
HAL Id: hal-00181166
https://hal.science/hal-00181166

Preprint submitted on 23 Oct 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A polynomial time approximation scheme for the single
machine total completion time scheduling problem with

availability constraints
Julien Moncel, Jérémie Thiery, Ariel Waserhole

To cite this version:
Julien Moncel, Jérémie Thiery, Ariel Waserhole. A polynomial time approximation scheme for the
single machine total completion time scheduling problem with availability constraints. 2007. �hal-
00181166�

https://hal.science/hal-00181166
https://hal.archives-ouvertes.fr

A polynomial time approximation scheme for the

single machine total completion time scheduling

problem with availability constraints

Julien Moncel

INPG – Laboratoire G-SCOP

ERTé “maths à modeler”

julien.moncel@g-scop.inpg.fr

Jérémie Thiery

INPG – ENSIMAG

jeremie.thiery@ensimag.fr

Ariel Waserhole

INPG – ENSIMAG

ariel.waserhole@ensimag.fr

September 24, 2007

Abstract

In this paper, we study the single machine total completion time
scheduling problem with availability constraints. This problem is known
to be NP-complete. Sadfi et al gave an approximation algorithm with
relative error 3

17
. The main contribution of this paper is a polynomial

time approximation scheme for this problem. Our scheme is a simple
generalization of the algorithm proposed by Sadfi et al.

1 Introduction

We consider the problem of scheduling tasks on a machine having a period
of maintenance. This period of maintenance is known in advance, and is
such that no job can be done during it. In other words, preemption is not
allowed, and the machine is not available for processing jobs during the
maintenance. We wish to minimize the total completion time of the jobs.
Scheduling problems with availability constrainsts are widely studied (see
[6, 7] for surveys). This particular problem is usually denoted 1, h1//

∑
Ci.

Adiri et al [1] and Lee and Liman [2] showed that this problem is NP-hard.

1

Lee and Liman also showed that the SPT algorithm leads to a heuristic of
relative error 2

7 .

Sadfi et al [5] proposed an improved heuristic for this problem, having
a relative error of 3

17 . Their heuristic is a post-optimisation of SPT using
a 2-OPT procedure. More precisely, let us denote A and B the sets of
jobs scheduled respectively after and before the maintenance by the SPT
algorithm. The heuristic consists in exchanging one job of A with one job of
B in order to improve the total completion time. They call their procedure
MSPT, for Modified SPT.

In this paper we study a generalization of MSPT, that we call MSPT-k,
which consists of exchanging at most k jobs of A with at most k jobs of B,
with k a fixed positive constant. We prove that for all k ≥ 2, MSPT-k has a
relative error of αk, with αk → 0 when k → +∞. In other words, MSPT-k
provide a polynomial time approximation scheme (PTAS) for the problem
1, h1//

∑
Ci. We also prove that the value αk is tight, that is to say we give

a construction of a family of instances such that, asymptotically, the error
bound of MSPT-k is αk.

2 Notations

Let J = {Ji | i = 1, ...n} be the set of jobs. We use the following notations,
which, for convenience, are the same as in [5]:

J[i] job scheduled at position i

pi processing time of job Ji

p[i] processing time of job scheduled at position i

Ci completion time of job Ji

C[i] completion time of job scheduled at position i

R starting time of maintenance
L duration of maintenance
D ending time of maintenance (hence D = R + L)
δ idle time of the machine before the maintenance

The MSPT-k heuristic tries to improve the result given by the SPT
algorithm by trying all possible exchanges of at most k jobs scheduled before
the maintenance with at most k jobs scheduled after the maintenance. More
formally, the algorithm is the following :

MSPT-k heuristic
1. Schedule the jobs according to the SPT rule.
2. Denote A the set of jobs scheduled after the maintenance, and B the set

2

of jobs scheduled before.
3. Try all possible exchanges of at most k jobs of A with at most k jobs
of B (the jobs before and after the maintenance being scheduled in non-
decreasing order of their processing times).
4. Output the best exchange found in step 3.

Note that MSPT-0 is just the SPT algorithm, and MSPT-1 is the MSPT
heuristic of Sadfi et al [5].

