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Abstract 

In today’s embedded applications a significant portion of 
energy is spent in the memory subsystem. Several approaches 
have been proposed to minimize this energy, including the use 
of scratch pad memories, with many based on static analysis of 
a program. However, often it is not possible to perform static 
analysis and optimization of a program’s memory access 
behavior unless the program is specifically written for this 
purpose. In this paper we introduce the FORAY model of a 
program that permits aggressive analysis of the application’s 
memory behavior that further enables such optimizations since 
it consists of ‘for’ loops and array accesses which are easily 
analyzable. We present FORAY-GEN: an automated profile-
based approach for extraction of the FORAY model from the 
original program. We also demonstrate how FORAY-GEN 
enhances applicability of other memory subsystem optimization 
approaches, resulting in an average of two times increase in 
the number of memory references that can be analyzed by 
existing static approaches. 

1. Introduction*

Customization of memory subsystem in embedded 
applications is an important part of system design that helps to 
achieve required power consumption and performance.  

Recently a lot of attention has been paid to the use of a 
scratch pad memory (SPM) in the custom memory subsystems 
[5][6][7][8][9][10]. Scratch pad memories have lower power 
consumption than caches [1] and have predictable latency, 
which is important for real time applications.  

 Currently, many automated techniques for determining 
scratch pad configurations rely on compile-time analysis of the 
program; unfortunately these analysis approaches limit the 
scope of such memory optimizations, since they assume that 
the program is written in well structured manner, where all 
repeating accesses to the memory occur inside for loops and 
furthermore, all memory accesses are generated by array
references with affine index expressions (which we name the 
FORAY form). However, our studies show that many real 
embedded applications are not written in this form. For 
example, Figure 1 shows code segments of the jpeg application 
from the MiBench benchmark suite [4], that contain many 

*
 This work was partially supported by NSF grants CCR-0203813 and 

CCR-0205712. 

memory/array access that do not follow the FORAY form: not 
all loop structures are for loops, and arrays are accessed using 
pointers rather than index expressions; furthermore, the 
iterators of for loops are not used in the index expressions of 
array references. Currently existing memory optimization 
approaches [5][6][7] are unable to analyze such source codes 
automatically. This limitation significantly reduces the 
opportunity for memory optimization and motivates the need 
for our automated approach. 

We overcome these problems in this paper through two 
contributions. First, we introduce the FORAY model of a 
program, which is another C program that contains an 
abstraction of the memory behavior of the original program 
written in the FORAY form; this FORAY model of the 
program can be aggressively analyzed and optimized using 
existing memory subsystem optimization approaches. Second, 
we present FORAY-GEN, an approach that automatically 
generates the FORAY model for a given input program, 
thereby enabling a wider reach for aggressive optimization of 
the memory subsystem with minimal manual intervention or 
analysis. Our experimental results show that using FORAY-
GEN, we are able to achieve on average a two times increase in 
the number of analyzable memory references, which in turn 
greatly increases the scope of memory optimizations. 

2. Related work 

There has been extensive research in using scratch pad 
memories for storing frequently used data. Some of the 
approaches [8][9][10] divide all the data used by a program 
into data objects and profile the application to determine how 
often and when these data objects are accessed. The most 
frequently used ones are relocated to scratch pad memory. 
These techniques do not require any knowledge about the 
program except declarations of data objects and the 
information about their use which is obtained by profiling.  

for (ci = 0; ci < cinfo->num_components; ci++) 
    for (coefi = 0; coefi < DCTSIZE2; coefi++) 
        *last_bitpos_ptr++ = -1; 

currow = 0; 
while (currow < numrows)   
    for (i = rowsperchunk; i > 0; i--) { 
        result[currow++] = workspace; 
    } 

Figure 1. Excerpts from the MiBench benchmark 
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However, such approaches typically do not handle fine-
grain array placement, i.e., determining and placing the most 
frequently used parts of the arrays in the scratch pad memory 
in order to improve power and performance. 

