Shengyu Shen
email: syshen@nudt.edu.cn

Ying Qin

Sikun Li
email: skli@nudt.edu.cn

A Faster Counterexample Minimization Algorithm Based on Refutation Analysis

It is a hot research topic to eliminate irrelevant variables from counterexample, to make it easier to be understood. The BFL algorithm is the most effective counterexample minimization algorithm compared to all other approaches. But its time overhead is very large due to one call to SAT solver for each candidate variable to be eliminated. The key to reduce time overhead is to eliminate multiple variables simultaneously. Therefore, we propose a faster counterexample minimization algorithm based on refutation analysis in this paper. We perform refutation analysis on those UNSAT instances of BFL, to extract the set of variables that lead to UNSAT. All variables not belong to this set can be eliminated simultaneously as irrelevant variables. Thus we can eliminate multiple variables with only one call to SAT solver. Theoretical analysis and experiment result shows that, our algorithm can be 2 to 3 orders of magnitude faster than existing BFL algorithm, and with only minor lost in counterexample minimization ability.

Introduction

Model checking technology is widely employed to verify software and hardware system. One of its major advantages in comparison to such method as theorem proving is the production of a counterexample, which explains how the system violates some assertion.

However, it is a tedious task to understand the complex counterexamples generated by model checker. Therefore, how to automatically extract useful information to aid the understanding of counterexample, is an area of active research [START_REF] Ravi | Minimal assignments for bounded model checking[END_REF][START_REF] Jin | Fate and free will in error traces[END_REF][START_REF] Gastin | Minimization of counterexamples in spin[END_REF][START_REF] Groce | Making the most of bmc counterexamples[END_REF].

At the same time, many important verification algorithms need to analyze counterexample (or witness). Some of them are: abstraction-refinement model checking [START_REF] Clarke | Sat based abstraction-refinement using ilp and machine learning[END_REF][START_REF] Glusman | Multiple-counterexample guided iterative abstraction refinement: An industrial evaluation[END_REF] and SAT based image computation [START_REF] Chauhan | Using sat based image computation for reachability analysis[END_REF][START_REF] Mcmillan | Applying sat methods in unbounded symbolic model checking[END_REF][START_REF] Kang | Sat-based unbounded symbolic model checking[END_REF]. In these algorithms, if we can extract a subset of variables that are suf-ficient to lead to counterexample, then these variables can express a large number of counterexamples, not just the individual one generated by model checker. In the remainder of this paper, we call this variable subset as minimization set, and call the algorithm that extract minimization set as counterexample minimization.

Now we demonstrate the concept of counterexample minimization with following example:

For AND gate z = a&b, let the assertion be "z always equal to 1", then there are three counterexamples: {a ⇐ 0, b ⇐ 0, z ⇐ 0}, {a ⇐ 1, b ⇐ 0, z ⇐ 0}, and {a ⇐ 0, b ⇐ 1, z ⇐ 0}. We need nine bits to store these counterexamples.

However, from an intuitive viewpoint, a ⇐ 0 is sufficient to lead to counterexample. So b is an irrelevant variable in this case. At the same time, b ⇐ 0 is also a sufficient condition of counterexample. So a is also an irrelevant variable when b equal to 0. Then we can minimize above three counterexamples, and obtain 2 minimization sets: {a ⇐ 0, z ⇐ 0} and {b ⇐ 0, z ⇐ 0}. We only need four bits to store them.

McMillan [START_REF] Mcmillan | Applying sat methods in unbounded symbolic model checking[END_REF] and Chauhan et al. [START_REF] Chauhan | Using sat based image computation for reachability analysis[END_REF] point out that , directly storing and processing the minimization set, can be exponent efficient than storing and processing the corresponding set of counterexamples.

Thus, a minimized counterexample is easier to be understood, and will significant boost the performance of many verification algorithms.

Ravi and Somenzi [START_REF] Ravi | Minimal assignments for bounded model checking[END_REF] propose a counterexample minimization algorithm called Brute Force Lifting algorithm. We will refer to it as BFL in the remainder of this paper. For every free variable v, BFL construct a SAT instance SAT(v), to determine if v can prevent the counterexample. If result of SAT(v) is UNSAT, then v is irrelevant to counterexample, and can be eliminated. Ravi compares BFL with other counterexample minimization approaches, and concludes that BFL is the most efficient one, it can often eliminate up to 70% free variables.

