
HAL Id: hal-00181193
https://hal.science/hal-00181193

Submitted on 23 Oct 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

UML 2.0 Profile for Embedded System Design
Petri Kukkala, Jouni Riihimaki, Marko Hannikainen, Timo D. Hamalainen,

Klaus Kronlof

To cite this version:
Petri Kukkala, Jouni Riihimaki, Marko Hannikainen, Timo D. Hamalainen, Klaus Kronlof. UML
2.0 Profile for Embedded System Design. DATE’05, Mar 2005, Munich, Germany. pp.710-715. �hal-
00181193�

https://hal.science/hal-00181193
https://hal.archives-ouvertes.fr

UML 2.0 Profile for Embedded System Design

Petri Kukkala1, Jouni Riihimäki1, Marko Hännikäinen1, Timo D. Hämäläinen1, and Klaus Kronlöf2

1Tampere University of Technology,
Institute of Digital and Computer Systems

P.O. Box 553,
FI-33101 Tampere, Finland

2Nokia Research Center
P.O. Box 407,

FI-00045 Nokia Group, Finland

Abstract

Unified Modeling Language (UML) 2.0 is emerging in
the area of embedded system design. This paper presents
a new UML 2.0 profile - called TUT-Profile - that
introduces a set of stereotypes and design rules for an
application, platform, and mapping. The profile classifies
different application and platform components, and
enables their parameterization. TUT-Profile concentrates
on the structure of an application and platform, and
utilizes standard UML 2.0 for the behavioral modeling.
The application is seen as a set of active classes with an
internal behavior. Correspondingly, the platform is seen
as a component library with a parameterized presentation
in UML 2.0 for each library component.

1. Introduction
The development of modern embedded systems

requires reducing the gap between traditional hardware
and software designs. Unified Modeling Language
(UML) is widely used in software development, but now
it is emerging in embedded system design. Especially the
latest release of the language, UML 2.0 with its extension
proposals, brings several advanced features to support
also this domain. UML 2.0 holds a promise of a general
design language that can be understood by system
designers as well as software and hardware engineers.

This paper presents a new UML 2.0 profile, called
TUT-Profile. TUT-Profile defines a set of stereotypes for
extending UML metaclasses as well as design practices to
describe applications, platforms, and mapping of them. It
is especially targeted to automated system implementation
using only UML 2.0 description. For this reason, TUT-
Profile is used with a set of tools as depicted in Figure 1.
Tools include Telelogic TAU G2 and a new custom UML
profiling tool. Currently the physical target hardware
platform is composed of Altera NIOS soft core processors
and HIBI interconnection network [5] on single FPGA.
However, the profile will not limit the type of platform
and its components.

In this paper, we focus on the TUT-profile and

demonstrate its use with a real implementation. In the
next section, we start with highlighting the use UML 2.0
in embedded system design and give a brief review of
related research. In addition, the TUT-Profile based
design flow is briefly presented. Section 3 gives a detailed
description about the stereotypes of TUT-Profile. Section
4, in turn, demonstrates the TUT-Profile in the design and
profiling of a Wireless Local Area Network (WLAN)
terminal. Finally, Section 5 concludes the paper.

2. UML 2.0 in Embedded System Design
A set of UML key properties can be identified for

embedded system design [7]. One of the major
advantages is that UML is not only a single language, but
it allows the creation of languages for different purposes.
To adapt UML 2.0, for example to different application
and platform domains, sophisticated extension
mechanisms are provided by the language.

Extension mechanisms in UML 2.0 can be roughly
divided into first-class and second-class extensibility. The
first-class extensibility is handled through the Meta
Object Facility (MOF). This approach allows
modifications on the existing metamodels and creating
new metamodels with no restrictions.

The second-class extensibility does not allow
modifications on existing metamodels. Instead, it enables
adapting metamodels on specific purposes by extending
existing metaclasses. The adaptations are defined using
stereotypes, which are grouped in a profile. A profile
contains constructs that are specific to a particular
domain, platform, or method.