3 A polynomial time approximation scheme

In this section we derive some properties of the solutions obtained using
SPT and MSPT-k, for a fixed k ≥ 2. The following lemmata enable us to
analyze the MSPT-k heuristic and to compute an error bound tending to
zero when k grows to infinity ; that is to say we prove that MSPT-k leads
to a polynomial time approximation scheme (PTAS).

We will use the following notations, which are the same as in [5]: The
schedule generated by the SPT algorithm will be denoted S, the optimal
schedule will be denoted S∗, and the schedule generated by MSPT-k will
be denoted S′. Clearly, any schedule can be seen as a partition of the jobs
into two sets: Those which are scheduled before the maintenance, and those
which are scheduled after the maintenance. Indeed, once the partition of
jobs is fixed, it is dominant to schedule them in non increasing order of their
processing time.

Let A be the set of jobs scheduled after the maintenance in S, and let
B be the set of jobs scheduled before the maintenance in S. With straight-
forward notations, A′ and B′ represents the job partition in S′. Now, let
X be the set of the |B| first jobs scheduled in S∗, and let Y be the set of
remaining jobs (note that |Y | = |A|).

Note that MSPT-k exchanges t jobs of A with t′ jobs of B, with t ≤ k,
t′ ≤ k, and t′ ≥ t. Hence we have |A′| ≥ |A| = |Y | and |B′| ≤ |B| = |X|.

Finally, let us denote Ci, C ′
i, and C∗

i the completion times of job Ji

in schedules S, S′, and S∗ respectively. Since MSPT-k clearly improves
SPT, then we have

∑
i C

′
i ≤

∑
i Ci. Let us also denote J ′

[i] and J∗
[i] the

jobs scheduled at position i in S′ and S∗, respectively. The straightforward
notations p′[i], p∗[i], C ′

[i] and C∗
[i] will also be used in the sequel. Throughout

this section we consider the case where |A| ≥ k + 1 and |B| ≥ k + 1, because
if not, then MSPT-k is clearly optimal.

3

3.1 Preliminary lemmata

This lemma generalizes Lemma 1 in [5], that stated the result only for the
case Ŝ = S′ and Ŝ = S∗. Its proof is essentially the one of [5].

Lemma 1 Let Ŝ be a schedule better than S, that is to say its total com-
pletion time is better that the one of S. Let us denote δ and δ̂ the idle time
of the machine before the maintenance in S and Ŝ, respectively. Then we
have δ̂ ≤ δ.

Proof : Let Ŝ be a schedule whose total completion time is better that
the one of S. Let us denote Ĵ[i] the job scheduled at position i in Ŝ, p̂[i] its

processing time, and Ĉ[i] its completion time. Let us denote δ̂ the idle time

of the machine before the maintenance in Ŝ. Let J[t] be a job scheduled at
position t in S, with t > |B|. By definition, this job belongs to A, hence we
have:

C[t] =

t∑

i=1

p[i] + δ + L.

Since SPT maximizes the number of jobs scheduled before the mainte-
nance, then we also have:

Ĉ[t] =
t∑

i=1

p̂[i] + δ̂ + L.

In addition, since SPT is the optimal sequencing without period of main-
tenance, then we have:

t∑

i=1

p̂[i] ≥

t∑

i=1

p[i].

This implies that Ĉ[t] ≥ C[t] + δ̂ − δ for all t = |B| + 1, . . . , n.

Notice that for t = 1, ..., |B|, the SPT strategy ensures that Ĉ[t] ≥ C[t].

By way of contradiction, assume now that δ̂ > δ. Summing the previous
inequalities we obtain:

n∑

i=1

Ĉ[i] >
n∑

i=1

C[i].

This would implie that the SPT solution S is better than Ŝ, a contra-
diction. Therefore we have δ̂ ≤ δ. �

4

Note that this implies in particular that δ∗ ≤ δ and δ′ ≤ δ, where δ∗ and
δ′ denote the idle times on the machine before the maintenance in schedules
S∗ and S′, respectively.

The following lemma is Lemma 2 of [5], that we recall here without any
proof.

Lemma 2 (Sadfi et al.) Let C[i] and C∗
[i] be the completion times of the job

scheduled at position i in the SPT and in the optimal solution, respectively.
Then we have:

∑

J[i]∈A

C[i] ≤
∑

J[i]∈Y

C∗
[i] + |Y |(δ − δ∗).

