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Abstract— We propose a procedure to determine the validity range of any empirical model of the open-ended coaxial probe 

transition that is used to measure the permittivity of materials. The procedure is illustrated by an application of the method to a 

standard coaxial cable probe, a permittivity range of interest in the food industry and, as an empirical model, the well-known “lumped 

capacitor model”. 
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I. INTRODUCTION 

The long history of the open-ended probe technique for 

the dielectric characterization of materials is reviewed in 

[1], [2], [4], [5], [6]. The method is widely used because it 

is simple to implement. It suffices to cut a wave-guide 

perpendicular to its axis, place the open end flush against 

the substance to be characterized and measure the 

admittance of the waveguide - material transition. The 

determination of the permittivity from this measurement is 

more delicate. The admittance, Y(f ,ε), is a relatively 

complicated function of: the frequency f, the permittivity ε 

of the substance under investigation and the physical 

characteristics of the probe. However, at “low” frequencies 

the transition behaves like two simple capacitors in parallel 

and it has become customary to approximate the function 

Y(f, ε) by the “lumped capacitor model”: Y(f, ε) = j2πf(C1 + 

C2ε), where C1, C2 are assumed to represent respectively the 

“line capacity” and the capacity of the transition “without 

the sample”. A common procedure is to assume that this 

model is valid for frequencies less than a few GHz, that C1 

and C2 do not depend upon ε or f, and determine the 

constants C1, C2 by measuring the admittances of 

substances with known permittivities and then use the 

calibrated probe to measure substances with unknown ε. 
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Surprisingly, the question of the validity of the model 

does not seem to have been systematically explored from 

the theoretical point of view. It is recognised that for a 

given probe this model is certainly not valid for “high” 

frequencies, but precisely what does “high” mean ? Is it 20 

GHz, 10 GHz, 5 GHz, 1 GHz or 100 MHz ? The supposed 

precision of the values of ε’ and ε” cannot be seriously 

estimated without information about the precision of the 

model itself to represent the admittance function. The 

object of this article is to propose a procedure to determine, 

for a given probe and admittance model, frequency and 

permittivity ranges for which the model is valid to specified 

precision. As an example, we shall consider the case of the 

“lumped capacitor” model. 

If we write ε = ε’ - jε’’ and Y(f,ε) = j2πf(C1 + εC2), then 

Re(Y) = 2πfC2ε’’ and Im(Y) = 2πf(C1 + C2ε’). For a fixed f 

and for fixed values of C1 and C2 the model induces a 

reticular parameterisation of the complex Y plane as a 

function of ε’ and ε’’, i.e. the contours for fixed ε’ and 

variable ε” are parallel horizontal straight lines and the 

contours for fixed ε” and variable ε’ are parallel vertical 

stright lines. (See Fig. 1). Conversely, it follows that if the 

true contours of ε’ and ε” in the Y plane do not form a 

reticulation, then the simple capacitor model is certainly not 

valid for the given frequency and permittivity range. 

The general idea of our method is to compare the 

contours induced in the complex admittance plane by the 

model with the ideal contours obtained by an exact 

calculation and then determine frequency and permittivity 

intervals for which the two reticulations differ by less than 

a specified amount (say 1%). 

II. ANALYTIC EXPRESSIONS  

In certain idealised cases it is possible to calculate an 

exact analytical expression for Y(f,ε) and so compute the 

corresponding contour grid. These cases are: a circular 

waveguide with an infinite ground-plane [5], [6], [7], a 

rectangular waveguide with an infinite ground-plane [10], 

[11], [12] and a coaxial waveguide with an infinite ground-

plane [8], [9], [4], [13], [15], [19].  