The works [5][6][7] are complementary to the above 
techniques and are focused on optimization of array accesses. 
To determine the parts of the array that are going to be reused 
and which can be placed in the scratch pad memory, a static 
analysis of the program is performed. This requires all memory 
accesses (that need to be analyzed) to be expressed as array 
accesses with affine index expressions (i.e., the FORAY form). 
Using static analysis ensures that selected array references 
always expose expected behavior regardless of the input data.  
Unfortunately, application developers write code in styles 
suited to individual tastes, and therefore do not always express 
memory references in the FORAY form. Indeed our studies 
show that existing benchmarks and source codes contain many 
memory references that are not written in the FORAY form.  
This either limits the scope of these scratch pad memories 
optimization techniques, or requires system designers to 
manually transform the memory references in the input code to 
follow the FORAY form. Such manual transformation is 
cumbersome, time-consuming, and prone to errors; it rapidly 
becomes infeasible for large applications. For example, the 
jpeg application [4] has more than 30000 lines of code with 
hundreds of loops. Limiting the scope of manual 
transformations may result in many missed opportunities. 

The work of Franke et al. [3] addresses the problem of 
converting pointer accesses to array accesses with explicit 
index functions by performing compile-time analysis of the 
code. However, since static pointer analysis without any 
restrictions is intractable, many assumptions about the program 
structure are made. 

Our FORAY-GEN approach automatically generates code 
in the FORAY form by performing additional dynamic 
analysis that exposes memory references in the FORAY form. 
Indeed, we are able to discover all memory references that 
actually behave as array references with affine index 
expressions but expressed in any other way in a source program.  

3. Design flow using FORAY-GEN 

We now outline the use of FORAY-GEN in the context of 
typical memory subsystem optimization techniques. 

First, we define the FORAY model: it is a C program 
consisting of any combination of for loops and array
references (FORAY), with all array index expressions being 
affine functions of outer loop iterators. Array references can 
also have partial affine index expressions, which is described 
in more detail is Section 4.  Note that the FORAY model 
captures the memory behavior of only those memory 
references in the original program whose access addresses can 

be described by affine function of outer loop iterators. All other 
accesses or program functionality are left out of the model. 
Thus the FORAY model is not functionally equivalent to the 
original program, but is an abstraction enabling aggressive 
memory analysis that faithfully captures all memory references 
that are amenable to optimization by current memory 
optimization approaches; it is exclusively used for enhancing 
the reach of such optimizations. 

The FORAY models for the examples in Figure 1 are 
shown in Figure 2, where the memory access behavior is 
restructured into well structured for loops containing array 
references with affine index expressions. 

The use of the FORAY model in the context of typical SPM 
subsystem optimization techniques is shown in Figure 3. In 
Phase I, FORAY-GEN takes legacy C code as input and 
generates a FORAY model of the application. In Phase II, this 
FORAY model is optimized using a typical approach for 
designing a scratch pad memory subsystem (expanded in the 
shaded call-out of Figure 3). These SPM optimizations 
typically scan the memory accesses (in FORAY form) and 
perform compile-time (static) analysis of which data is reused 
and can be placed to the buffers in the scratch pad memory. 
Several buffer configurations are suggested and one of them is 
selected during the design space exploration. The output of 
Phase II contains FORAY model source code that is changed 
to access the scratch pad memory and perform the necessary 
data transfers between scratch pad buffers and main memory 
Finally in Phase III, (i.e., after determining which arrays 
benefit from being placed in the scratch pad memory), the 
designer can manually back-annotate the modified FORAY 
model code into the original program. At the end of this entire 
flow, the legacy C code is transformed into C code containing 
aggressive scratch pad memory optimizations. 

 Note that the amount of back-annotation required by the 
designer is significantly less than the efforts needed to 
manually convert the whole original program to FORAY form, 
since only a few arrays are typically selected to be placed in 
scratch pad memory. 

for (int i528=0; i528<3; i528++)  
    for (int i531=0; i531<64; i531++) 
        A[2147447520+4*i531+256*i528] 

for (int i1632=0; i1632<1; i1632++)  
    for (int i1635=0; i1635<16; i1635++) 
        A[268494504+4*i1635] 

Figure 2. FORAY models of the programs in Figure 1 

I. FORAY-GEN

Legacy C code 

FORAY model

II. Traditional SPM analysis 
and code transformation  

Transformed FORAY 
model code

III. Back annotate FORAY 
model to legacy 

C code (manually) 
Legacy C code with scratch 

pad memory support

Design flow in [5]:
1. Identify for loops 
and array accesses. 
2. Analyze access 
patterns and suggest 
scratch pad buffer 
configurations. 
3. Explore and select 
buffers to be placed in 
SPM. 
4. Modify source code 
to reflect buffer 
configurations. 