The following lemma generalizes Lemma 3 of [5], that stated the result
for the case t = 1.

Lemma 3 Let t ≥ 1 be an integer. If (at least) t jobs of X are scheduled
after the period of maintenance in the optimal solution, then we have:

n∑

i=1

C ′
i ≤

n∑

i=1

C∗
i + (|Y | − (t + 1)) (δ − δ∗).

Proof : Since at least t jobs of X are scheduled after the period of
maintenance in the optimal solution, then we have:

C∗
[i] ≥ C[i] for all i = 1, . . . , |B| − t,

and

C∗
[|B|−i] ≥ C[|B−i|] + δ + L

≥ C[|B−i|] + (δ − δ∗) for all i = 0, . . . , t − 1.

As for the job scheduled at position |B| − t in S∗, we have the following
more accurate inequality :

C∗
[|B|−t] ≥ C[|B|] + (δ − δ∗) ≥ C[|B|−t] + (δ − δ∗).

These inequalities imply that:

∑

J∗

[i]
∈X

C∗
[i] ≥

∑

J[i]∈B

C[i] + (t + 1)(δ − δ∗).

5

Using Lemma 2, we then get

n∑

i=1

Ci =
∑

J[i]∈B

Ci +
∑

J[i]∈A

Ci

≤
∑

J∗

[i]
∈X

C∗
i +

∑

J∗

[i]
∈Y

C∗
i + (|Y | − (t + 1))(δ − δ∗).

Since
∑n

i=1 C ′
i ≤

∑n
i=1 Ci, we conclude that

n∑

i=1

C ′
i ≤

n∑

i=1

C∗
i + (|Y | − (t + 1)) (δ − δ∗).

�

The following lemma generalizes Lemma 4 of [5], that stated the result
for the case t = 2.

Lemma 4 Let t ≥ 1 be an integer. If (at least) t jobs of B are scheduled
after the period of maintenance in the optimal schedule S∗, then we have:

n∑

i=1

C∗
i ≥

{
|Y |(|Y | + 1)

2
+ t

}
(δ − δ∗)

Proof : We first decompose the sum
∑n

i=1 C∗
i =

∑
J∗

[i]
∈B C∗

[i] +
∑

J∗

[i]
∈A C∗

[i].

The SPT heuristic implies that pi ≥ δ ≥ δ − δ∗ for all job Ji ∈ A. Hence we
have:

∑

J∗

[i]
∈A

C∗
[i] ≥

{
|A|(|A| + 1)

2

}
(δ − δ∗)

=

{
|Y |(|Y | + 1)

2

}
(δ − δ∗).

If at least t jobs of B are processed after the period of maintenance in the
optimal schedule, then we have:

∑

J∗

[i]
∈B

C∗
[i] ≥ t(R + L) ≥ t(δ − δ∗).

Summing up these to inequalities we get:

n∑

i=1

C∗
i ≥

{
|Y |(|Y | + 1)

2
+ t

}
(δ − δ∗),

6

which is the desired result. �

Finally we will need later on the following lemma.

Lemma 5 Let p ≥ 1 and q ≥ 1 be two integers such that p ≥ q. Let us
consider the solution S obtained with the SPT heuristic. We claim that if
it is possible to exchange p jobs of B with q jobs of A, then it is possible to
exchange p − q + 1 jobs of B with 1 job of A.

Proof : Let us assume that it is possible to exchange p jobs of B with q
jobs of A, with p ≥ q ≥ 1. If p = q then we are done. Else, let Ae ⊆ A and
Be ⊆ B denote the sets of jobs of A and B that may be exchanged. Note
that the exchange of these jobs is possible if and only if

∑

Jj∈Ae

pj ≤
∑

Ji∈Be

pi + δ.

Since pj ≥ pi for all jobs Jj ∈ A and Ji ∈ B, then we still have

∑

Jj∈AerA′

e

pj ≤
∑

Ji∈BerB′

e

pi + δ

where A′
e ⊆ Ae and B′

e ⊆ Be are any arbitrary sets having the same cardi-
nality. This leads to the desired result if we consider A′

e and B′
e of cardinal-

ity q − 1. �

Now we are ready to analyze the MSPT-k heuristic. Two cases follow,
depending on the possibility of exchanging jobs from A with jobs from B.