We consider a perfectly conducting coaxial waveguide of 

internal radius a, external radius b, filled with a dielectric of 

permittivity εd and possessing an infinite ground plane 

placed flush against a semi-infinite substance of 

permittivity ε and permeability μ = 1. The expression for 

the admittance is: 

0,0 0,. ( / ) 1
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Y f I Iνε
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∞

=

⎛ ⎞= + Λ⎜ ⎟
⎝ ⎠∑ , (1) 

where the sequence {Λn : n = 1, 2,…} is the solution of the 

infinite system of linear equations: 
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The coefficients Am,n of this system are given by 
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where: the sequence { kn : n = 1, 2, 3,… } are the 
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and r2 = ρ1
2 + ρ2

2 -ρ1ρ2cos(φ) 

The functions Rn(ρ) in the integrals (4) are defined by 

1
0 ( / )

( )
ln b a

R
ρ

ρ =  (5) 

( )0 1 0 1 0

2 2
0 0

( ) ( ) ( ) ( ) ( )

2 ( ( ) ( ))
( ) n n n n n n

n n

k J bk J k N ak N k J ak
n

J ak J bk
R

π ρ ρ
ρ

−

−
=  (6) 

for n = 1, 2, … 

Thus, in order to calculate the admittance we must solve 

an infinite system of linear equations to determine the 

coefficients {Λn}. The infinite system (2) has to be 

truncated to a finite system. How many terms should be 

taken ? Various suggestions have been made, zero terms 

([16], [17], [18]), three terms [19], six terms [20], twelve 

terms [21]. In reports from the National Physical 

Laboratory ([22], [23], [24]) comparative tests between 

various methods of calculation were made and the authors 

concluded that to have a satisfactory value of Y(f,ε) one 

must use up to 50 terms! The number of terms that must be 

used depends upon many factors (probe characteristics, 

frequency and permittivity) and one cannot assign a fixed 

universal constant number. The computer programme 

should be arranged so as to increase this number 

automatically until the resulting calculated admittance has a 

predetermined tolerance. 

The coefficients in the system of linear equations must be 

calculated very precisely. Errors in the values of Am,n, 

together with an inappropriate truncation can lead to very 

inaccurate values for Λn and hence for Y(f,ε). The accurate 

numerical evaluation of the integrals Im,n posed a certain 

number of technical problems for a long time [8], [22], 

[24]. The triple integrals Im,n have lines of singularities in 

the integrands for ρ1 = ρ2 and ϕ = 0 or 2π and routine 

quadrature methods either gave incorrect results or 

consumed an inordinate amount of computer time.  

One can transform the integrals (4) using Hankel 

transforms (see the Appendix for a sketch of the proofs and 

[6] for the details) into a more manageable form. It is 

convenient to introduce the following normalised variables: 

β = b/a,    Ω = 2πfa√εd/c,    q = (ε/εd)½ (7) 

In terms of these variables, the integrals Im,n are: 
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where m ≥ 1 and n ≥ 1 and Fn(ξ) = J0(βξ)J0(kn) - 

J0(ξ)J0(βkn). 

The integrands have removable singularities at ξ = 0, λn 

and λm respectively (If ε is real, there is an an integrable 

singularity at ξ = Ωq.). We write each of the infinite 

integrals as the sum of an intergral over the range [0, X] 

plus an integral over the range [X, ∞], where X is ''large'', 

say,  X  = max{100, 2|Ωq|, 2λm, 2λn}. The integrals over the 

range [0, X] contain the removable singularities, which now 

present no particular problems for the numerical 

integration. One must simply take care to correctly evaluate 

the integrands in the neighbourhood of the singular points. 

The integrals can be very quickly calculated to double 
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precision by using a Gauss-Legendre or a Gauss-Kronrod 

Quadrature method [26], chapter 4. 