Figure 3. The use of FORAY model in memory 
subsystem design 

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05) 
1530-1591/05 $ 20.00 IEEE 



The main contribution of this paper is the automation of 
Phase I (FORAY-GEN) in this flow. Note that in Phase II, the 
generated FORAY model can be used by any scratch pad (such 
as [5][6][7]) or other memory optimization techniques. 

4. FORAY-GEN  

We now describe our profile-based FORAY-GEN approach, 
as outlined in Algorithm 1 (Figure 5). 

 First, in Step 1 of Algorithm 1 we annotate the loop 
structures (for, do and while loops) in the source code of a 
program with checkpoints. Each checkpoint statement is 
converted later into special assembler instructions that instruct 
the simulator to add information about execution of the 
checkpoint to the trace file. An example of an original and the 
annotated program is shown in  Figure 4(a) and (b). 

In Step 2 of Algorithm 1 we profile the compiled program 
by running it on an instruction set simulator. The simulator 
records the information about each memory access (instruction 
address and address of access) as well as the information about 
all checkpoint instruction executed in the trace file. The trace 
file for the program in  Figure 4(a) is shown in  Figure 4(c). 

 In Step 3 of Algorithm 1 we process the trace file generated 
in the previous step and reconstruct the program loop structure 
(Step 3.1). In addition to that, during the same pass on the trace 
file, for each memory reference we try to find an affine 
expression that can describe all the access addresses of this 
reference (Step 3.2). These steps are discussed in more detail 
later in this section.  

In Step 4 of Algorithm 1 we use a heuristic that filters out 
all memory references that cannot be effectively predicted by 
an affine function. We leave only the references that 

• have affine index expression that includes at least one 
iterator (by this condition we exclude all references that 
do not have regular access patterns); 

• have been executed no less than Nexec times; 

• address at least Nloc different memory locations. 
The constants Nexec and Nloc are selected to leave only 

references that may benefit from being placed in the scratch 
pad memory by array-oriented design techniques. In our 
experiments we used the values of 20 and 10 correspondingly 
to eliminate small arrays that can fit in the scratch pad 
completely (and thus can be handled by other techniques like 
[8][9][10] with less overhead) and to eliminate references 
which do not exhibit a lot of reuse.  

The resulting FORAY model for the program in  Figure 4(a) 
is shown in  Figure 4(d). 

Next, we describe our implementation of the trace file 
analysis (Steps 3.1 and 3.2 of FORAY-GEN in Algorithm 1). 

Reconstructing loop structure from trace (Step 3.1 of 
Algorithm 1) 

Figure 6 outlines the algorithm we developed that 
reconstructs the loop/reference structure of the original 
program from the trace file (Step 3.1 of the Algorithm 1). 

Algorithm 2: Building the loop structure of a program 
Input: trace file 
Output: a tree with loop and memory reference nodes 
1. Read next record from the trace file. 
2. If it is memory access information, call Algorithm 3 (see below). 
3. If it is checkpoint, depending of the type of checkpoint 

(beginning-of-the-loop, beginning-of-the-loop-body or end-of- 
the-loop-body checkpoint), move current loop node pointer up  
or down in the tree or create a new loop node. 

4. Go to Step 1. 

Figure 6. Algorithm outline for loop structure 
reconstruction 

The loop/reference structure of the program is represented 
as a tree with loop and memory reference nodes. During the 
processing of the trace file each loop node also maintains the 
current value of a variable that counts the number of loop 
iterations. The values of these iterators are used for 
determining index expressions in Step 3.2 of the Algorithm 1.  

