
HAL Id: hal-00181199
https://hal.science/hal-00181199v1

Submitted on 23 Oct 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Lightweight Multitasking Support for Embedded
Systems using the Phantom Serializing Compiler

Andre C. Nacul, Tony Givargis

To cite this version:
Andre C. Nacul, Tony Givargis. Lightweight Multitasking Support for Embedded Systems using the
Phantom Serializing Compiler. DATE’05, Mar 2005, Munich, Germany. pp.742-747. �hal-00181199�

https://hal.science/hal-00181199v1
https://hal.archives-ouvertes.fr


Lightweight Multitasking Support for Embedded Systems
using the Phantom Serializing Compiler

André C. Nácul and Tony Givargis
Center for Embedded Computer Systems

Department of Computer Science
University of California, Irvine
{nacul, givargis}@ics.uci.edu

ABSTRACT
Embedded software continues to play an ever increasing role in
the design of complex embedded applications. In part, the ele-
vated level of abstraction provided by a high-level programming
paradigm immensely facilitates a short design cycle, fewer errors,
portability, and reuse. Serializing compilers have been proposed as
an alternative to traditional OS techniques, enabling a designer to
develop multitasking applications without the need of OS support.
In this work, we outline the inner workings of the Phantom serial-
izing compiler and analyze the quality of the generated code with
respect to memory and processing overheads. Our results show
that such serializing compilers are extremely efficient, making them
ideal to be used in design of highly parallel applications (e.g., mul-
timedia, graphics, and signal processing applications).

1. INTRODUCTION
The functional complexity of embedded software continues to

rise due to a number of factors such as sophisticated user interfaces,
seamless operation across multiple communication protocols, need
for security, and so on. Consequently, the development of embed-
ded software poses a major design challenge. At the same time, the
elevated level of abstraction provided by a high-level programming
paradigm immensely facilitates a short design cycle, fewer errors,
portability, and IP reuse. In particular, the concurrent programming
paradigm is an ideal model of computation for design of embedded
systems, which often encompass inherent concurrency.

Furthermore, embedded systems often have stringent perfor-
mance requirements and, consequently, require a carefully selected
and performance tuned embedded processor to meet specified de-
sign constraints. In recent years, a plethora of highly customized
embedded processors have become available. As an example, Ten-
silica [11] provides a large family of highly customized application-
specific embedded processors.

Such embedded processors ship with cross-compilers and the as-
sociated tool chain for application development. However, to sup-
port a multitasking application development environment, there is
a need for an operating system (OS) layer that can support task
creation, task synchronization, and task communication.

Such OS support is seldom available for each and every variant
of the base embedded processor. In part, this is due to the lack of
system memory and/or sufficient processor performance to afford
the high performance penalty of having a full-fledged OS (e.g., in
the case of micro-controllers such as the Microchip PIC [7] and
the Philips 8051 [9]). Additionally, manually porting and verifying
an OS to every embedded processor available is a high-cost job, in
terms of time and money.

To fill the gap in realizing a multitasking application targeted at

a particular embedded processor, researchers have proposed Phan-
tom [8]. Phantom provides a fully automated source-to-source
translator, taking a multitasking C program extended with POSIX
as input and generating an equivalent, embedded processor inde-
pendent, single-threaded ANSI C program, to be compiled using
the embedded processor-specific tool chain. The output of Phan-
tom is a highly tuned, correct (i.e., by construction) ANSI C pro-
gram that embodies the application-specific embedded scheduler
and dynamic multitasking infrastructure along with the user code.

In this work, we outline the inner workings of the Phantom se-
rializing compiler. Specifically, we provide details on the archi-
tecture of Phantom generated code, such as memory layout, code
organization, and the scheduler. Moreover, we analyze the quality
of the Phantom generated code with respect to memory and pro-
cessing overheads. Through our experiments, we show that such
serializing compilers are extremely efficient, making them ideal to
be used in design of highly parallel applications (e.g., multimedia,
graphics, and signal processing applications).