TUT-Profile utilizes only the second-class
extensibility, which is considered to be powerful enough
for applying UML 2.0 for embedded system design.
Compared to the first-class extensibility, the use of
stereotypes is a more lightweight mechanism, as it
maintains the basic concepts and properties of the

UML 2.0 description • TUT-Profile

Tools
• Telelogic TAU G2

• UML Profiling tool

Prototype • Altera FPGA

UML 2.0 description • TUT-Profile

Tools
• Telelogic TAU G2

• UML Profiling tool

Prototype • Altera FPGA

Figure 1. Design flow with TUT-Profile.

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

standard UML 2.0. Consequently, this leads to better tool
support.

2.1. Related Research
A number of extension proposals have been presented

for real-time and embedded system design. The proposals
can be roughly divided into three categories: system and
platform design, performance modeling, and behavioral
design. Next, the main related proposals are presented.

The Embedded UML [6] is a UML profile proposal
suitable for embedded real-time system specification,
design, and verification. It represents a synthesis of
concepts in hardware/software co-design. It presents
extensions that define functional encapsulation and
composition, communication specification, and mapping
for performance evaluation.

A UML Platform profile is proposed in [1], which
presents a graphical language for the specification. It
includes domain-specific classifiers and relationships to
model the structure and behavior of embedded systems.
The profile introduces new building blocks to represent
platform resources and services, and presents proper
UML diagrams and notations to model platforms in
different abstraction levels.

The ACCORD/UML profile [10] defines a
methodology for model mappings during the different
development stages. ACCORD/UML proposes a real-time
modeling based on the real-time active objects. The
modeling features introduced by the ACCORD/UML
method define a set of modeling rules involving model
transformation techniques.

The UML Profile for Schedulability, Performance and
Time (or the Real-time UML Profile) is standardized by
OMG [8]. The profile defines notations for building
models of real-time systems with relevant Quality of
Service (QoS) parameters. The profile supports the
interoperability of modeling and analysis tools. However,
it does not specify a full methodology, and the profile is
considered to be very complex to utilize.

The UML-RT profile [9] defines execution semantics
to capture behavior for simulation and synthesis. The
profile presents capsules to represent system components,
which internal behavior is designed with state machines.
The capabilities to model architecture and performance
are very limited in UML-RT, and thus, it should be
considered complementary to the Real-time UML profile.
HASoC [3] is a design methodology that is based on
UML-RT. It proposes also additional models of
computation for the design of internal behavior.

These proposed profiles contain several features for
utilizing UML in embedded system design, but they miss
the completeness for combining application and platform.

2.2. TUT-Profile Approach
TUT-Profile extensions are used to define the structure

and parameters of an application and platform as well as

their mapping. Correspondingly, the system design is
divided into three parts: application description, platform
description, and mapping. Both the application and
platform descriptions can be developed independently of
each other.

TUT-Profile mainly concerns the structure of an
application and platform. The application is seen as a set
of active classes with an internal behavior. The platform
is seen as a component library with a parameterized
presentation in UML 2.0 for each library component. The
profile does not restrict the behavioral modeling, and by
default, it utilizes standard UML 2.0 concepts for this.

TUT-Profile classifies different application and
platform components by defining various stereotypes and
strict rules how to use them. The objective is to enhance
the support of external tools for automatic analyzing,
profiling, and modifying the UML 2.0 description of an
embedded system. The classification also assigns defined
parameters to proper components.

In practice, the profile is applied in a tool framework
depicted in Figure 2. The platform mapping can be
explicitly performed by the designer, or assisted with
tools. For the latter, we have developed a UML profiling
tool that combines the UML 2.0 description (model
parsing) and simulation statistics (simulation log-file) that
is obtained during the verification phase. Based on the
profiling, also the application description can be modified
for example to fulfill real-time constraints. When the
verification is completed, executable application for the
implemented platform is automatically generated from the
UML 2.0 description.