Identifying affine index expressions for memory 
references (Step 3.2 of Algorithm 1) 

We first give an example of the analysis we perform, and 
then describe our algorithm (Algorithm 3) for identifying 

(a) Original program 
char q[10000]; 
char *ptr = q; 
int i, t1 = 98; 
while (t1 < 100) { 
 t1++; 
 ptr += 100; 
 for (i=40; i>37; i--) { 
  *ptr++ = i*i % 256; 
 } 
}

(b) Annotated program 
char q[10000]; char *ptr = q; 
int i, t1 = 98; 
{ CHECKPOINT(12); while (t1 < 100) {  
   CHECKPOINT(13); { 
 t1++; ptr += 100; 
 {CHECKPOINT(15); for (i=40; i>37; i--)  
         {CHECKPOINT(16); { 
  *ptr++ = i*i % 256; 
 } CHECKPOINT(14); }} 
} CHECKPOINT(17); }} 

(d) FORAY model 
for (int i12=0; i12<2; i12++)    
  for (int i15=0; i15<3; i15++)   
     A4002a0[2147440948+1*i15+103*i12]

(c) Trace file 
Checkpoint: 12 
Checkpoint: 13 
Checkpoint: 15 
Checkpoint: 16 
Instr: 4002a0 addr: 7fff5934 wr 
Checkpoint: 14 
Checkpoint: 16 
Instr: 4002a0 addr: 7fff5935 wr 
Checkpoint: 14 
Checkpoint: 16 
Instr: 4002a0 addr: 7fff5936 wr 
Checkpoint: 14 
Checkpoint: 17 
Checkpoint: 13 

Checkpoint: 15 
Checkpoint: 16 
Instr: 4002a0 addr: 7fff599b wr 
Checkpoint: 14 
Checkpoint: 16 
Instr: 4002a0 addr: 7fff599c wr 
Checkpoint: 14 
Checkpoint: 16 
Instr: 4002a0 addr: 7fff599d wr 
Checkpoint: 14 
Checkpoint: 17 

 Figure 4. Example of FORAY-GEN model extraction 

Algorithm 1: Outline of FORAY-GEN model extraction 
1. Annotate the program 
2. Profile the program 
3. Analyze the trace file and 

3.1. Reconstruct loop structure from the trace (Algorithm 2) 
3.2. Determine affine index expression for each memory 

reference (Algorithm 3) 
4. Purge uninteresting memory references

Figure 5. Algorithm outline of FORAY-GEN  
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affine index expressions. 
Affine address functions have the following form: 

index = const + C1*iter1 + C2*iter2 + … + CN*iterN,

where index is the access address of the memory reference; 
const – is some constant term (base memory address); N is the 
loop nest level of the memory reference; C1 ..CN are integer 
coefficients; and iter1 .. iterN are current values of the loop 
iterators (iter1 is the iterator of the innermost loop). 

In the example of  Figure 4a the exact index expression for 
all memory references can be found. However, often it is not 
possible to describe access addresses by one affine function. 
Two examples of such cases are shown in Figure 7. In the first 
case, for each call to the function foo(), a local array A[] may 
be allocated to a different memory location. In the second case, 
the globally defined array A[] is not reallocated, but the offset 
is a data-dependent parameter that is passed to the function 
foo(). In both instances, the access addresses within the 
function foo() are regular and can be described by one affine 
function. However, with every iteration of the outer loops x
and y, the constant term in the index expression changes in an 
unpredictable manner. In these cases our analysis algorithm 
finds a partial affine index expression for the loop iterators for 
which the value of index can be predicted by the expression in 
the form of  

index = const(iterM+1 .. iterN) + C1*iter1 + … + CM*iterM , 

where M < N; const changes every time with the increment of 
iterM+1 .. iterN .

Finding memory references that are expressible as partial 
affine index expression enhances existing SPM analysis 
approaches [5][6][7]. Indeed, when no full affine index 
expression exist, SPM approaches can still perform analysis on 
a limited number of loops (which are inside the function foo()
in the example in Figure 7) as if no other outer loops existed 
and suggest possible scratch pad buffer configurations that 
hold the data reused in loops in function foo().

Algorithm 3 in Figure 8 describes how index expressions 
are determined; it is called for each memory access recorded in 
the trace file in Step 2 of Algorithm 2.  

In Step 1 of Algorithm 3 we create a new memory reference 
node if we have not encountered this memory reference in the 
current position inside the loop tree. 