Phantom is a new approach in addressing the challenge of mul-
titasking support for embedded applications. We are unaware of
any related work that use a similar compiler-based technique as
that used in Phantom. However, we can identify three differ-
ent approaches that address some of the design challenges solved
with Phantom, namely a Virtual Machine (VM) based technique,
template-based OS generation techniques, and static scheduling
techniques. In the VM approach, portability is achieved, but with
the overhead imposed by the VM layer. Moreover, the VM has
to be ported to each new platform. To improve on these, solutions
like JITs[1] and customized VMs for embedded platforms[13] have
been proposed. In the template based OS generation, a custom OS
is generated from a generic library of templates [4][5][12]. How-
ever, no single generic OS template can be used in the variety of
embedded processors available. Finally, the static scheduling tech-
niques [2][3][6] solve the static, a priori known, tasks class of prob-
lems, without addressing the dynamic multitasking issues.

The remainder of this work is organized as follows. In Section 2,
we briefly describe Phantom, the source to source translator. In sec-
tion 3, we discuss the architecture of the code generated by Phan-
tom. In Section 4, we describe our experiments and give insight
into the performance of code generated with Phantom. Finally, in
Section 5, we state our conclusions.

2. THE PHANTOM APPROACH

2.1 Introduction
Input to Phantom is a multitasking program Pinput, written in

C. The multitasking is supported through the native Phantom API,

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05) 
1530-1591/05 $ 20.00 IEEE 



Source
Code (C)

Generic
Front-End
Compiler

Phantom Calls
Identifier

Partitioning
Module

Live Variable
Analysis

Code Generation

ANSI C
Single-threaded

Application

AEB
Graphs

BB
CFG

Phantom
Support
System

Figure 1: Phantom Compiler Architecture

which is a subset of the standard POSIX interface[10]. These prim-
itives provide functions for task creation and management (e.g.,
task create, task join, etc.) as well as a set of synchronization vari-
ables (e.g., mutex t, sema t, etc.). Output of Phantom is a single-
threaded strict ANSI C program Poutput that is equivalent in func-
tionality to Pinput. More specifically, Poutput does not require any
OS support and can be compiled by any ANSI C compiler into a
self sufficient binary for a target embedded processor.

Figure 1 is the block diagram of Phantom. The multitasking C
application is compiled with a generic front-end compiler to obtain
the basic block (BB) control flow graph (CFG) representation. This
intermediate BB representation is annotated, identifying Phantom
primitives. The resulting structure is used by a partitioning module
to generate non-preemptive blocks of code, which are called atomic
execution blocks (AEBs), to be executed by the scheduler. Every
task in the original code is partitioned into many AEBs, generating
an AEB Graph. Then, a live variable analysis is performed on the
AEB graphs and the result is fed back to the partitioning module
to refine the partitions until acceptable preemption, timing, and la-
tency are achieved. The resulting AEB graphs are then passed to
the code generator to output the corresponding ANSI C code for
each AEB node. In addition, the embedded scheduler, along with
other C data structures and synchronization APIs are included from
the Phantom system support library, resulting in the final ANSI C
single-threaded code.

In the current version, Phantom is able to handle soft, firm, and
event-driven real-time applications. All the modules pictured in
Figure 1 are implemented and can be used in the automatic code
generation process. Next, we briefly present the major components
of Phantom. For a more complete description of these components,
including discussions about code partitioning, please refer to [8].

2.2 Scheduling and Synchronization
We define the basic unit of execution, scheduled by the sched-

uler, an atomic execution block (AEB). An AEB is a block of code
that is executed in its entirety prior to scheduling the next AEB. A
task Ti is partitioned into an AEB graph whose nodes are AEBs
and edges represent control flow. Consider the example shown in
Figure 2, implementing a game between two tasks that are picking
up random numbers, and the corresponding CFG of function game
of the example, pictured in Figure 3. Figure 3(a) shows the out-
put of the compiler front-end that is fed to the partitioning module,
annotated with the Phantom primitives. The partitioner adds two
control basic blocks, setup and cleanup, as shown in Figure 3(b),
and subsequently divides the function code into a number of AEBs,

typedef struct {

  int id;

  pthread_mutex_t *lock;

  pthread_mutex_t *unlock;

