
HAL Id: hal-00181187
https://hal.science/hal-00181187

Submitted on 23 Oct 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Pueblo: A Modern Pseudo-Boolean SAT Solver
Hossein M. Sheini, Karem A. Sakallah

To cite this version:
Hossein M. Sheini, Karem A. Sakallah. Pueblo: A Modern Pseudo-Boolean SAT Solver. DATE’05,
Mar 2005, Munich, Germany. pp.684-685. �hal-00181187�

https://hal.science/hal-00181187
https://hal.archives-ouvertes.fr

Abstract
This paper introduces a new SAT solver that integrates logic-
based reasoning and integer programming methods to systems
of CNF and PB constraints. Its novel features include an effi-
cient PB literal watching strategy and several PB learning
methods that take advantage of the pruning power of PB con-
straints while minimizing their overhead.

1. Introduction
Modern backtrack search SAT solvers augment the basic
DPLL procedure with powerful conflict-based learning [5]
and efficient Boolean Constraint Propagation schemes [6].

The closely-related 0-1 integer programming (IP) prob-
lem has also been studied extensively. In particular, the
extension of SAT techniques to systems of CNF and so-
called pseudo Boolean (PB) constraints was addressed in [1].
Algorithms that combine the logic-based reasoning tech-
niques of CNF SAT and the constraint relaxation and poly-
hedral analysis (“cutting planes”) methods of IP were also
explored with some success in [2].

In this paper we introduce Pueblo, a new CNF/PB SAT
solver that integrates logic-based reasoning and new tech-
niques to handle systems of CNF and PB constraints.
Pueblo incorporates a novel watched-literal strategy and fea-
tures several learning strategies including two that combine
conflict-based CNF learning and cutting plane PB learning.

After covering some preliminaries, in Section 3 we
describe our PB propagation method. Section 4 details vari-
ous PB learning strategies. Experimental results are
reported in Section 5. Conclusions and future work are pre-
sented in Section 6.

2. Preliminaries
A linear pseudo-Boolean (PB) constraint is said to be in nor-
mal form when expressed as:

(1)

where denotes or . A PB constraint in which
some coefficients are negative can be transformed to normal
form by noting that . In general, a PB constraint
is equivalent to a large, potentially exponential, number of
CNF clauses [1]. When the right-hand side and all left-hand
side coefficients are equal to 1, however, a PB constraint is
equivalent to a single CNF clause.

3. Pseudo-Boolean Propagation
In [6] it was shown that watching just two literals per clause,
regardless of clause size, is sufficient to detect when the
clause becomes unit. The watched-literal concept was

extended in [2] to handle PB constraints. The basic idea is
to watch the fewest number of non-false literals such that
when the unassigned watched literal with the largest coeffi-
cient is set to false a) the constraint is still guaranteed to be
satisfied and b) the constraint can identify the literals that
must now be implied to true. Specifically, let T and U
denote the sets of true and unassigned literals in the con-
straint, and let denote the set of watched liter-
als. We will refer to W as the watch list and to the sum of
coefficients of the watched literals as the watched sum,
i.e., We also introduce defined as:

The invariant that must be maintained to detect when
the PB constraint becomes unit can now be succinctly
expressed as: . When a watched literal is set
to false, it must be removed from the watch list and replaced
by one or more non-false literals to maintain the above
invariant. When that is no longer possible, the constraint
becomes unit and any unassigned watched literal whose coef-
ficient a satisfies the unit constraint condition
must now be implied to true.

Empirical evaluation of this procedure suggests that
about two thirds of its run time is spent in updating
and corroborates the conclusion in [2] that the “watching
scheme is beneficial for clauses and cardinality constraints,
but not for LPB constraints; therefore we use counters to
implement Boolean constraint propagation on LPB con-
straints.” In other words, PB constraints are processed using
a Watch All Literals strategy similar to that of PBS [1].

Further analysis of the data, however, suggests a poten-
tially more efficient hybrid watching strategy that differenti-
ates between the literals with unit- and non-unit coefficients
in the same PB constraint. Specifically, let L denote the set
of literals whose coefficients are greater than 1 (the large lit-
erals) and let C denote those literals whose coefficients are
equal to 1 (the cheap literals). Much of propagation time can
be eliminated by applying the above procedure only to the
literals in the (relatively small) L set. To achieve this, the
computation of is modified to

 and if .
Furthermore, the watch list W is modified to always

include all of the literals in C. This modification requires a
slight change to the manner in which the watched sum is cal-
culated since the watched literals are no longer guaranteed
to be true or unassigned. Specifically, the watched sum must
now be decremented by 1 when a C literal is set to false, and
incremented by 1 when a C literal is unassigned from false.

4. Pseudo-Boolean Learning
Generating and recording a so-called conflict-induced clause
[5], enables the solver to prune away a portion of the search

1
, , {0,1}

n

i i i ii
a x b a b x+

=

ix ix ix

1i ix x=

W T U

i
iW x W

S a= maxa

max max{ }i ia a x U=

maxWS b a+

Wa S b>

maxa

maxa

max max{ }i ia a x L U= max 1a = L U =

Pueblo: A Modern Pseudo-Boolean SAT Solver
Hossein M. Sheini and Karem A. Sakallah

Department of Electrical Engineering and Computer Science
University of Michigan

Ann Arbor, MI 48109-2122
{hsheini, karem}@eecs.umich.edu

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

2

space thus avoiding a recurrence of the same conflict. We will
refer to this style of learning as CNF learning. An alternative
approach, referred to as PB learning in this paper, based on
cutting plane methods [3], can be used to create a conflict-
induced PB constraint instead. For details of this method, the
readers are referred to [2].