If the current memory reference has been encountered 
before, in Step 2 of Algorithm 3 we calculate the number H of 
coefficients that have an UNKNOWN value and whose 
corresponding iterators have changed their value after the 
previous execution of the same memory reference. In variable 
k we save the number of one of such iterators. 

In Step 3 of Algorithm 3 we calculate the value of an 
unknown coefficient if only one iterator with unknown 
coefficient has changed its value. 

If there are several iterators with unknown coefficients that 
have changed their values, in Step 4 of the Algorithm 3 we 
mark the current reference as non-analyzable and exclude it 
from further consideration. Our experiments show that there 
are very few such references in the benchmarks we studied.  

In Step 5 of Algorithm 3 we calculate the predicted value of 
affine index expression. 

int foo() { 
 int ret = 0; 
 int A[100];  
      … 
 for (i=0; i<10; i++)  
  for (j=0; j<10; j++)   
   ret += A[j+10i]; 
 return ret; 
}
int main() { 
      … 
 for (x=0; x<10; x++)  
  for (y=0; j<10; j++)  {  
        … 
   tmp += foo(); 
  } 
}

int foo(int offset) { 
 int ret = 0; 
      … 
 for (i=0; i<10; i++)  
  for (j=0; j<10; j++)   
   ret += A[j+10i+offset]; 
 return ret; 
}

int main() { 
      … 
 for (x=0; x<10; x++)  
       … 
  tmp += foo(lines[x]); 
 } 
}

Figure 7. Examples when access addresses can 
not be described by one affine function 

Algorithm 3: Finding array index expressions 
Input: memory access information from the trace file; loop 
tree and  location of the memory reference in it (current loop 
node); current values of the loop iterators (from Algorithm 2) 
Output: full or partial index expr. for each array reference 
Variables: each memory reference node keeps the following 
information: 
N - loop nest level of the current loop node; 
M – number of iterators included in partial index expression; 
CONST – constant term of the index expression; 
C1..CN – integer coefficients of the iterators in the affine index 
expression or UNKNOWN 
IT1..ITN  - current values of the iterators (from Algorithm 2) 
ITP1..ITPN  - values of the iterators when the same reference was 
executed the previous time 
S1..SN – a vector of binary values; used for determining the number 
of iterators in the partial affine index expression 
IND – address of the current access 
INDP – address of the previous access 

Begin
1. Search if current memory reference has been already added to 

the current loop node (see algorithm 2). If not,  
• add the reference node to the current loop node; 
• set CONST = IND; M = N; 
• for i = 1..N, set Ci = UNKNOWN;  Si = 0; 
• go to Step 7. 

If yes, continue. 
2. Calculate H = size of the set HS = {[i]: i = 1..N  ITi  ITPi  Ci

= UNKNOWN}; k ∈ HS. 

3. if (H = 1) Calculate ADJ = 

≠
≠=

∗
UNKNOWNC

ITPITNi

ii

i

ii

CIT
,,..1

;

                   Calculate Ck = (IND – ADJ – INDP) / (ITk – ITPk). 
4. if (H > 1) Mark current reference as non-analyzable. 
5. Calculate INDC = CONST + 

≠
=

∗
UNKNOWNC

Ni

ii

i

CIT
..1

.

6. if (INDC  IND)  // prediction was wrong; recalculate CONST 
    for i = 1..N  
        if (ITi = ITPi) Si = 1; 
    Calculate CONST = CONST + IND – INDC; 
    M = 0; // adjust the number of iterators in the partial index expr. 
    for i = 1..N  
        if (Si = 0) M = i-1; 
7. Return to processing of the next statement in the trace file. 

End

Figure 8. Algorithm for finding index expressions 
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In Step 6 of Algorithm 3 we check if this predicted value 
matches actual address of the memory access. If the prediction 
is wrong, we mark all iterators that have not changed their 
values, recalculate the new value of the constant term in the 
affine index expression and update the value of M that 
specifies the number of iterators included in the partial index 
expression. This is done by finding the outermost iterator that 
has changed its value in every misprediction case. All 
innermost iterators up to that one are forming a partial affine 
index expression. 

Note that during the building of the FORAY model of a 
program, each record in the trace file is accessed only once and 
the records are accessed in the order the information is written 
to the file. This means that the proposed algorithm can be 
executed during profiling (Step 2 of the Algorithm 1) and  
there is no need to save the (typically large) trace file. In this 
case the space complexity is constant with respect to the 
number of instructions profiled. 