3.2 Analysis of the MSPT-k heuristic when no exchange of

jobs is possible

Let us assume that no exchange of jobs is possible, that is to say we can
not exchange at most k jobs of B with at most k jobs of A in the SPT
schedule S. This implies that p[|B|] + δ > pk for all Jk ∈ A, and that the
MSPT-k solution is identical to the SPT solution.

If B = X, then the SPT schedule is clearly optimal, and so is the MSPT-
k schedule. If B 6= X, then SPT is not optimal, and we have to exchange
at least k + 1 jobs from B with jobs from A to get the optimal solution.

Hence there exists p ≥ k + 1 jobs in set B that can be exchanged with
q ≤ p jobs in set A. According to Lemma 5, this implies that there exists
p−q+1 jobs in set B that can be exchanged with 1 job in set A. Since there

7

is no exchange possible of at most k jobs of set B with at most k jobs of
set A, then we have p− q + 1 > k. This implies that p− q ≥ k, that is to say
there are at most |B| − k jobs scheduled before the period of maintenance
in the optimal solution. Thus, at least k jobs of X are scheduled after the
period of maintenance in the optimal solution.

To summarize, we have at least k+1 jobs of B, and k jobs of X, which are
scheduled after the period of maintenance in the optimal solution. According
to Lemma 3 and Lemma 4, we have the two following inequalities:

n∑

i=1

C ′
i ≤

n∑

i=1

C∗
i + (|Y | − (k + 1))(δ − δ∗) (1)

and
n∑

i=1

C∗
i ≥

{
|Y |(|Y | + 1)

2
+ (k + 1)

}
(δ − δ∗). (2)

Let us denote εk the error bound of the MSPT-k heuristic, that is to
say:

εk =

∑n
i=1 C ′

i −
∑n

i=1 C∗
i∑n

i=1 C∗
i

.

Combining inequalities (1) and (2), we obtain:

εk ≤
2(|Y | − (k + 1))

|Y |(|Y | + 1) + 2(k + 1)
. (3)

3.3 Analysis of the MSPT-k heuristic when the exchange of

jobs is possible

Now, let us assume that we can exchange at most k jobs in set B with at most
k jobs in set A in the SPT schedule S. If MSPT-k is not optimal, then at least
k + 1 jobs from set B are scheduled after the period of maintenance in the
optimal solution. Using Lemma 4, again, we have the following inequality:

n∑

i=1

C∗
i ≥

{
|Y |(|Y | + 1)

2
+ (k + 1)

}
(δ − δ∗). (4)

Now we study two cases, according to the number of jobs from set X
scheduled after the period of maintenence in the optimal solution.

8

Case 1: At least k jobs of X are scheduled after the period of
maintenance in the optimal solution. In this case we can again use
the result of Lemma 3 to get:

n∑

i=1

C ′
i ≤

n∑

i=1

C∗
i + (|Y | − (k + 1))(δ − δ∗). (5)

Case 2: At most k − 1 jobs of X are scheduled after the period of
maintenance in the optimal solution. Let z ≤ k− 1 be the number of
jobs of X scheduled after the period of maintenance in the optimal solution.
Clearly, the optimal solution is obtained by exchanging q jobs from set A
with q + z jobs from set B, with q ≥ 1. Notice that q + z > k since we
assumed that MSPT-k is not optimal.

Let WA (resp. WB) be the set of jobs of A (resp. B) scheduled before
(resp. after) the maintenance in S∗ and let pA (resp. pB) be the sum of
their processing times. Notice that pA ≥ pB by Lemma 1. See Figure 1 for
these notations.

Figure 1: The optimal schedule S∗.

Now let us consider the schedule S̃, obtained from the optimal sched-
ule S∗ by exchanging the jobs of WA with the jobs of WB . Let ∆ be the
quantity ∆ = pA − pB ≥ 0. It is easy to see that

n∑

i=1

C̃i ≤
n∑

i=1

C∗
i + (|Y | − q)∆ − z(pA + δ∗ + L), (6)

where C̃i denotes the completion time of job Ji in the schedule S̃. Indeed,
we have C̃i = C∗

i + ∆ for the |Y | − q jobs Ji ∈ Y scheduled after WB in the

optimal solution. Similarly, we have C̃i = C∗
i − (pA + δ∗ + L) for the q + z

jobs Ji ∈ WB, and C̃i = C∗
i + (pA + δ∗ + L) for the q jobs Ji ∈ WA.