3. TUT-Profile Stereotypes
TUT-Profile contains several stereotypes to support

embedded system design. The structure of the TUT-
Profile is presented in Figure 3. An application is
composed of application components, which are
instantiated as application processes. Next, application

UML 2.0 description with TUT-Profile

Platform
description

Simulation

Simulation log-file

Model
parsing

Process group
information

Profiling

Code
generation

Platform
library

Implementation

Real-time embedded
system

Platform
mapping

Mapping

Application
C code

Run-time libraries &
custom functions

Application
description

Compilation
and linking

Executable application

UML 2.0 description with TUT-Profile

Platform
description

Simulation

Simulation log-file

Model
parsing

Process group
information

Profiling

Code
generation

Platform
library

Implementation

Real-time embedded
system

Platform
mapping

Mapping

Application
C code

Run-time libraries &
custom functions

Application
description

Compilation
and linking

Executable application

Figure 2. TUT-Profile design and profiling flow.

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

processes are grouped into process groups.
Correspondingly, a platform is composed of platform
components, which are instantiated as platform
component instances. Finally, process groups are mapped
to platform component instances using platform mapping.
The summary of the profile stereotypes is presented in
 Table 1.

3.1. Application Description
Application stereotypes are applied to an application

description containing a platform independent structure
and behavior of an application. The application
stereotypes mainly concern the structure and
parameterization, as the TUT-Profile does not extend the
behavioral modeling.

The application stereotypes classify the different types
of classes and parts used in an application description.
The parameterization of an application is performed using
tagged values. The parameters may be manually added by
a designer, or automatically derived from the behavioral
part of the application description by the profiling tool.

Table 2 tabulates the tagged values for each application
stereotype in TUT-Profile.

The stereotype <<Application>> is applied to define
the top-level class of an application description. The top-
level class has a class hierarchy defining different classes
of an application. The active classes having behavior are
called functional components. Passive classes are
structural components, which do not have behavior, but
instead, define composite structures and data structures
storing application data.

Process grouping is a part of an application description
and it defines the structure for an application. The
structure is implementation-oriented and may thus differ
from the composite structure of an application. However,
the grouping is platform independent as process groups do
not represent any specific platform components.

The grouping can be performed according different
criteria, such as the preliminary scheduling of application
processes, workload distribution, communication between
process groups, dependencies between process groups,
and size of a process group (code size, memory
requirements). The grouping is used for the analysis and
architecture exploration, which can be performed using
simulations or static analysis. The composed groups are
mapped to platform components specified later.

The grouping can be fixed either at the level of a single
process, or at the level of a process group. In the latter
case, processes cannot be added or removed from a group.
Currently, the grouping is done manually by the designer,
but tools for automatic grouping according to the profiling
information and process types will be implemented.

Table 1. TUT-Profile stereotype summary.

Stereotype name
(extended Metaclass)

Description

Application (Class) Top-level application class

ApplicationComponent
(Class)

Functional application component
(active class, has behavior)

ApplicationProcess
(Structural feature)

Instance of a functional application
component

ProcessGroup
(Structural feature)

Group of application processes

ProcessGrouping
(Dependency)

Dependency between an application
process and a process group

Platform (Class) Top-level platform class

PlatformComponent
(Class)

Defines features of a platform
component

PlatformComponentInstance
(Structural feature)

Instantiated platform component

CommunicationWrapper
(Dependency)

Defines wrapper parameters of a
communication agent

CommunicationSegment
(Structural feature)

Interconnection structure of
communicating agents

PlatformMapping
(Dependency)

Dependency between a process group
and a platform component instance

<<ApplicationProcess>><<ApplicationProcess>>

<<PlatformComponent>><<PlatformComponent>>

<<Application>><<Application>>

<<ApplicationComponent>><<ApplicationComponent>>

<<ProcessGrouping>>

<<Platform>><<Platform>>

Instantiate

Composition

Instantiate

Composition

Functionality

Platform attributes

Platform library

Platform requirements

A
pp

lic
at

io
n

de
sc

rip
tio

n
P

la
tfo

rm

de
sc

rip
tio

n

<<PlatformMapping>>
<<ProcessGroup>><<ProcessGroup>>

<<PlatformComponentInstance>><<PlatformComponentInstance>>

<<ApplicationProcess>><<ApplicationProcess>>

<<PlatformComponent>><<PlatformComponent>>

<<Application>><<Application>>

<<ApplicationComponent>><<ApplicationComponent>>

<<ProcessGrouping>>

<<Platform>><<Platform>>

Instantiate

Composition

Instantiate

Composition

Functionality

Platform attributes

Platform library

Platform requirements

A
pp

lic
at

io
n

de
sc

rip
tio

n
P

la
tfo

rm

de
sc

rip
tio

n

<<PlatformMapping>>
<<ProcessGroup>><<ProcessGroup>>

<<PlatformComponentInstance>><<PlatformComponentInstance>>

Figure 3. TUT-Profile hierarchy.