However, the time complexity of BFL is much larger than all other existing approaches due to one call to SAT solver per candidate variable to be eliminated.

So the key to reduce time overhead of BFL is to eliminate multiple variables after every call to SAT solver Therefore, we propose a faster counterexample minimization algorithm based on refutation analysis in this paper, which employ refutation analysis for UNSAT instances of BFL, to extract all relevant variables and eliminate all irrelevant variables simultaneously.

We implement our algorithm based on zchaff [START_REF] Moskewicz | Chaff: Engineering an efficient sat solver[END_REF] and NuSMV [START_REF] Cimatti | Nusmv 2: An opensource tool for symbolic model checking[END_REF], and perform experiment on ISCAS89 benchmark suite. Theoretical analysis and experiment result shows that, our algorithm can be 2 to 3 orders of magnitude faster than BFL algorithm, and with only minor lost in counterexample minimization ability.

The remainder of this paper is organized as follows. Section 2 presents background material. Section 3 presents the counterexample minimization algorithm based on refutation analysis. Section 4 presents experiment result of our algorithm and compare it to that of BFL. Section 5 reviews related works. Section 6 concludes with a note on future work.

Preliminaries

Bounded Model Checking

We first define the Kripke structure: Definition 1 Kripke structure is a 6-tuple M = (S, I, W, T, A, L), with a finite set of states S, the set of initial states I ⊆ S, the input variable set W , transition relation between states T : S × W × S → {0, 1}, and the labeling of the states L : S → 2 AP with atomic propositions set AP .

Bounded Model Checking (BMC) [START_REF] Biere | Symbolic model checking using sat procedures instead of bdds[END_REF] is a model checking technology that considers only limited length path. We call this length as the bound of path. We denote the state of the i-th and i+1-th cycle as S i and S i+1 , and transition relation between them as T i (S i , W i , S i+1), with input variable set of i-th cycle denoted by W i .

Then we can unfold the transition relation k times, and obtain the following equation:

[[M]] k = I ∧ 0≤i<k T i (S i , W i , S i+1) (1)
Let the safety assertion under verification be ASSERT , the goal of BMC is to find a state S that violate ASSERT , that is to say, ¬ASSERT ∈ L(S). In remainder of this paper, we denote ¬ASSERT as P , and will not refer to ASSERT any more.

Let P at i-th cycle as P i ,then BMC problem can be express as:

F = [[M]] k ∧ 0≤i<k ¬P i ∧ P k
Because BMC always searches for shortest counterexample, so 0≤i<k ¬P i always holds true. Therefore we can reduce above equation into following equation (2):

F = [[M]] k ∧ P k (2)
Reduce equation (2) into SAT instance, and solve it with SAT solver, then a counterexample can be found if it exists.

BFL Algorithm

BFL algorithm proposed by Ravi and Somenzi [START_REF] Ravi | Minimal assignments for bounded model checking[END_REF] can eliminate much more free variables than all existing algorithm, often up to 70% free variables can be eliminated.

We give some terminology below: Definition 2: Assume the bound of counterexample is k, and denote the set of free variables as

F ree = I ∪ 0≤i≤k W i . The assignment to variable v in counterex- ample is denoted by Assign(v), the assignment to vari- able set V in counterexample is denoted by Assign(V) = {Assign(v)|v ∈ V }.
Obviously, the set F ree includes input variables at all cycle and initial state variables.

For a free variable v ∈ F ree, v is an irrelevant variable if and only if the following statement hold true: "no matter what value does v take on, it can't prevent the counterexample from happen. That is to say, it can't prevent P k of equation (2) from equal to 1". Formal definition of irrelevant variable is given below:

Definition 3 Irrelevant Variable: for v ∈ F ree, v is an irrelevant variable iff: ∀c ∈ {0, 1}.[[M]] k ∧ (v ⇐ c) ∧ A → P k which is equal to ¬∃c ∈ {0, 1}.[[M]] k ∧ (v ⇐ c) ∧ A ∧ ¬P k (3
)
where

A = F ree -{v} ⇐ Assign(F ree -{v}) (4)
From equation (3) and (4) we can conclude that:

v is ir- relevant variable iff SAT instance [[M]] k ∧ A ∧ ¬P k is Un- satisfiable.
Thus, the BFL algorithm [START_REF] Ravi | Minimal assignments for bounded model checking[END_REF] that extracts minimization set from counterexample is show below:

Algorithm 1:BFL Algorithm 1 F " = [[M]] k ∧ ¬P k a) F = F " ∧ (F ree -{v} ⇐ Assign(F ree -{v})) b) if(SAT Solve(F)==UNSAT)
i F ree = F ree -{v} 3 F ree is the minimization set To make it more distinct, we give the following two definitions:

Definition 4 Model Clause Set: all clauses generated from F" in step 2a) of algorithm 1.