9

Obviously, the idle time of the machine before the maintenance in sched-
ule S̃ is equal to δ. Hence ∆ = pA − pB = δ − δ∗. It is also immediate to
observe that pA + δ∗ + L ≥ δ − δ∗, since pA + δ∗ = pB + δ. Moreover, it is
clear that

∑n
i=1 C ′

i ≤
∑n

i=1 Ci ≤
∑n

i=1 C̃i, because SPT is optimal once the
set of jobs before and after the maintenance is fixed. Thus we obtain the
following inequality

n∑

i=1

C ′
i ≤

n∑

i=1

C∗
i + (|Y | − q − z)(δ − δ∗).

Now, using the fact that q + z > k, we have

n∑

i=1

C ′
i ≤

n∑

i=1

C∗
i + (|Y | − (k + 1))(δ − δ∗). (7)

Conclusion To summarize this section, we have shown that if at least
k jobs of X are scheduled after the period of maintenance in the optimal
solution, then we have

n∑

i=1

C ′
i ≤

n∑

i=1

C∗
i + {|Y | − (k + 1)} (δ − δ∗). (8)

(this is equation (5)). We also showed that the previous equation also holds
if less than k jobs of X are scheduled after the period of maintenance in the
optimal solution (this is equation (7)).

Putting (4) and (8) together, we get the following bound on the error
bound of MSPT-k:

εk =

∑n
i=1 C ′

i −
∑n

i=1 C∗
i∑n

i=1 C∗
i

≤
2(|Y | − (k + 1))

|Y |(|Y | + 1) + 2(k + 1)
. (9)

3.4 Computing the error bound

Putting (3) and (9) together, we can claim that the error bound εk of MSPT-
k is bounded as follows:

εk =

∑n
i=1 C ′

i −
∑n

i=1 C∗
i∑n

i=1 C∗
i

≤
2(|Y | − (k + 1))

|Y |(|Y | + 1) + 2(k + 1)
.

10

For all k > 0, the function fk : x 7→ fk(x) = 2(x−(k+1))
x(x+1)+2(k+1) , x ∈ N

+

reaches its maximum for xk = 2k + 3 (straightforward computation). Then
we have

max
|Y |∈N+

εk ≤ fk(xk) =
k + 2

2k2 + 8k + 7
.

Since

αk =
k + 2

2k2 + 8k + 7
→

k→∞
0,

then MSPT-k provides a polynomial time approximation scheme for the
problem 1, h1//

∑
Ci. This is the main result of the present paper. In

the next section we exhibit a family of instances of 1, h1//
∑

Ci such that,
asymptotically, MSPT-k has an error bound of αk.

4 Tightness of the error bound of MSPT-k

In the previous section we proved that, for all k ≥ 1, the MSPT-k algorithm
had an error bound bounded by αk = k+2

2k2+8k+7
. For k = 1, we get α1 = 3

17 ,
hence this bound is tight in this case [5]. Note that for k = 0 too the
previous bound is tight, since α0 = 2

7 [2].

Actually we can prove that, for all k, αk is the tight error bound of
MSPT-k. Indeed, let us consider the following example, which is a general-
ization of instances proposed by Lee and Liman [2] and Sadfi et al [5].

Let M ∈ N
+ be a number greater than or equal to k +1. Let us consider

3k + 4 jobs such that with pi = 1 for i ∈ {1, 2, .., k + 1} and pi = M for
i ∈ {k + 2, .., 3k + 4}. Let R = M and L = 1. It is easy to see that
the MSPT-k schedule is the one where the set of jobs scheduled before the
maintenance is {Ji | i = 1, . . . , k + 1}, and that the optimal schedule is the
one where the set of jobs scheduled before the maintenance is {Jk+2} (see
Figures 2 and 3).

Figure 2: The schedule S′ obtained using the MSPT-k heuristic.