For the integrals over the range [X,  ∞] the problem lies 

in the oscillatory nature of the integrands and the fact that 

they do not tend to zero very quickly. The basic idea is to 

replace the Bessel functions which occur in the integrands 

by asymptotic expansions with specific estimates for the 

error term. Watson [27], chapter 7, gives the following 

result: 

For x > 0: 

)()sin()()(cos()( 44
2

0 xQxxPxxJ nnx
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where for any n ≥ 1 
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The sequence {Cr} is given for r = 0, 1, 2, 3,… by: 

C0 = 1, C1 = 12/(1!82),      Cr+1 = Cr(2r+1)2/8(r+1) 

and  

22
22
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(14) 

Using the above expansion the three types of integrals 

can be written as linear combinations of integrals of the 

kind 

∫
∞

1

)sin( dtrt
Xt    and    ∫

∞

1

)cos( dtrt
Xt  (15) 

with an explicit error term. The integrals (15) can be 

quickly and accurately evaluated to double precision using 

a standard continued fraction algorithm, [26] chapter 6. The 

explicit nature of the error term (14) guarentees the 

precision of the calculated values of the intergrals. 

We have implemented the above ideas in a PC program 

(Fortran +  Visual Basic user interface). The program and 

its source code are freely available from the authors, 

together with the mathematical details of the algorithms that 

are used. 

III.  A SPECIFIC EXAMPLE 

As an illustration of the procedure we consider the 

common 3.6 mm rigid coaxial line excited in the TEM 

mode. The relevant physical parameters of the line are: a= 

0.45925 mm, b = 1.4925 mm, εd = 2.15. A permittivity 

range 5 ≤ ε’ ≤ 100, 5 ≤ ε” ≤ 100 was used, since we are 

interested in humidity control testing. We calculated 

nomograms for Y(f, ε) at 100, 1000 2000 and 5000 MHz. 

They are shown in Figs. 1, 2, 3, and 4.  The admittances 

were calculated with a precision of ±0.001. This involved 

trucating the infinite linear system (2) at up to 60 terms for 

some of the calculations. The horizontal lines correspond to 

constant values of ε’. The bottom line is ε’ = 5, the top line 

is ε’ = 100, the increment is 5 units. The vertical lines 

correspond to constant values of ε”. The far left line is ε” = 

5, the far right line is ε” = 100, the increment is 5 units. 

The departure from a square grid pattern is beginning to be 

visible at 2 GHz and it is manifest at 5 GHz. 

For any frequency f less than 1 GHz we have a square 

grid characterized by C1(f) and C2(f). To see whether C1 and 

C2 vary with frequency we calculated the grids for f = 0.1, 

0.2, …, 1.0 GHz. The results are shown in Table I. We note 

that C2 is practically constant and that C1 varies by a factor 
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of 3 over the frequency range 0.1 to 1.0 GHz 

The variation of C1 can be very closely represented by a 

quadratic function of f: C1(f) = a1 + a24π2f2, where a1 = 

0.60102 and a2 = -0.010670, with a correlation coefficient 

of 0.999. Thus, even in conditions where the simple lumped 

capacitor model can be fitted to the exact admittance grid, 

the coefficients C1 and C2 vary with frequency. We note 

that several authors ([29], [30], [31]) in the course of 

careful experimental measurements have remarked that the 

parameters they found for the capacitor model varied with 

frequency and that this variation seemed to be quadratic. 

Thus, the variations which our theoretical calculations have 

revealed are perfectly detectable and should be taken into 

account. This means that instead of using the model Y(f,ε) 

= j2πf(C1 + C2ε), where C1 and C2 do not depend upon f, 

one should use: 

Y(f, ε) = j2πf(A1 + A2f2 +A3ε), (16) 

or Re(Y) = -2πfA3ε”     Im(Y) = 2πf(A1 + A2(2πf)2 + A3ε’), (17) 

where the constants A1, A2 and A3 do not depend upon ν. 

The Ai can be determined by the calibration procedure 

discussed below. 

One way of estimating the validity range of the model is to 

compute the percentage differences between the results of 

the exact calculation and the values of the admittance given 

by the model. Fig. 5 is such a representation for f = 1 GHz. 

The open squares correspond to those pairs (ε’,ε”) for 

which the difference is less than 1% and the solid squares 

to the pairs where the difference is greater than 1%. If we 

use the interpolation for C1 and C2 given above, then the 

same precision holds for the same permittivity values over 

the frequency range 0 to 1 GHz. Thus, for permittivities 

(ε’,ε”) within the area defined by the solid line in Fig. 5 

and for frequencies between 0 and 1 GHz the admittance 

model (16) can be calibrated so as to represent the 

theoretical admittance model with a difference of less than 

1%. 