Definition 5 Assignment Clause Set: all clauses generated from (F ree -{v} ⇐ Assign(F ree -{v})) in step 2a) of algorithm 1

We call the former as model clause set, because F " represents inverted model checking problem of equation [START_REF] Chauhan | Using sat based image computation for reachability analysis[END_REF]. We call the latter as assignment clause set because they are used for assigning to all variables their value in counterexample, except v. For every v ∈ F ree -{v}, its assignment clause contain only one literal. If Assign(v) == 1, then assignment clause of v is {v }, otherwise it is {¬v }. SAT solver will assign these values to them by BCP when solving this instance.

Counterexample Minimization with Refutation Analysis

As stated before, the key to reduce time overhead of BFL is to eliminate multiple variables after every call to SAT solver.

In algorithm 1, when SAT instance F is Unsatisfiable, a variable subset R ⊆ F ree can be extract from it by refutation analysis, which is the sufficient condition of counterexample. Then all variables in F ree-R can be eliminated immediately. Thus we can eliminate multiple variables in this way.

In this section, we first describe the overall algorithm flow in subsection 3.1, and then describe the most important part -refutation analysis in subsection 3.2. We will prove its correctness in subsection 3.3. At last, we will analyze the complexity of this algorithm in subsection 3.4.

Overall algorithm flow

Overall flow of our algorithm is shown by algorithm 2. Algorithm 2 BFL algorithm with refutation analysis Compare it to algorithm 1, steps in 2b) of algorithm 2 are newly inserted steps, which are highlighted with bold font. In step 2b)i, we perform refutation analysis to extract the variables set R that leads to UNSAT. And then in step 2b)ii, we eliminate all variables not belong to R. After that we terminate the whole algorithm by going to step 3 directly.

1 F " = [[M]] k ∧ ¬P k 2 foreach v ∈ F ree a) F = F " ∧ (F ree -{v} ⇐ Assign(F ree -{v})) b) if(SAT Solve(F)==UNSAT) i R =

Refutation Analysis

As stated by last subsection, we perform refutation analysis to extract the variable set R that leads to UNSAT.

For SAT instance F of algorithm 2, we denote its model clause set by F ", and its assignment clause set by A. After SAT solver finished running, denote its conflict clause set as C.

Refer to last paragraph of section 2.2 of L.Zhang's famous paper about unsatisfiable core extraction [START_REF] Zhang | Validating sat solvers using an independent resolution-based checker: Practical implementations and other applications[END_REF], we have the following theorem 1.

Theorem 1 : If F is unsatisfiable, then there must be a conflict clause at decision level 0, we denote it by c. Because the decision level is 0, so there are no decided variables, any variables can only take on their value by implication.

With this theorem, it is obvious that there must be an implication graph root at unit clauses and target at all literals of conflict clause c. We show this implication graph in figure 1.Every rectangle denote a unit clause, and S is the set of unit clauses that makes all literals of conflict clause c to be 0.

Staring from clause c, we can traverse the implicate graph in reverse direction, to obtain the set of unit clauses S that lead to conflict. We denote the assignment clauses in S by S ∩ A, then the set of variables that lead to con-flict is R = {v|{v} ∈ S ∩ A} ∪ {v|{¬v} ∈ S ∩ A}. This is the key idea of our refutation analysis algorithm. Now we present the refutation analysis algorithm below.

Algorithm 3 Refutation Analysis

1 set S = ∅ 2 queue Q = ∅ 3 foreach literal l ∈ c a) push antecedent clause of l into Q b) mark antecedent clause of l as visited 4 while(Q is not empty) a) cls=pop first clause from Q b) if(cls is a unit clause) i S = S + {cls} ii If(cls is a learned unit clause) return R = F ree -{v} c) else i foreach literal l ∈ cls 1 assume ante(l) is antecedent clause of l 2 if(ante(l) has not being visited) a) push ante(l) into Q b) mark ante(l) as visited 5 R = {v|{v} ∈ S ∩ A} ∪ {v|{¬v} ∈ S ∩ A} are

variables that lead to UNSAT

There is a special case in step 4b)ii, when cls is a learned unit clause, we can't backtrack further because the SAT solver has not record the clauses involved in resolution to construct cls. In this case, we abandon the effort to extract R, and simply return R = F ree -{v}. This means that we can eliminate only one variable v in this case.