}game_t;

int winner;

void *game(void *arg) {  /* THREAD */

  game_t g = (game_t *)arg;

  int num;

  while(1) {

    pthread_mutex_lock(g->lock);

    if(winner) {

      pthread_mutex_unlock(g->unlock);

      return NULL;

    }

    else {

      num = rand();

      if(num == g->id)

        winner = g->id;

      pthread_mutex_unlock(g->unlock);

    }

  }

}

int main(int argc, char **argv) {

  pthread_t t1, t2;

  int r;

  struct game_t g1, g2;

  pthread_mutex_t m1, m2;

  pthread_mutex_init(&m1, NULL);

  pthread_mutex_lock(&m1);

  pthread_mutex_init(&m2, NULL);

  pthread_mutex_lock(&m2);

  g1.id = 1;

  g2.id = 2;

  g1.lock = g2.unlock = &m1;

  g2.lock = g1.unlock = &m2;

  winner = 0;

  pthread_create(&t1, NULL, game, &g1);

  pthread_create(&t2, NULL, game, &g2);

  pthread_mutex_unlock(&m1);

  pthread_join(t1, NULL);

  pthread_join(t2, NULL);

  printf("Winner is %d\n", winner);

}

Figure 2: Code Example

0

1

2

3

4
8

5
9

6

10
7

0

1

2

3

4
8

5
9

6

10
7

Partitioner
Step I

0

1

2

3

4
8

5
9

6

10
7

Partitioner
Step II aeb_0

aeb_1

aeb_2

aeb_3

aeb_4

aeb_5

(a) (c)(b)

Figure 3: CFG Transformations for Function game

as shown in Figure 3(c), in a process we call phantomization.
Figure 3(c) shows the AEB graph of function game as being

composed of AEBs aeb 0, aeb 1, aeb 2, aeb 3, aeb 4 and aeb 5.
We note that an AEB node may be composed of one or more basic
blocks. The termination of an AEB region transfers the control
back to the scheduler. The scheduler, then, has a chance to activate
the next AEB, from either the same task or from another task that
is ready to run. A detailed description of the code layout and the
scheduler implementation is in Section 3.

It may happen that a function f in the original input code is phan-
tomized (i.e., partitioned) into more than one AEB, each one of
them being implemented as a separate region of code. In that case,
there is a need for a mechanism to save the variables that are live
on transition from one AEB to the other, so that the transfer of one
AEB to another is transparent to the task. Also, every task must
maintain its own copy of local variables during the execution of
f as part of its context. Phantom solves this issue by storing the
values of local variables of f in a structure inside the task context,

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05) 
1530-1591/05 $ 20.00 IEEE 



emulating the concept of a function frame. The frame of a phan-
tomized function f is created in the fsetup block, and cleaned up
in the last AEB of f . These operations are included by the parti-
tioner for every function that needs to be phantomized. They are
represented by the dark nodes in Figure 3(b).

During runtime, there is a need to maintain, among others, a
reference to the next AEB node that is to be executed some time in
the future, called next aeb, in the context information for each
task that has been created. When a task is created, the context is
allocated, the next aeb field is initialized to the entry AEB of the
task, and the task context is pushed onto the queue of existing tasks
to be processed by the embedded scheduler.

The embedded scheduler is responsible for selecting and exe-
cuting the next task, by activating the corresponding AEB of the
task to be executed. The next aeb reference of a task Ti is used
to resume the execution of Ti by jumping to the region of code
corresponding to the next AEB of Ti. At termination, every AEB
updates the next aeb of the currently running task to refer to the
successor AEB according to the tasks’s AEB Graph.

The scheduling algorithm in Phantom is a priority based scheme,
as defined by POSIX. The way priorities are assigned to tasks, as
they are created, can enforce alternate scheduling schemes, such
as round-robin, in the case of all tasks having equal priority, or
earliest deadline first (EDF), in the case of tasks having priority
equal to the inverse of their deadline. Additionally, priorities can
also be changed at run-time, so that scheduling algorithms based
on dynamic priorities can be implemented.