Table 2. Tagged values of application stereotypes.

Tagged values Description

Stereotype <<Application>>

Priority Execution priority of an application

CodeMemory Required memory for application code

DataMemory Required memory for application data

RealTimeType Type of real-time requirements (hard/soft/none)

Stereotype <<ApplicationComponent>>

CodeMemory Required memory for application component code

DataMemory Required memory for application component data

RealTimeType Type of real-time requirements (hard/soft/none)

Stereotype <<ApplicationProcess>>

Priority Execution priority of application process

CodeMemory Required memory for application process code

DataMemory Required memory for application process data

RealTimeType Type of real-time requirements (hard/soft/none)

ProcessType Type of process (general/DSP/hardware)

Stereotype <<ProcessGroup>>

Fixed Defines if the group is fixed (true/false)

ProcessType Type of processes in a group (general/DSP/hardware)

Stereotype <<ProcessGrouping>>

Fixed Defines if the grouping is fixed (true/false)

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

3.2. Platform Description
The platform description is more abstracted compared

to the application description. The platform description is
not targeted for functional synthesis of hardware, but it is
used for composing a platform containing components
using an existing platform library. In TUT-Profile,
properties, capabilities, and limitations of a component
are parameterized. The summary of tagged values in
platform stereotypes is tabulated in Table 3.

The parameterized description models are used to
perform a high-level hardware/software co-simulation. In
that case, the execution of application processes is guided
with the properties of the platform components.

The stereotype <<Platform>> is applied to define the
top-level class of a platform description, composed of
available platform components. Platform components and
their parameterization can be refined by the further
specialization of platform stereotypes.

In the platform description, the communication
between active platform components, called processing
elements, is performed via communication elements.
Communication elements are implemented as
communication wrappers that are used to connect
processing elements to communication segments.

3.3. Mapping
When both an application and platform description

have been defined, each group of application processes is
mapped to a platform component instance. Mapping is
performed by defining a dependency between a process
group and a platform component instance. In order to
account performance issues, the performance related
parameterizations specified in the application and
platform descriptions are combined.

The stereotype <<PlatformMapping>> is applied to

describe how a process group is mapped to a platform
component. When the mapping is fixed (indicated by a
tagged value), it cannot be changed automatically by
profiling tools during the design process. This can be used
when a designer knows that a certain process group has to
be placed into a certain processing element.

4. TUT-Profile Case: WLAN Terminal
This section presents TUT-Profile utilization with the

design of a custom WLAN terminal. The examples show
how UML 2.0 diagrams are used with TUT-Profile, and
how the stereotypes are applied in design.

The application is a custom Medium Access Control
(TUTMAC) protocol [4] of a proprietary WLAN
(TUTWLAN) [2]. The TUTMAC protocol has been
modeled with UML 2.0 meeting the TUT-Profile, and the
software parts of the protocol have been implemented
with the automatic code generation for the platform. The
platform is Altera Stratix FPGA with NIOS soft processor
cores. In addition, the platform library contains
implementations of some time critical algorithms, such as
Cyclic Redundancy Check (CRC), that can be used for
hardware acceleration of protocol functions.

4.1. TUTMAC Application Description
The design of an application description starts from the

definition of the class hierarchy. The top-level application
class and its components are created, and the associations
between components are defined. A TUTMAC class
diagram is presented in Figure 4.

The Tutmac_Protocol class is the top-level class of
the application. Thus, it is stereotyped as
<<Application>>. The class is composed of five classes.
The Management, RadioManagement and
RadioChannelAccess classes are functional
components containing behavior, and can be instantiated
as application processes. Thus, they are stereotyped as
<<ApplicationComponent>>. The UserInterface and
DataProcessing classes are structural components
having composite structure without behavior.
Consequently, they can not be instantiated as application
processes, and are not stereotyped.

Table 3. Tagged values of platform stereotypes.