IV. PROBE CALIBRATION 

Why use the lumped capacity model at all? The exact 

calculation of the impedance will correspond to the 

measured impedance of a “real” probe if the hypotheses and 

numerical values assumed in the calculation correspond to 

the “real” probe. One could, in principle, use precalculated 

grids, such as Fig. 4, to read directly the permittivity from 

the measured admittance at any given frequency. 

Unfortunately real probes do not have infinite ground-

planes, they are not perfect conductors, their linear 

dimensions are known with a relative error, perfect 

cylindricity and axiality are true up to a point, the central 

conductor is not exactly flush with the ground-plane etc. 

Variations in the calculated admittace due to an uncertainty 

in the physical charaaacteristics of the probe (such as the 

internal and external radii, r and R, the permittivity of the 

coaxial cable filling etc.) are best estimated statistically by 

taking sequences of random values of the parameters r, R, 

εd within realistic error intervals and hen calculating the 

probbility distribution of the resulting values of the 

admittance. In precisely controlled laboratory conditions it 

is possible to use the exact calculations to determine 
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absolute values of permittivity, but even so, the effect of the 

finite ground-plane is observed at certain resonant 

frequencies when measuring pure water [31]. Our concern 

is primarily with quality control in the food industry where 

the field conditions are far from being perfect and it is 

preferable to calibrate a given probe in terms of a specific 

empirical admittance model.  

The admittance will usually be measured with a vector 

network analyser (VNA). The defects in the cables up to 

the connection with the coaxial probe will be taken into 

account by the manufactuers calibration kit and the 

measured admittance will be relative to this connection 

plane. However, what is required is the admittance at the 

probe/material interface at the end of the probe. There are 

three possibilities: 

- a. If the probe is rigid, relatively short in length and in 

pristine condition, then one can suppose that there 

are no defects and the admittance at the 

probe/material interface can be calculated from the 

measured value at the VNA/probe connection using 

the electrical length of the probe to determine the 

phase change in the admittance at the end of the 

probe. 

- b. Certain VNA’s have a built-in time domain gating 

procedure that determines the admittance at the 

probe/material interface. The technique is attractive, 

but poses a certain number of subtle problems which 

are not easy to resolve [34], [35]. 

- c. If the time domain gating method is not available or 

the probe cannot be considered perfect, then it is usual 

to model the defects along the line with a two port 

transfer matrix. The transfer matrix combined with the 

lumped capacity model yields: Y(f,ε) = j2πf(D1 + 

εD2), where D1 and D2 are complex numbers which 

depend upon f.  

In order to calibrate the probe we must work in frequency 

and permittivity ranges for which the lumped capacity 

model differs by say 1% from the theoretical calculation 

and use reference media with permittivities within the valid 

range to determine either the coefficients a1, a2, a3 or the 

coefficients D1(f) and D2(f). 

If we are in cases (a) or (b) then a1, a2, a3 can be 

determined uniquely from the imaginary part of the 

admittance and a knowledge of ε’ of the reference media. 

This observation is important because the number of 

references substances is rather limited and for calibration 

purposes one should cover the desired permittivity range. It 

is easy to prepare water-alcohol solutions or saline 

solutions that have ε’ at any given value in the range 10 to 

80 by an appropriate mixture. Precise permittivity data for 

these solutions over a wide temperature range are readily 

available ([36], [37], [38], [39], [40]).  

 

V CONCLUSION 

The open-ended coaxial probe is frequently used to 

chrcterise the dielectric properties of maaterials via 

admittance measurements. The deduction of the permittiviy 

of the material from the admittance data is made by 

assuming that the admittance of the probe/materiaal 
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interface is described by some simple empirical model. 