Phantom implements the basic semaphore (sema t in POSIX)
synchronization primitive, upon which any other synchronization
construct can be built. To implement semaphores, there is a need
to add to a task Ti’s context an additional field called status.
Status is one of blocked or runnable and is set appropriately
when a task is blocked waiting on a semaphore.

A semaphore operation, as well as a task creation and joining,
is what is called a synchronization point. Synchronization points
are identified by a gray node in Figure 3. At every synchronization
point a modification in the state of at least one task in the system
might happen. Either the current task is blocked, if a semaphore is
not available, or a higher priority task is released on a semaphore
signal, for example. Therefore, a function is always phantomized
when synchronization points are encountered, and a call to a syn-
chronization function is always the last statement in its AEB. At
this point, the scheduler must regain control and remove the cur-
rent task from execution in case it became blocked or is preempted
by a higher priority task.

2.3 Partitioning
The partitioning of the code into AEBs is key to implementing

multitasking at a high abstraction level. Recall that boundaries of
AEB represent the points where tasks might be preempted or re-
sumed for execution. Some partitions are unavoidable and must
be performed for correctness, specifically, when a task invokes a
synchronization operation, or when a task creates another task.

However, partitioning beyond what is needed for correctness im-
pacts timing. In general, partitioning will determine the granularity
level of the scheduling (i.e., the time quantum), as well as the task
latency. A complete discussion on partitioning, with a deeper anal-
ysis of different partitioning schemes and algorithms for exploring
different code partitions, is described in a separate work [8].

2.4 Experiments with Phantom
The Phantom approach has been successfully applied to a num-

ber of applications developed for testing the translation flow [8]. In

Global Declarations
& Variables

F_1(...) {
...
}

....
F_N(...) {
...
   F_2();
...
}

F_2(...) {
...
phantom_synch()
...
}

int main(int, char**) {
...
}

Pinput

F
u
n
c
t
i
o
n
s

Global Declarations
& Variables

F_1(...) {
...
}

...
F_N(...) {
// frame setup
}

F_2(...) {
// frame setup
}

int main(int, char**) {
create_task(_main_);
scheduler();
}

Poutput

void scheduler() {
  sched:
       switch(next_aeb)
            case 1: goto aeb_1;
            case 2: goto aeb_2;
            ...
  aeb_0:
    B_0_entry: ...
    B_0_1: ...
         ...
    phantom_synch();
    B_0_exit: goto sched;
  aeb_1:
     B_1_entry:  ...
     B_1_1: ...
     B_1_2: ...  F_2();
     B_1_exit: goto sched;
  aeb_2:  ...
  ...
}

copied
verbatim

compiled

phantom
setup

_main_(...) {
// frame setup
}

Transformed by
Phantom Compiler

Figure 4: Code Layout of Input and Output Programs

summary, Phantom outperforms standard UNIX POSIX implemen-
tations, being 2 to 3 times faster in execution time [8]. In general,
multitasking applications synthesized with Phantom show a much
improved performance (i.e., low operating overhead). The reason
is two fold. First, the generated application encompass a highly
tuned multitasking framework that meets the application-specific
needs. Second, the multitasking infrastructure itself is very com-
pact and efficient, resulting in a much lighter overhead for context
switching, task creation, and synchronization.

With regard to different partitioning schemes, it was shown that
there is a clear correlation between partition and performance met-
rics, like latency and multitasking overhead [8]. Different code
partitioning can reduce application latency by as much as two or-
ders of magnitude, at the expense of an increase of the multitasking
overhead by a factor of 120 [8]. The effect of partitioning is highly
dependent on the application structure itself.