Tagged values Description

Stereotype <<PlatformComponent>>

Type Type of a component (general/DSP/HW accelerator)

Area Area of a component

Power Power consumption of a component

Stereotype << PlatformComponentInstance>>

Priority Execution priority of a component instance

ID Unique ID of a component instance

IntMemory Amount of internal memory

Stereotype << CommunicationSegment>>

DataWidth Data width (in bits) of a communication segment

Frequency Clock frequency of a communication segment

Arbitration Arbitration scheme (e.g. priority or round-robin)

Stereotype << CommunicationWrapper >>

Address Address of a wrapper

BufferSize Buffer size of a wrapper

MaxTime Maximum time a wrapper can reserve the segment

<<Application>>

Tutmac_Protocol
<<Application>>

Tutmac_Protocol

...::UserInterface::UserInterface...::UserInterface::UserInterface

uiui
<<ApplicationComponent>>

...::Management::Management
<<ApplicationComponent>>

...::Management::Management

mngmng

<<ApplicationComponent>>

...::RadioChannelAccess::RadioChannelAccess
<<ApplicationComponent>>

...::RadioChannelAccess::RadioChannelAccess

...::DataProcessing::DataProcessing...::DataProcessing::DataProcessing

rcarca

<<ApplicationComponent>>

...::RadioManagement::RadioManagement
<<ApplicationComponent>>

...::RadioManagement::RadioManagement

rmngrmngdpdp

Figure 4. TUTMAC class diagram of an application description.

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

When the class hierarchy is defined, composite
structure diagrams are used to describe the connections
between parts (class instances). The parts communicate
with each other by signals via their ports. Ports are
connected by connectors carrying signals. The composite
structure diagram of the top-level class
Tutmac_Protocol is presented in Figure 5.

 In Figure 5, the mng, rmng and rca parts are instances
of the functional components stereotyped as
<<ApplicationComponent>>. They represent the
processes of the application, and are thus stereotyped as
<<ApplicationProcess>>. ui and dp parts are instances of
the structural components, and therefore they do not
represent processes.

The structural components are hierarchically modeled
using class diagrams and composite structure diagrams,
until the behavior of the functional components can be
expressed. The behavior of the functional components in
TUTMAC is described using statechart diagrams
combined with the UML 2.0 textual notation. TUTMAC
statecharts are modeled as asynchronous communicating
Extended Finite State Machines (EFSM).

The TUTMAC application description is finished by
grouping the main processes as depicted in Figure 6. The
objective in grouping has been to minimize the
communication between process groups, which enhances
the performance if groups are mapped to different
processing element.

4.2. TUTWLAN Platform Description
When describing hardware platform, the designer

selects suitable components from the TUT-Profile library
and connects components together. Figure 7 presents a
platform description for the TUTWLAN terminal
containing four processing elements connected with three
communication segments. Three of the processing
elements are similar NIOS processors. The fourth is a
hardware accelerator for CRC-32 calculation.

The employed communication channel is a HIBI bus
 [5]. For HIBI, the platform stereotypes are specialized,
thus including more detailed information of the platform
specific communication elements. The specialized
stereotypes are <<HIBIWrapper>> from
<<CommunicationWrapper>>, and <<HIBISegment>>
from <<CommunicationSegment>>. The specialized
information contains sizes of buffers, bus arbitration, and
addressing.

The communication between processing elements is
carried out through a hierarchical bus structure. As
presented in Figure 7, processor1 and processor2 are
connected to the same bus segment called
hibisegment1, which is connected to a bridge segment.
The remaining two processing elements, processor3
and accelerator1, are connected to hibisegment2,
which is also connected to a bridge segment.