Since PB constraints are generally more expressive than
CNF clauses, a learned PB constraint has the potential of
pruning more of the search space than a CNF clause. How-
ever, the steep overhead of manipulating PB constraints can
more than offset their pruning benefits. (the high cost of
unlimited PB learning and propagation is shown in Figure 1).
Thus, an adaptive approach that combines CNF and PB
learning, and introduces PB constraints selectively, might be
superior to either approach alone. We describe next two vari-
ations on this theme.
Scheme 1: Learn Strong PB Constraints. In this scheme,
after detecting a conflict, both CNF and PB Learning proce-
dures are followed simultaneously. A PB constraint is learned
and recorded instead of a CNF clause if and only if all the fol-
lowing three conditions hold:
1. it is unit; it could be the case that the cutting plane gener-

ated from two constraints (conflicting and implying
constraints) is not in conflict anymore due to over-satisfac-
tion of the implying constraint.

2. it corresponds to more than just a single CNF clause;
3. the number of its large literals (those in the L set) is less

than a given threshold;
Scheme 2: Convert Learned PB Constraint to CNF. In this
scheme, the learned PB constraint is recorded but not used in
BCP. Rather, it is viewed as a compact representation of a set
of CNF clauses, subsets of which can be extracted as needed
during the search. Extraction of suitable CNF clauses from
the PB constraint is carried out using a simple knapsack algo-
rithm. The rationale for this scheme is to capitalize on the
pruning power of the learned PB constraint without incurring
its high propagation overhead. For instance, learning

 where and are
false at the backtrack level, will result in learning the follow-
ing clauses: The
first two clauses are unit and would result in the same impli-
cations as the original PB constraint. The PB constraint, on
the other hand, is kept aside and retouched later during the
search to extract other CNF clauses which could be more use-
ful based on the variable assignments in effect at that time.

5. Experimental Results
We conducted several experiments to evaluate the strategies
described above using Pueblo. Pueblo is built on top of Mini-
SAT [4] and extends its VSIDS decision heuristic and its
clause removal mechanism to PB constraints. It also adopts
hybrid propagation strategy as explained earlier. All experi-
ments were conducted on Pentium-IV 2.8GHz - 1GB of RAM.

Table 1 depicts a comparison of Pueblo and galena [2] PB
learning strategies on a set of benchmarks including the Rout-
ing instances of [1]. Overall, scheme 1 performs robustly and
compares favorably to the cardinality strategy of galena. All
these methods perform much better than CNF learning in
these types of problems. In these benchmarks, due to large
number of unit-coefficient variables, the positive effects of the
hybrid propagation strategy is more evident.

6. Conclusions and Future Work
As we learn more about the trade-offs involved in combining
logic-based reasoning and IP methods, we will be able to
develop effective integration strategies that outperform indi-
vidual techniques. The concepts described in this paper do
not exhaust all the possibilities for taking advantage of the
pruning power of PB constraints while minimizing their com-
putational overhead. Other ways of generating cutting planes,
for example, that are provably superior to current approaches
should be investigated.

Acknowledgment
This work was funded in part by the National Science Foun-
dation under ITR grant No. 0205288.

References
[1] F.A. Aloul, A. Ramani, I.L. Markov, K.A. Sakallah,

“Generic ILP versus specialized 0-1 ILP: An Update”,
ICCAD’02 pp. 450-457

[2] D. Chai, A. Kuehlmann, “A Fast Pseudo-Boolean Con-
straint Solver”, DAC’03 pp. 830-835

[3] V. Chvátal, “Edmonds Polytopes and a Hierarchy of
Combinatorial Problems”, Discr. Math., vol. 4, pp. 305-
307, 1973.

[4] N. Eén, and N. Sörensson, “An Extensible SAT-solver,”
SAT’03 pp 502-508.

[5] J.P. Marques-Silva and K.A. Sakallah, “GRASP: a
search algorithm for propositional satisfiability”, IEEE
Transaction on Computers, vol. 48/5, pp. 506-521, 1999.

[6] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S.
Malik, “Chaff: Engineering an Efficient SAT Solver”,
DAC’01 pp. 530-535

Figure 1: Effect of PB learning on number of decisions and
run-time with a restriction on the maximum allowable num-
ber of learned PB constraints (X-axis) in s4-3-2pb [1].

6x1 5x2 4x3 3x4 2x5 2x6+ + + + + 12 x2 x4

x1 x2+ x2 x3 x4+ + x2 x4 x5 x6+ + +,,

Table 1: Different PB learning strategies

Benchmark
Time (sec)

Pueblo Galena
CNF Sch. 1 Card. LPB

s4-3-2pb (SAT) 4.78 0.57 0.50 0.70

s4-3-3pb (SAT) 3.35 0.64 0.50 0.70

s4-3-4pb (SAT) 2.54 0.05 0.60 1.70

s4-3-5pb (SAT) 3.12 0.73 0.80 0.15

fpga11_9 (SAT) 41.19 0.09 43.39 >1000

fpga12_14 (UNS) >1000 0 0.10 0

fpga15_10 (SAT) >1000 7.45 >1000 85.40

fpga15_14 (SAT) >1000 0.02 0.37 1.14

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