3. GENERATED CODE ARCHITECTURE

3.1 Code Layout
The code layout of the input program Pinput, once processed

by a C pre-processor, is conceptually organized in two sections,
as shown in Figure 4. The first section contains all global decla-
rations and variables, while the second section contains a set of
functions. One of these functions is the main function, i.e., the en-
try point of the application. The Phantom output program Poutput

is organized in five sections, as shown in Figure 4. The first sec-

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05) 
1530-1591/05 $ 20.00 IEEE 



tion contains global declarations and variables. The second section
contains a set of functions that are not phantomized. The third sec-
tion contains a set of functions, each corresponding to one phan-
tomized function of Pinput. The fourth section contains a single
function, called scheduler, which contains the code for all the
phantomized functions, as well as the scheduling algorithm. Fi-
nally, the fifth section contains the main function of Poutput.

All the functions of Pinput are analyzed and classified in two
groups: the phantomized and non-phantomized functions. A func-
tion is phantomized if (i) it is the entry point of a task, (ii) contains
a synchronization primitive(s), or (iii) calls a phantomized func-
tion. Note that, since main is the entry point of the first task that is
created by default, it is automatically phantomized.

The second section of Poutput contains all non phantomized rou-
tines, copied over from Pinput. The third section contains the setup
functions, each corresponding to a phantomized function of Pinput.
A setup function is responsible for allocating the frame structure of
each phantomized function. The frame and task context memory
layout is described in a later subsection.

The next section of Poutput contains the phantomized func-
tions, along with the scheduler. All of these (i.e., the phantomized
functions and scheduler) are embodied into a single C function
of Poutput, namely scheduler. Recall that a phantomized
function is partitioned into a set of AEBs, aeb0, aeb1, . . . , aebn.
An AEB aebi is in turn composed of one or more basic blocks
Bi,enter, Bi,2, Bi,3, . . . , Bi,exit. By definition, execution of AEB
aebi starts at the entry basic block of Bi,enter and ends at the exit
basic block Bi,exit. The exit basic block Bi,exit of AEB aebi

transfers control to a special basic block sched that serves as the
entry point of the scheduling algorithm. The scheduler function
contains all these basic blocks, starting with basic block sched, in
low-level C, using C labels to denote basic block boundaries and C
goto statements as a branching mechanism. The scheduling algo-
rithm is described in a later subsection.

Finally, the fifth section of Poutput, contains an implementation
of the main function, which creates a single task, corresponding to
the main entry point of Pinput, and calls the scheduler function
to invoke the scheduling algorithm.

3.2 Memory Layout
Each time a task is created, memory is allocated to store its

context. At any given time, a special global variable, named
current, is made to point to the context of the running task by
the scheduler. Moreover, a queue of running tasks, named tasks,
is maintained, according to the priorities of each task, by the sched-
uler, as described in the following subsection. The context of a task
is further defined in Figure 5.

struct context_t {
id // unique id
status // runnable or blocked
priority // priority level
next_aeb // next aeb to execute
stack // stack for function frames
waiting // task waiting to join
ret_val // exit value of this task

}

Figure 5: The Task Context Data Structure

Most of the fields of this structure were discussed earlier. Here,
we focus on the stack field of a context. The purpose of the
stack is to store the task-local data of each phantomized function.
Moreover, the choice of a stack is to allow for recursion and nested
function calls. The collection of all this data for a phantomized

function f is called f ’s frame, and is structured as shown in Fig-
ure 6. The frame of each phantomized function includes function
arguments and local variables which are live at the boundary of its
AEBs. The code in all basic blocks of f ’s AEBs access the most
recent instance of f ’s frame.

struct f_frame_t {
arg_0 // first arg. of phantomized function
arg_1 // second arg. of phantomized function
...
arg_N // last arg. of phantomized function
local_0 // live variable
local_1 // live variable
...
ret_aeb // next AEB of calling function

}

Figure 6: The Frame Data Structure

The stack is managed by the setup and the cleanup AEBs of
phantomized functions. Specifically, when a function g of the cur-
rent task calls a phantomized function f , the setup function fsetup

is invoked. Then, fsetup pushes f ’s frame onto the stack of the cur-
rent task, copies f ’s arguments to the frame, saves the return AEB
of the calling function g, and makes the current task’s next AEB
point to the entry AEB of f . The structure of the setup function is
shown in Figure 7.