Fortunately, we have not met with this special case in experiments. I suspect that this is because of the 1UIP conflict learning mechanism, which seldom generate learned unit clause.

Correctness Proof

We prove the correctness of algorithm 2 and 3 with following theorems: Theorem 2: F " ∧ cls∈S cls is an Unsatisfiable clause subset of F Proof: it is obvious that F "∧ cls∈S cls is a clause subset of F , so we only need to prove that it is Unsatisfiable.

Assume C ⊆ C is the set of learned clauses met with by algorithm 3 while traversing implication graph. Thus, F " ∧ cls∈S cls ∧ cls∈C cls is Unsatisfiable. Then if we can remove cls∈C cls from it, and still retain its unsatisfiability?

For every learned clause cls ∈ C , assume NU(cls) and U (cls) are non-unit clauses set and unit clauses set that involved in resolution to construct cls.

It is obvious that NU(cls) ⊆ F ". And according to [START_REF] Zhang | Validating sat solvers using an independent resolution-based checker: Practical implementations and other applications[END_REF], unit clauses never involve in resolution, so U (cls) is empty set. So we can remove cls∈C cls from F " ∧ cls∈S cls ∧ cls∈C cls, and still retain its unsatisfiability Thus this theorem is proven.

Theorem 3: F " ∧ v ∈R (v ⇐ Assign(v)) is an Un- satisfiable clause subset of F Proof: it is obvious that F " ∧ v ∈R (v ⇐ Assign(v)
) is an clause subset of F . Thus we only need to prove that

F " ∧ v ∈R (v ⇐ Assign(v)) is Unsatisfiable.
According to algorithm 3, v ∈R (v ⇐ Assign(v)) is equal to cls∈S∩A cls. So we only need to prove that F " ∧ cls∈S∩A cls is Unsatisfiable. According to theorem 2, F " ∧ cls∈S cls is Unsatisfiable, which can be rewritten as F " ∧ cls∈S∩A cls ∧ cls∈S-A-F " cls. Lets discuss it in two aspects:

1. If S -A -F " is empty set, then F " ∧ cls∈S∩A cls is Unsatisfiable 2.
Otherwise, S -A -F " isn't empty set. In this case, algorithm 3 will meet with a learned unit clause. According to step 4b)ii of algorithm 3, it will abandon the effort to extract R, and eliminate only one variable v. In the case, F " ∧ cls∈S∩A cls is Unsatisfiable Thus this theorem is proven.

Complexity Analysis

Because our algorithm depends heavily on SAT solver, so we don't analyze its complexity directly. Instead, we compare our algorithm with SAT solver.

Lets first analyze space complexity of our algorithm. Comparing algorithm 2 and 1, the only difference is that algorithm 2 adds a refutation analysis step. Therefore, difference of space complexity between them resides in refutation analysis algorithm. We know that the space overhead of refutation analysis mainly resides in set S and queue Q. Lets analyze them as below:

• We add a tag to each clause in clause database of SAT solver, to indicate that if this clause belongs to set S. Therefore, space overhead of S is linear to size of clause database.

• For queue Q, it may contain conflict clauses. Because conflict analysis algorithm of SAT solver also need to perform similar implicate graph traversing, so space overhead due to Q is not larger than that of SAT solver.

Next, we will analyze the time complexity of our algorithm.

In algorithm 3, the most complex part is the if statement in step 4c)i2. for every clause that has been in Q, this statement will be run once. Because the size of Q is smaller than clause database, so time overhead of algorithm 3 is smaller than that of conflict analysis.

In step 2b) of algorithm 2, one call to refutation analysis algorithm will eliminate many irrelevant variables, thus prevents them from calling SAT solver. This will significant reduce time overhead.

Experiment Result

Ravi and Somenzi [START_REF] Ravi | Minimal assignments for bounded model checking[END_REF] only presents the circuits that used to generate counterexample, but has not presented the assertion used. Therefore, we can't compare our algorithm with his one directly. So we implement his algorithm and ours in zchaff [START_REF] Moskewicz | Chaff: Engineering an efficient sat solver[END_REF], such that we can compare them with same circuits and assertions.