4.3. Mapping of TUTMAC to a Platform
The mapping in Figure 8 integrates the TUTMAC

application description and the platform description of a
TUTWLAN terminal. As seen, two process groups,
group1 and group3, are mapped to processor1. This
indicates that the designer prefers the processes of the two
process groups to be implemented on the same processor,
although they were divided into separate process groups
in the application description. group4 has processes that
can be implemented on an existing hardware accelerator,
and thus, the process group is mapped to accelerator1.

pUserpUser
pMngUserpMngUser

pPhypPhy

ui : UserInterfaceui : UserInterface

UserPortUserPort

DPPortDPPort

MngPortMngPort

<<ApplicationProcess>>

mng : Management
<<ApplicationProcess>>

mng : Management

UIPortUIPort

RChPortRChPort

DPPortDPPort

MngUserPortMngUserPort

RMngPortRMngPort

mngmt_ui

MngToUi UiToMng

mngmt_ui

MngToUi UiToMng

<<ApplicationProcess>>

rca : RadioChannelAccess
<<ApplicationProcess>>

rca : RadioChannelAccess

DataPortDataPort MngPortMngPort

PhyPortPhyPort
RMngPortRMngPort

dp : DataProcessingdp : DataProcessing

UserInterfacePortUserInterfacePort

ChannelAccessPortChannelAccessPort

ManagementPortManagementPort

<<ApplicationProcess>>

rmng : RadioManagement
<<ApplicationProcess>>

rmng : RadioManagement

RChPortRChPort PhyPortPhyPort

MngPortMngPort

rch_mng

MngToRCh

RChToMng

rch_mng

MngToRCh

RChToMng

dp_ui
DpToUi

UiToDp
dp_ui

DpToUi

UiToDp dp_mng

MngToDp

DpToMng
dp_mng

MngToDp

DpToMng

rch_dp
RChToDp

DpToRCh
rch_dp

RChToDp

DpToRCh

rch_phy
PhyToRCh

RChToPhy

rch_phy
PhyToRCh

RChToPhy

ui_user
UiToUUToUi
ui_user
UiToUUToUi mng_mngUser

MngToMngUserMngUserToMng
mng_mngUser
MngToMngUserMngUserToMng

rmng_mng

MngToRMng

RMngToMng

rmng_mng

MngToRMng

RMngToMng

rca_rmngRChToRMngRMngToRChrca_rmngRChToRMngRMngToRCh

rmng_phy

PhyToRMng

RMngToPhy
rmng_phy

PhyToRMng

RMngToPhy

Figure 5. Composite structure diagram of Tutmac_Protocol
class in the TUTMAC application description.

<<ProcessGroup>>

group1:ProcessGroup
<<ProcessGroup>>

group1:ProcessGroup
<<ApplicationProcess>>

...::Tutmac_Protocol::mng
<<ApplicationProcess>>

...::Tutmac_Protocol::mng

<<ApplicationProcess>>

...::Tutmac_Protocol::rca
<<ApplicationProcess>>

...::Tutmac_Protocol::rca

<<ApplicationProcess>>

...::Tutmac_Protocol::rmng
<<ApplicationProcess>>

...::Tutmac_Protocol::rmng

<<ApplicationProcess>>

...::UserInterface::msduRec
<<ApplicationProcess>>

...::UserInterface::msduRec

<<ApplicationProcess>>

...::UserInterface::msduDel
<<ApplicationProcess>>

...::UserInterface::msduDel

<<ApplicationProcess>>

...::DataProcessing::frag
<<ApplicationProcess>>

...::DataProcessing::frag

<<ProcessGrouping>><<ProcessGrouping>>

<<ProcessGrouping>><<ProcessGrouping>>

<<ProcessGrouping>><<ProcessGrouping>>

<<ProcessGrouping>><<ProcessGrouping>>

<<ProcessGrouping>><<ProcessGrouping>>

<<ProcessGrouping>><<ProcessGrouping>>

<<ProcessGroup>>

group2:ProcessGroup
<<ProcessGroup>>

group2:ProcessGroup

Figure 6. TUTMAC process grouping using composite structure
diagram.