void f_setup(arg_0, ... , arg_N) {
f_frame_t *frame
frame = &current->stack.buffer[current->stack.free]
current->stack.top = current->stack.free
current->stack.free += sizeof(f_frame_t)
frame->arg_0 = arg_0
...
frame->arg_N = arg_N
frame->ret_aeb = current->next_aeb
current->next_aeb = f_aeb_0

}

Figure 7: Code Structure of Setup Functions

Conversely, when a called function f complete its execution, the
cleanup AEB aebexit of f performs the following. First, it restore
the current task’s next AEB to point to the next AEB of the calling
function g, which was stored in the frame of f by the f ’s setup
function. Then, it pops the frame of the current task’s stack, as
shown in Figure 8.

f_aeb_exit: {
f_frame_t *frame
frame = &current->stack.buffer[current->stack.top]
current->next_aeb = frame->ret_aeb
current->stack.free = current->stack.top
current->stack.top -= sizeof(f_frame_t)

}

Figure 8: Code Structure of Cleanup AEB

3.3 Scheduler
The scheduler’s code is included in the same C function contain-

ing the phantomized functions, called scheduler. The schedul-
ing algorithm makes use of a priority queue that stores all the
runnable tasks. The priority queue guarantees that the highest prior-
ity task is always the first task in the queue. In case of a priority tie
among two or more tasks, the scheduler implements a round-robin
scheme among them, so that all equal-priority tasks fairly share the

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05) 
1530-1591/05 $ 20.00 IEEE 



processor. When a task is selected by the scheduler for execution,
the global current pointer is updated accordingly.

Each AEB returns the execution to the scheduler upon termina-
tion. This is accomplished through a jump to the first basic block
of the scheduler. Once the scheduler determines the next task Ti

to be executed, it uses Ti’s next aeb reference to transfer control
back to the next AEB. The transfer of control from the scheduler
to the next AEB of the running task is implemented using a switch
statement containing goto’s to all AEB’s of the application. When
the AEB completes execution, control is returned to the scheduler,
which then pushes the current task’s context back to the queue of
runnable tasks if the task is not blocked or terminated. An overview
of the scheduler is depicted in Figure 9.

queue_t *tasks
context_t *current
void scheduler() {

while(tasks->size > 0) {
sched: {

if(current->status == RUNNABLE)
tasks->push(current)

current = tasks->pop()
switch(current->next_aeb) {

case 1: goto aeb_0
case 2: goto aeb_1
...

}
}

}
// code for all the AEBs follows

}

Figure 9: Code Structure of Scheduling Function

An optimization in the scheduling algorithm allows a task to ex-
ecute more than one AEB each time it is selected from the priority
queue. We call this a short context switch. With the short context
switch, it is possible to save the overhead of pushing/popping a new
task from the priority queue with a bypass. A full context switch is
executed every so often, alternating short and full context switches
with a pre-determined ratio. A full context switch ensures a fair
sharing of the processor among equal-priority tasks.

In order to implement the short context switch, we add a counter
to the scheduling algorithm, used to keep track of the number of
consecutive short context switches performed. The counter is ini-
tialized to a value representing the ratio between short and full con-
text switches. The value of the counter defines a time quantum, i.e.,
a number of consecutives AEBs of the same task to be executed
before a full context switch. The counter is decremented at every
short context switch, and a full context switch is executed once the
counter reaches zero and expires. Obviously, a full context switch
can happen before the counter expires, in the case that a task is
blocked or terminates. Alternatively, a timer can be used in place
of a counter, yielding a real time-sharing of the processor in the
round-robin approach. Figure 10 shows the optimized scheduler
algorithm, incorporating the short context switch optimization.