We use NuSMV [START_REF] Cimatti | Nusmv 2: An opensource tool for symbolic model checking[END_REF] to generate deep counterexample in the following way:

1. Perform reachability analysis to generate state sequence {S 0 , . . . , S k }.

2. Use "S k can't be reached" as an assertion, and put it into bounded model checking package of NuSMV [START_REF] Cimatti | Nusmv 2: An opensource tool for symbolic model checking[END_REF],

we can obtain a counterexample with length smaller than k.

We perform counterexample minimization with BFL [START_REF] Ravi | Minimal assignments for bounded model checking[END_REF] and ours. The timeout limit is set to 20000 seconds.

Experiment result is presented in table 1. The 1st column is the circuits used to generate counterexample. The 2nd column presents the length of counterexample. The 3rd column presents number of free variables.

The 4th column shows the numbers of irrelevant free variables eliminated by K Ravi's BFL [START_REF] Ravi | Minimal assignments for bounded model checking[END_REF]. Divide this column with the 3rd column, we can get the minimization rate shown in 5th column. Run time of BFL is shown in 6th column.

The numbers of irrelevant free variables eliminated by our algorithm are shown in the 7th column. Divide this column with the 3rd column, we can get the minimization rate shown in 8th column. Run time of it is shown in 9th column. The speedup compared to BFL is shown in last column.

From this table, we can conclude that:

1. As shown by last column, our algorithm can be 2 to 3 orders of magnitude faster than BFL;

2. Compare the 4th and 7th column, the number of irrelevant variables eliminated by BFL and our algorithm are of almost the same.

Related Works

Our work is somewhat similar to that of SAT-based image computation [START_REF] Chauhan | Using sat based image computation for reachability analysis[END_REF][START_REF] Mcmillan | Applying sat methods in unbounded symbolic model checking[END_REF][START_REF] Kang | Sat-based unbounded symbolic model checking[END_REF].

McMillan [START_REF] Mcmillan | Applying sat methods in unbounded symbolic model checking[END_REF] propose an SAT solution minimization approach, to extract a partial assignment from SAT solution. His approach needs to construct an alternating implication graph root at input variables. With this graph, he eliminates many irrelevant variables from SAT solution.

Kang and Park [START_REF] Kang | Sat-based unbounded symbolic model checking[END_REF] assign lower decision priority to next state variables, such that when the transition relation is satisfied, as many as possible next state variables are undecided.

Chauhan et al. [START_REF] Chauhan | Using sat based image computation for reachability analysis[END_REF] employ an ATPG-like approach to analyze the dependence relation between input variables and transition relation. And try to eliminate as many as possible next state variables from final solution.

Minimization of counterexamples is useful in the context of abstraction-refinement [START_REF] Clarke | Sat based abstraction-refinement using ilp and machine learning[END_REF][START_REF] Glusman | Multiple-counterexample guided iterative abstraction refinement: An industrial evaluation[END_REF]. Refinement is often more effective when it is based on the simultaneous elimination of a set of counterexamples rather than on elimination of one counterexample at a time.

There are also other approaches to minimize counterexample.

Gastin et al [START_REF] Gastin | Minimization of counterexamples in spin[END_REF] propose an length minimization approach for explicate state model checker SPIN, which try to generate smaller counterexample with respect to their length.

Groce and Kroening [START_REF] Groce | Making the most of bmc counterexamples[END_REF] propose an value minimization approach for CBMC tools, which target at bounded model checking of C language. His approach tries to minimize the absolute value of typed variables of C language.

Conclusions

To make the counterexample easier to be understood, irrelevant variables must be eliminated. At the same time, minimized counterexamples can significant improve the performance of many important verification algorithms.

BFL is the most effective counterexample minimization algorithm. However, its time overhead is too large.

Therefore, we propose a faster counterexample minimization algorithm based on refutation analysis in this paper. Our algorithm can be 2 to 3 orders of magnitude faster than BFL, and with only minor lost in minimization ability.

In this paper we only due with safety assertion, we would also like to address minimization algorithm for loop like counterexample of liveness property in future work.

Acknowledgements

Figure 1 .

 1 Figure 1. implication graph root at unit clauses and target at all literals of conflict clause c

 Supported by the National Natural Science Foundation of China under Grant No. 90207019; the National High Technology Development 863 Program of China under Grant No.

Table 1 . Experiment Result

 1

	2002AA1Z1480

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE'05) 1530-1591/05 $ 20.00 IEEE

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE'05)