<< HIBISegment>>

hibisegment1 HIBISegment
HIBISegment>>

:HIBISegment

<<HIBIWrapper>><<HIBIWrapper>><<HIBIWrapper>><<HIBIWrapper>>

<< HIBISegment>>

hibisegment2: HIBISegment
HIBISegment>>

hibisegment2: HIBISegment

<<HIBIWrapper>><<HIBIWrapper>>

<<HIBIWrapper>><<HIBIWrapper>>

<< PlatformComponentInstance >>

accelerator1:CRC
PlatformComponentInstance >>

accelerator1:CRC
<< PlatformComponentInstance >>

processor1: NIOS
PlatformComponentInstance >>

processor1:
<< PlatformComponentInstance >>

processor2: NIOS
PlatformComponentInstance >>

processor2:
<< PlatformComponentInstance >>

processor3: NIOS
PlatformComponentInstance >>

processor3:

<<HIBIWrapper>><<HIBIWrapper>>

<< HIBISegment>>

bridge: HIBISegment
<< HIBISegment>>

bridge: HIBISegment

<<HIBIWrapper>><<HIBIWrapper>>

<< HIBISegment>>

hibisegment1 HIBISegment
HIBISegment>>

:HIBISegment

<<HIBIWrapper>><<HIBIWrapper>><<HIBIWrapper>><<HIBIWrapper>>

<< HIBISegment>>

hibisegment2: HIBISegment
HIBISegment>>

hibisegment2: HIBISegment

<<HIBIWrapper>><<HIBIWrapper>>

<<HIBIWrapper>><<HIBIWrapper>>

<< PlatformComponentInstance >>

accelerator1:CRC
PlatformComponentInstance >>

accelerator1:CRC
<< PlatformComponentInstance >>

processor1: NIOS
PlatformComponentInstance >>

processor1:
<< PlatformComponentInstance >>

processor2: NIOS
PlatformComponentInstance >>

processor2:
<< PlatformComponentInstance >>

processor3: NIOS
PlatformComponentInstance >>

processor3:

<<HIBIWrapper>><<HIBIWrapper>>

<< HIBISegment>>

bridge: HIBISegment
<< HIBISegment>>

bridge: HIBISegment

<<HIBIWrapper>><<HIBIWrapper>>

Figure 7. Stereotyped composite structure diagram for an
example TUTWLAN platform.

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

4.4. Profiling TUTMAC Description
The profiling tool implemented for TUT-Profile

contains three main stages that are implemented as TCL
scripts. First, the XML presentation of the UML 2.0
model is parsed to gather process group information from
the model. Next, the automatically generated application
code is complemented with custom C functions to create
simulation log-file during simulations. These phases are
shown in the design flow presented in Figure 2.

Finally, after simulation, the profiling data in the
simulation log-file and the process group information are
combined and analyzed. The results are gathered to a
profiling report. An example profiling report based on the
TUTMAC simulations on the workstation processor is
presented in Table 4. The report contains the execution
times of the process groups (a), and the amount of
communication between the groups (b). In addition, other
metrics, such as transfers between individual application
processes, are also available.

The report is used for improving the application
description. The process groups and mapping are
modified to improve performance including amount of
communication and the division of workload between
application processes. Further, the profiling report can be
used to refine the parameterization of the application
description as the performance information is gathered
with simulations on a reference platform, such as a PC
workstation.

5. Conclusions
This paper presents the TUT-Profile for embedded

system design with UML 2.0. The TUT-Profile
concentrates on the structure and parameterization of an
application and platform, and the mapping of these.

The case design with a TUTWLAN terminal
demonstrated the use of TUT-Profile in practice. The
example illustrated the use of UML 2.0 diagrams, and the
applying of the stereotypes. TUT-Profile and the profiling
tool were used to improve performance of TUTMAC by
minimizing the communication between process groups.

In the future, the TUT-profile will further be developed
by the specialization of the stereotypes and the
improvement of parameterization. The profile will also be
evaluated for multiprocessor System-on-Chip co-design
environment. In addition, real-time operating system will
be used in system processors, which will also be
accounted in the TUT-Profile.

Acknowledgements
The research work for the TUT-profile and custom

tools has been carried out as part of ITEA (Information
Technology for European Advance) project
“Prompt2Implementation” (ITEA 010009) at Tampere
University of Technology (TUT).

References
[1] R. Chen et al., “UML and Platform-based Design”. UML

for Real: Design of Embedded Real-Time Systems, Kluwer
Academic Publishers, May 2003, pp. 107-126.

[2] M. Hännikäinen et al. “TUTWLAN - QoS Supporting
Wireless Network”. Telecommunication Systems -
Modelling, Analysis, Design and Management, Kluwer
Academic Publishers, Vol. 23, No. 3-4, July/August 2003,
pp. 297-333.