11

Figure 3: The optimal schedule S∗.

Let us assume that M is significantly larger than k, for instance k2 =
o(M). Straightforward computations show that:

n∑

i=1

C ′
i = M(2k2 + 9k + 9) + o(M),

and

n∑

i=1

C∗
i = M(2k2 + 8k + 7) + o(M).

Hence, we have

∑n
i=1 C ′

i −
∑n

i=1 C∗
i∑n

i=1 C∗
i

=
M(k + 2) + o(M)

M(2k2 + 8k + 7) + o(M)
.

When M tends to infinity, this quantity tends to k+2
2k2+8k+7

. Hence the

error bound of MSPT-k is exactly k+2
2k2+8k+7

.

5 Computational experiments

In this section we present results of computational experiments we made to
test our algorithm. For k = 2, 3, we compared results of MSPT-k with those
obtained using MSPT-(k − 1) and with the optimal schedule. The optimal
schedule was computed using a dynamic programming approach described
in [3, Section 4.5] and in [4].

The algorithms have been implemented using the Java langage. Job
processing times are uniformly generated as integers in the interval [1, 100].
The number n of jobs ranges from 10 to 100 jobs, and 50 instances are
generated for each value of n. For the generation of the date of maintenance,
we choose R = 25% of the sum of processing times of the jobs (in this case,

12

Bmax ≃ 50% of n, where Bmax denotes the number of jobs scheduled before
the maintenance in the SPT schedule).

Figure 4 shows the evolution with the number of jobs of the number of
cases where MSPT-2 improves MSPT, while Figure 5 deals with the number
of cases where MSPT-3 improves the MSPT-2 heurisitic.

Figure 4: Proportion of cases where MSPT-2 improves MSPT.

Figure 5: Proportion of cases where MSPT-3 improves MSPT-2.

As shown in these two figures, the percentage of cases where MSPT-k
improves MSPT-(k − 1) (k = 2, 3) reaches at least 50%.

Figure 6 shows the comparison of MSPT-3, MSPT-2 and MSPT with
the optimal schedule.

We can observe that MSPT-2 and MSPT-3 have effective relative errors
of less than 1.5% for the (large) randomly generated instances we tested.
These values can be compared to the theoretical relative errors α2 ≃ 12.9%
and α3 ≃ 10.2%. Hence the MSPT-k heuristics has an effective relative
error far below the theoretical ones for the instances we generated.

13

Figure 6: Relative errors of MSPT, MSPT-2 and MSPT-3.

6 Conclusion

In this paper we described a polynomial time approximation scheme (PTAS)
for the single machine total completion time scheduling problem with avail-
ability constraints, denoted 1, h1//

∑
Ci. Our heuristic is inspired and gen-

eralizes the work of Lee and Liman [2] and Sadfi et al [5].

In order to prove the PTAS, we computed an error bound for our heuris-
tic, and we proved our bound to be tight in Section 4. One can notice that
the main results of [2] and [5] can be obtained as immediate consequences
of ours.

References

[1] I. Adiri, J. Bruno, E. Frostig, A. H. G. Rinnooy Kan, Single ma-
chine flow-time scheduling with a single breakdown, Acta Informatica
26 (1989), 679–696.

[2] C.-Y. Lee, S. D. Liman, Single machine flow-time scheduling with sched-
uled maintenance, Acta Informatica 29 (1992), 375–382.

[3] C. Sadfi, Problèmes d’ordonnancement avec minimisation des encours,
Ph.D. thesis, Institut National Polytechnique de Grenoble (2002).

[4] C. Sadfi, B. Penz, C. Rapine, Single machine scheduling problem with
availability constraints, Research Report, Laboratoire GILCO (2001).

14

[5] C. Sadfi, B. Penz, C. Rapine, J. B lażewicz, P. Formanowicz, An im-
proved approximation algorithm for the single machine total completion
time scheduling problem with availability constraints, European Journal
of Operational Research 161 (2005), 3–10.

[6] E. Sanlaville, G. Schmidt, Machine scheduling with availability con-
straints, Acta Informatica 9 (1998), 795–811.

[7] G. Schmidt, Scheduling with limited machine availability, European
Journal of Operational Research 121(1) (2000), 1–15.

15