The computational complexity of our approach is 
dominated by the number of calls of the Algorithms 2 and 3, 
and is linear with respect to the number of profiled instructions. 
Since the maximum loop nest level is limited in real programs, 
the complexity of the Algorithms 2 and 3 is constant on 
average if we use hash tables for the searches in Algorithm 2 
and in Step 1 of Algorithm 3. 

Inter-function optimizations 

Our approach also helps a designer by providing hints on 
which functions should be inlined to enable more aggressive 
memory optimizations – this is particularly helpful when a 
designer attempts to manually restructure code for improved 
performance and power. 

The FORAY model does not have any special 
representation of the hierarchical structure of a program, which 
is why functions appear to be inlined in our model. If  
FORAY-GEN inlines a function in more than one place, this 
provides a hint to programmer that it may be beneficial to 
duplicate the function in the original code. In the example 
shown in Figure 9 the function foo() is called in two different 
places. In those instances the access pattern to array A[] inside 
the body of the function is different. Optimizing the function 
for the first access pattern can produce suboptimal results for 
the case when foo() is called in the loop y. Duplicating the 
function as suggested by our approach produces better results 
by allowing each access pattern to be optimized separately.  

5.  Experimental results 

We now describe the implementation of the FORAY-GEN 
framework presented in Algorithm 1. Our parser for Step 1 of 
Algorithm 1 parses source C files of a benchmark and inserts 
checkpoint instructions. We use the SimpleScalar functional 
simulator [2] for profiling (Step 2 of Algorithm 1). The 
simulator was modified to process checkpoint instructions and 
to generate the trace file. Steps 3 and 4 of Algorithm 1 are 
implemented in a separate program that reads the trace file, 
performs analysis and extracts the FORAY model. 

To evaluate our approach, we used several benchmarks 
from the MiBench suite [4] that contains a set of embedded 
codes written in standard “C”. The following benchmarks were 

used: jpeg (image compression), lame (MP3 encoder), susan
(image recognition program), fft (Fast Fourier Transformation), 
and the gsm and adpcm encoders. 

5.1. Advantages of using FORAY-GEN 

In this section we present the benefits of using our 
automated FORAY-GEN tool to extract FORAY models for 
the benchmarks. 

First, we estimated the complexity of manual analysis 
needed to extract FORAY model that can be automated by our 
approach.  The number of lines of code in each benchmark and 
total number of loops (excluding the loops that were not 
executed during profiling) are presented in Table I. Breakdown 
of the loops by the type (for, while or do loops) is also 
presented. 

Table I shows that some of the typical embedded 
applications are fairly large and have hundreds of loops. 
Manual analysis of every loop in such applications is error-
prone and impractical. We can also conclude that although for
loops are used predominantly in the programs, there are a lot of 
other loops (23% on average) that should not be ignored during 
the analysis (as described earlier, existing approaches for loop-
based program analysis consider only for loops). 

We have also estimated how many of the useful references 
for scratch pad memory analysis [5][6][7] are not in the 
FORAY form in the original program and thus can not be 
analyzed by their static approaches. Table II shows the number 
of loops and references that can be expressed in FORAY form 
(those that were found by our algorithm and included in the 
FORAY model), and percentage of loops and references that 
are not in FORAY form in the original program. 

As we can see from the Table II, in all the benchmarks 
except fft (the shortest one), a considerable number of loops 
and memory references (64% and 60% on average) are not in 
FORAY form and thus cannot be statically analyzed by 
traditional scratch pad memory optimization techniques 
without using our approach. 

5.2. Memory behavior of the FORAY model 

We now analyze the effectiveness of our extracted FORAY 
model in capturing the memory behavior of the original 
program. 

