the original program
can be divided into three categories: references captured by the
FORAY model, system library memory references (not
handled by FORAY-GEN), and all other memory references
that can not be represented by the FORAY model. Note that
system libraries are specific for the platform the code is
compiled on and therefore system libraries we used are not
relevant to real embedded systems.

As we can see from the breakdown in Table III, although
very few references in the source code are described by the
FORAY model (and worth considering for analysis by
techniques [5][6][7]) – 2.2% on average – these references
make up to 66% (29% on average) of all accesses and cover up
to 87% (44% on average) of the address space.

It is important to note that the data shown in the table
includes memory references that are not present explicitly in
the source C code (e.g., those placing arguments to the stack
before performing function calls, memory spills, etc.).
However, these references address only few locations and are
not included in the FORAY model after being filtered out by
the Step 4 of Algorithm 1. Note also that all functions that are
called from different contexts are considered to be inlined (as
explained in Section 4) for the purpose of calculating the
number of loops and references in our experiments.

In summary, memory references that can be represented in
FORAY form and are not in this form in a source code account
for a large portion of memory activity in typical embedded
applications. Our FORAY-GEN approach helps to automate
the extraction of such references and thus expands the reach of
SPM optimizations.

6. Conclusion

In this paper we introduce the notion of the FORAY model
of a program which is another program consisting of for loops

and array references with affine index expressions that models
the memory behavior of the original program and that is
amenable to optimizations. We presented FORAY-GEN, a
technique for fully automated extraction of the FORAY model
from a source program. We show how this model can be used
to expand the reach of contemporary memory optimization
techniques, increasing the number of analyzable references two
times on average for typical embedded multimedia benchmarks.
Our FORAY-GEN approach thus significantly increases the
reach of SPM optimizations while freeing designers from the
cumbersome and error-prone task of manual code analysis,
thereby improving designer productivity. Our future work will
study the interdependency of the FORAY models on the input
data set used for profiling.

References
[1] R. Banakar et al. Scratchpad Memory: Design Alternative for

Cache On-chip Memory in Embedded Systems. CODES, 2002.
[2] D. Burger and T. M. Austin. The SimpleScalar tool set, version

2.0. In Technical Report 1342, University of Wisconsin-
Madison, CS Department, June 1997.

[3] B. Franke and M. O'Boyle. Compiler Transformation of Pointers
to Explicit Array Accesses in DSP Applications. International
Conference on Compiler Construction, 2001.

[4] M. Guthaus, T. Austin et al. MiBench: A free, commercially
representative embedded benchmark suite. 4th Annual
Workshop on Workload Characterization, Dec. 2001.

[5] I. Issenin et al. Data Reuse Analysis Technique for Software-
Controlled Memory Hierarchies. DATE 2004.

[6] M. Kandemir and A. Choudhary. Compiler-Directed Scratch
Pad Memory Hierarchy Design and Management. DAC 2002.

[7] M. Kandemir et al. Dynamic Management of Scratch-Pad
Memory Space. DAC 2001.

[8] S. Steinke et al. Assigning Program and Data Objects to
Scratchpad for Energy Reduction. DATE 2002.

[9] S. Udayakumaran et al. Compiler-Decided Dynamic Memory
Allocation for Scratch-Pad Based Embedded Systems. CASES
2003.

[10] Verma, M., Steinke, S. and Marwedel, P. Data Partitioning for
Maximal Scratchpad Usage. ASPDAC 2003.

Table III. Memory behavior of the FORAY models

Total number Included in FORAY model In system calls Other Benchmark
name References Accesses Footprint Ref. Accesses Footprint Ref. Accesses Footprint Footprint

jpeg 6151 8.3M 123625 1% 27% 87% 33% 2% 9% 91%
lame 16805 43M 127052 6% 22% 26% 40% 20% 33% 66%
susan 1162 5.0M 24778 1% 66% 72% 85% 1% 47% 1%

fft 2420 22M 28804 1% 1% 57% 95% 96% 43% 29%
gsm 2091 37M 16215 4% 32% 5% 49% 3% 93% 8%

adpcm 546 5.5M 4964 0.2% 28% 20% 97% 0.2% 68% 12%

Table I. Benchmark complexity and loop distribution

Benchmark
name

Number
of lines

Total
number
of loops

Number
of for
loops

Number
of while
loops

Number
of do
loops

jpeg 34590 169 65% 34% 1%
lame 22846 479 83% 8% 9%
susan 2173 14 79% 21% 0%

fft 493 11 100% 0% 0%
gsm 7089 38 87% 13% 0%

adpcm 782 2 50% 50% 0%

Table II. Loops and references converted into
FORAY form by our approach

Loops and
references that can
be represented by

FORAY form
(returned by
Algorithm 1)

Percentage of loops and
references that are not in

FORAY form in the original
program (out of those that

can be expressed in
FORAY form)

Benchmark
name

Number
of loops

Number of
references

Number of
loops

Number of
references

jpeg 73 73 41% 38%
lame 232 980 42% 38%
susan 9 10 78% 50%

fft 8 19 0% 0%
gsm 17 86 59% 74%

adpcm 2 1 100% 100%

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