[3] P. N. Green, and M. D. Edwards, “The Modelling of
Embedded Systems Using HASoC”. Proceedings of the
2002 Design, Automation and Test in Europe Conference
and Exhibition (DATE’02), March 2002, pp. 752-759.

[4] P. Kukkala et al., “UML 2.0 Implementation of an
Embedded WLAN Protocol”. Proceedings the 15th IEEE
International Symposium on Personal, Indoor and Mobile
Radio Communications, September 2004.

[5] E. Salminen et al., "HIBI v.2 Interconnection for System-
on-Chip," LNCS 3133 Computer Systems Architectures,
Modelling, and Simulation, A.D. Pimentel, S. Vassiliadis,
(eds), Springer-Verlag, Berlin, 2004, pp. 412-422.

[6] G. Martin et al., “Embedded UML: a Merger of Real-Time
UML and Co-design”. Proceedings of the 9th International
Symposium on Hardware/Software Codesign, April 2001,
pp. 23-28.

[7] G. Martin, “UML for Embedded Systems Specification and
Design: Motivation and Overview”. Proceedings of the
2002 Design, Automation and Test in Europe Conference
and Exhibition (DATE’02), March 2002, pp. 773-775.

[8] OMG, “UML Profile for Schedulability, Performance, and
Time Specification”. September 2003.

[9] B. Selic, and J. Rumbaugh, “Using UML for Modelling
Complex Real-Time Systems, White Paper, Rational”.
March 1998.

[10] P. Tessier et al., “A Component-based Methodology for
Embedded System Prototyping”. Proceedings of the 14th
IEEE International Workshop on Rapid Systems
Prototyping, June 2003, pp. 9-15.

<<PlatformComponentInstance>>

processor2:NIOS
<<PlatformComponentInstance<<PlatformComponentInstance>>

processor1:NIOS
<<PlatformComponentInstance

processor1:

<<ProcessGroup>>

group2:ProcessGroup
<<ProcessGroup

group2
<<ProcessGroup>>

group1:ProcessGroup
<<ProcessGroup

group1
<<ProcessGroup>>

group3:ProcessGroup
<<ProcessGroup

group3
<<ProcessGroup>>

group4:ProcessGroup
<<ProcessGroup

group4

<< PlatformMapping >>PlatformMapping
<< PlatformMapping >>PlatformMapping<< PlatformMapping >>PlatformMapping

<<PlatformComponentInstance>>

accelerator1: CRC
<<PlatformComponentInstance

accelerator1: CRC

<<PlatformMapping >>PlatformMapping

<<PlatformComponentInstance>>

processor2:NIOS
<<PlatformComponentInstance<<PlatformComponentInstance>>

processor1:NIOS
<<PlatformComponentInstance

processor1:

<<ProcessGroup>>

group2:ProcessGroup
<<ProcessGroup

group2
<<ProcessGroup>>

group1:ProcessGroup
<<ProcessGroup

group1
<<ProcessGroup>>

group3:ProcessGroup
<<ProcessGroup

group3
<<ProcessGroup>>

group4:ProcessGroup
<<ProcessGroup

group4

<< PlatformMapping >>PlatformMapping
<< PlatformMapping >>PlatformMapping<< PlatformMapping >>PlatformMapping

<<PlatformComponentInstance>>

accelerator1: CRC
<<PlatformComponentInstance

accelerator1: CRC

<<PlatformMapping >>PlatformMapping

Figure 8. Mapping the TUTMAC protocol to TUTWLAN
platform.

Table 4. A profiling report based on the TUTMAC simulations.
(a)

Process group Total execution time Proportion
Group1 13 942 856 cycles 92.1 %
Group2 792 056 cycles 5.2 %
Group3 375 372 cycles 2.5 %
Group4 36 092 cycles 0.2 %
Environment 0 cycles 0.0 %

(b)
Number of signals between groups
Sender/Receiver Group1 Group2 Group3 Group4 Environment
Group1 805 8 2 0 269
Group2 8 4 3 0 4
Group3 2 0 8 4 0
Group4 0 4 0 0 0
Environment 274 4 0 0 269

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