We analyzed three aspects of memory behavior: the number 
of memory references, the number of accesses these references 
make, and the footprint (the number of different addresses 
accessed). Recall that the FORAY model captures only the 

int main() { 
 … 
 for (x=0; x<10; x++)  { 
   … 
   tmp += foo(10*x); 
  } 
 for (y=0; y<20; y++)  { 
   … 
   tmp += foo(2*y); 
  } 
}

int foo(int offset) { 
 for (i=0; i<10; i++)  
  ret += A[i+offset]; 
 return ret; 
}

Figure 9. Example of a code where function 
inlining may be beneficial 
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relevant memory references in the original program for SPM 
optimizations. All memory references in the original program 
can be divided into three categories: references captured by the 
FORAY model, system library memory references (not 
handled by FORAY-GEN), and all other memory references 
that can not be represented by the FORAY model. Note that 
system libraries are specific for the platform the code is 
compiled on and therefore system libraries we used are not 
relevant to real embedded systems. 

As we can see from the breakdown in Table III, although 
very few references in the source code are described by the 
FORAY model (and worth considering for analysis by 
techniques [5][6][7]) – 2.2% on average – these references 
make up to 66% (29% on average) of all accesses and cover up 
to 87% (44% on average) of the address space.  

It is important to note that the data shown in the table 
includes memory references that are not present explicitly in 
the source C code (e.g., those placing arguments to the stack 
before performing function calls, memory spills, etc.). 
However, these references address only few locations and are 
not included in the FORAY model after being filtered out by 
the Step 4 of Algorithm 1. Note also that all functions that are 
called from different contexts are considered to be inlined (as 
explained in Section 4) for the purpose of calculating the 
number of loops and references in our experiments. 

In summary, memory references that can be represented in 
FORAY form and are not in this form in a source code account 
for a large portion of memory activity in typical embedded 
applications. Our FORAY-GEN approach helps to automate 
the extraction of such references and thus expands the reach of 
SPM optimizations. 

6. Conclusion

In this paper we introduce the notion of the FORAY model 
of a program which is another program consisting of for loops 

and array references with affine index expressions that models 
the memory behavior of the original program and that is 
amenable to optimizations. We presented FORAY-GEN, a 
technique for fully automated extraction of the FORAY model 
from a source program. We show how this model can be used 
to expand the reach of contemporary memory optimization 
techniques, increasing the number of analyzable references two 
times on average for typical embedded multimedia benchmarks.  
Our FORAY-GEN approach thus significantly increases the 
reach of SPM optimizations while freeing designers from the 
cumbersome and error-prone task of manual code analysis, 
thereby improving designer productivity.  Our future work will 
study the interdependency of the FORAY models on the input 
data set used for profiling. 
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Table III. Memory behavior of the FORAY models 

Total number Included in FORAY model In system calls Other Benchmark 
name References Accesses Footprint Ref. Accesses Footprint Ref. Accesses Footprint Footprint 

jpeg 6151 8.3M 123625 1% 27% 87% 33% 2% 9% 91% 
lame 16805 43M 127052 6% 22% 26% 40% 20% 33% 66% 
susan 1162 5.0M 24778 1% 66% 72% 85% 1% 47% 1% 

fft 2420 22M 28804 1% 1% 57% 95% 96% 43% 29% 
gsm 2091 37M 16215 4% 32% 5% 49% 3% 93% 8% 

adpcm 546 5.5M 4964 0.2% 28% 20% 97% 0.2% 68% 12% 

Table I. Benchmark complexity and loop distribution

Benchmark 
name 

Number 
of lines 

Total
number 
of loops 

Number 
of for
loops 

Number 
of while
loops 

Number 
of do
loops 

jpeg 34590 169 65% 34% 1% 
lame 22846 479 83% 8% 9% 
susan 2173 14 79% 21% 0% 

fft 493 11 100% 0% 0% 
gsm 7089 38 87% 13% 0% 

adpcm 782 2 50% 50% 0% 

Table II. Loops and references converted into 
FORAY form by our approach 

Loops and 
references that can 
be represented by 

FORAY form 
(returned by 
Algorithm 1) 

Percentage of loops and 
references that are not in 

FORAY form in the original 
program (out of those that 

can be expressed in 
FORAY form) 

Benchmark 
name 

Number 
of loops 

Number of 
references

Number of 
loops 

Number of 
references 

jpeg 73 73 41% 38% 
lame 232 980 42% 38% 
susan 9 10 78% 50% 

fft 8 19 0% 0% 
gsm 17 86 59% 74% 

adpcm 2 1 100% 100% 
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