In Phantom, for efficiency reasons, a limited priority queue is
implemented. A limited priority queue is one that allows a finite,
and a priori known, number of priority levels (e.g., 32). However,
this does not pose any limitations, since the number of priority lev-
els, required by the application, can be provided to the Phantom
serializing compiler. The implementation of the priority queue is
as follows. A separate array-based queue is allocated for each pri-
ority level, which are accessed by the scheduler in order of highest
to lowest priority. Manipulation of the array-based queues at each
priority level is very efficient, and takes constant time. At any given

queue_t *tasks
context_t *current
void scheduler() {

while(tasks->size > 0) {
if(current->status == RUNNABLE)

tasks->push(current)
current = tasks->pop()
cnt = RATIO;
sched: {
if(cnt-- && current->status == RUNNABLE)

switch(current->next_aeb) {
case 1: goto aeb_1
case 2: goto aeb_2
...

}
}

}
// code for all the AEBs follows

}

Figure 10: Code Structure of Optimized Scheduling Function

point, a reference is maintained to the highest non-empty priority
queue. Given this, the overall access to the queue of runnable tasks
by the scheduler requires constant running time, regardless of the
number of runnable tasks.

4. EXPERIMENTAL RESULTS
A set of synthetic benchmarks was implemented to evaluate the

overhead imposed by the Phantom multitasking infrastructure. Var-
ious parameters of Phantom were evaluated, like context switching
overhead, task creation cost, task joining cost, and mutex synchro-
nization cost.

Cost was measured as the average number of instructions ex-
ecuted on the host processor for performing a particular opera-
tion (e.g., task creation, task joining, etc.) We compiled and exe-
cuted the applications on a UltraSPARC-IIe workstation, 500 Mhz,
with 256Mb of RAM running Solaris operating system. We used
cputrack tool to obtain number of instructions and CPU cycles
executed by a target program. (cputrack uses hardware counters
to track CPU usage). All benchmarks were compiled with GCC
v3.3. The time cost of each metric was calculated from the average
CPI (cycles per instruction) of each benchmark, associated with the
processor cycle time.

For each benchmark, designed to measure a particular metric,
we first obtained a baseline execution count. The baseline execu-
tion count accounted for all the computation code less the Phantom
generated multitasking infrastructure. Then, the multitasking in-
frastructure was enabled and instruction counts were re-evaluated.
The difference between the baseline and the version with the mul-
titasking infrastructure gave us a measure of the performance of
Phantom for that metric. All experiments in this phase were per-
formed using at most one task active and a single priority level.
On average, Phantom multitasking infrastructure overhead is small,
and has an impact of less than 1% in the execution time of the syn-
thetic benchmarks. Our results are summarized in Table 1.

Next, we evaluated the impact of multiple task and multiple pri-
orities in task context switch. In these experiments, we used a
mixed scheduler, with a 10:1 ratio between short and full context
switch. Figure 11 shows the results. Here, the horizontal axis of
the plot depicts the number of runnable tasks in the system (i.e.,
one of 2, 10, 20, 50, 100, 500, and 1000 tasks). The vertical axis of
the plot depicts the average number of instructions for performing
a context switch.

We note from Figure 11 that the overhead of context switch is

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05) 
1530-1591/05 $ 20.00 IEEE 



Table 1: Phantom Multitasking Performance Results
No optimization (-O0) With optimization (-O2)

Metric Instructions Time (µs) Instructions Time (µs)

full context switch 427 1.81 206 0.47
short context switch 82 0.35 37 0.08
mixed context switch (10:1) 124 0.52 58 0.13
task creation 1113 4.74 833 1.90
task join 506 2.15 227 0.52
mutex lock 68 0.29 40 0.09

 40

 60

 80

 100

 120

 140

 160

 1  10  100  1000

C
on

te
xt

 S
w

itc
h 

ov
er

he
ad

 (I
ns

tru
ct

io
ns

)

Number of Tasks

Average Context Switch Overhead

1 Priority   -O0
2 Priorities -O0
4 Priorities -O0

8 Priorities -O0
1 Priority   -O2
2 Priorities -O2

4 Priorities -O2
8 Priorities -O2

Figure 11: Phantom Context Switch Cost in Instructions with
Multiple Threads and Multiple Priorities

small, fairly constant, and independent of the number of runnable
tasks in the system. A similar result was obtained for task creation
overhead. Contrary to intuition, there is initially a slight decrease
in the context switch time when the number of tasks increase. With
a small number of tasks, there are more reorganizations in the pri-
ority queue, since every context switch can possibly insert a task
with a different priority in the queue. As the number of tasks in-
crease, reorderings are less constant, since a task with the same
priority is likely to be in the queue already. Therefore, context
switch is slightly faster. Nevertheless, the impact of Phantom in
the execution time of the benchmarks is typically less than 1%, for
the applications tested. A similar trend is observed with respect
to the number of priorities, i.e., increasing the number of priorities
does not have a significant impact on context switch time. As be-
fore, there is a slight difference in context switch time when few
tasks are present. In this case, the priority queue has to be reorga-
nized more often, increasing the context switch by a small margin.
The efficiency of the Phantom generated code makes it practical
for designing multimedia, digital signal processing, or other highly
parallel applications, using the concurrent programming model.

5. CONCLUSIONS
In this work, we have outlined the code architecture and mem-

ory layout of Phantom serializing compiler. A serializing compiler
is a source-to-source translator that takes a POSIX compliant mul-
titasking C program as input and generates an equivalent, embed-
ded processor independent, single-threaded ANSI C program, to
be compiled using the embedded processor-specific tool chain. Se-
rializing compilers have been proposed as an alternative solution,
enabling a designer to develop multitasking applications without
the need of OS support. We have also analyzed the quality of the

generated code with respect to memory and processing overheads.
Our results show that such serializing compilers are extremely ef-
ficient, making them ideal to be used in design of highly parallel
applications (e.g., multimedia, graphics, and DSP applications).

Our future direction of research is to incorporate real-time
scheduling into the Phantom serializing compiler. Specifically, we
plan to allow deadline driven task scheduling using dynamic pri-
orities. In addition, we would like to investigate power manage-
ment strategies (e.g, voltage scaling, power modes, memory man-
agement, etc.) to be automatically generated by the Phantom seri-
alizing compiler.

Acknowledgment
This work was supported by the National Science Foundation
award number CCR-0205712 and by CAPES Foundation, Brazil,
award number 1054/01-5.

6. REFERENCES
[1] J. Aycock. A Brief History of Just-In-Time. ACM Computing

Surveys, 35(2):97–113, Jun. 2003.
[2] J. Cortadella et. al. Task Generation and Compile-Time

Scheduling for Mixed Data-Control Embedded Software. In
Proc. of DAC, Jun. 2000.

[3] S. Edwards. Tutorial: Compiling Concurrent Languages for
Sequential Processors. ACM Trans. on Design Automation of
Electronic Systems, 8(2):141–187, Apr. 2003.

[4] L. Gauthier, S. Yoo, and A. Jerraya. Automatic Generation
and Targeting of Application-Specific Operating Systems
and Embedded Systems Software. IEEE Trans. on
Computer-Aided Design of Integrated Circuits and Systems,
20(11):1293–1301, Nov. 2001.

[5] A. Gerstlauer, H. Yu, and D. Gajski. RTOS Modeling for
System Level Design. In Proc. of DATE, Mar. 2003.

[6] B. Lin. Efficient Compilation of Process-Based Concurrent
Programs without Run-Time Scheduling. In Proc. of DATE,
Feb. 1998.

[7] Microchip Inc. http://www.microchip.com.
[8] A. Nacul and T. Givargis. Code Partitioning for Synthesis of

Embedded Applications with Phantom. In Proc. of ICCAD,
Nov. 2004.

[9] Phillips Inc. http://www.philips.com.
[10] POSIX Open Group. http://www.opengroup.org.
[11] Tensilica Inc. http://www.tensilica.com.
[12] S. Vercauteren, B. Lin, and H. D. Man. A Strategy for

Real-Time Kernel Support in Application-Specific HW/SW
Embedded Architectures. In Proc. of DAC, Jun. 1996.

[13] V. Verdiere, S. Cros, C. Fabre, R. Guider, and S. Yovine.
Speedup Prediction for Selective Compilation of Embedded
Java Programs. In Proc. of EMSOFT, Oct. 2002.

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05) 
1530-1591/05 $ 20.00 IEEE 