Such models are not universally valid. We propose a 

method to determine the frequence range an permittivity 

intervals for which a given model has at most a specified 

deviation from an exact theoretical calculation of the 

interface admittance. As an illustration of the general 

method we apply it to the commly used open-ended coaxial 

probe and the "lumped capacity" model. 

APPENDIX 

The transformation of the integrals (4) to the integrals (10) 

is not new, but we have not found an easily accessible self-

contained exposition and the derivation is not obvious 

without some guidelines. We refer to a standard treatise for 

specific theorems and explicitly indicate the more routine 

mathematical operations. 

 

Lemma 1 If z ∈ C, b ≥ 0 and if either Re(z) > 0 and b ≥ 0 or 

Re(z) = 0 and b ≠ Im(z) then 

5.022
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Proof See [27], page 384 and page 405. 
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We now apply Neumann's addition theorem [27] , Chapter 

11: "If R2 = ρ1
2 + ρ2

2 -ρ1ρ2cos(φ) then, 

( )∑
∞

=

−=
0

21,00 )cos()()(2)(
n

nnn nJJRJ ϕλρλρδλ " 

Substitute the above expression for J0(Rλ) in the final 
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π
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otherwise we obtain the stated result. 
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Lemma 5 If λ ≠ λn then the following indefinite integrals 

hold: 
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Proof The above indefinite integrals are special cases of a 

general formula for Cylinder functions, [27], Chapter 5, 

equation (8). The formula in question is: 
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From [26], page 82, we have, for all Cylinder functions, the 
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integral: 
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(1), take z = ρ, k = λ, l = λn, Cμ = J1, Cμ  = J1. 

To obtain (2) take z = ρ, k = λ, l = λn, Cμ = J1, Cμ  = N1. 
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Proof 
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We now have to evaluate the integral:  

{ }∫ −
b

a nnnn dNaJaNJJ 2210021212 )()()()()( ρρλλλρλλρρ . 

It is equal to: 

∫ ∫−
b

a nn

b

annn dNJaJdJJaN 22121202212120 )()()()()()( ρρλρλρλρρλλρρλ  

The integrals: 
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∫
b

a n dJJ 221212 )()( ρρλλρρ  and ∫
b

a n dNJ 221212 )()( ρρλλρρ  

have been evaluated in Lemma 5. If we substitute the 

expressions we find that the integral is equal to: 
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λ
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−
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n λλλλλλ
λλ

λ
−

−
−  

The term in the second bracket is equal to zero because the 

quantities λn are defined so that J0(λnb).N0(λna) = 

N0(λnb).J0(λna). We now use the relation: J1(z)N0(z) – 

J0(z)N1(z) = 2/πz, taking in turn z = λnb and z = λna , to 

eliminate N1(λnb) and N1(λna) from the first and third 

brackets. After a simple algebraic manipulation we arrive at 

the following expression for the integral: 

{ })()()()(.
)(

2
000022

0

aJbJbJaJ
bJ nn

nnn

λλλλ
λλ

λ
λπλ

−
−

 

Substituting this expression in the integral we obtain the 

stated result. 

 

Lemma 7 If m > 0, n > 0, Re(κ) > 0, R2 = ρ1
2+ρ2

2 -

ρ1ρ2cos(φ) then  
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Proof By Lemma 3 we have: 
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In the proof of Lemma 6 we showed that: 

22
m

m
b

a m0m
1m

)(F.
)b(J

2d)(J)(R
λλ
λλ

λπλ
ρλρρρ

−
=∫  

Replacing the integrals with respect to ρ1 and ρ2 by the 

corresponding expressions gives the stated result. 
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TABLE AND FIGURE CAPTIONS 

 

TABLE I VARIATION OF C1 AND C2 WITH FREQUENCY FOR A 3.6 COAXIAL PROBE FOR THE PERMITTIVITY RANGE  5 ≤ ε’ ≤ 100 AND 5 

≤ ε’’ ≤ 100 

 

FIG. 1  PARAMETRIZATION OF THE COMPLEX ADMITTANCE PLANE AT 100MHZ.  

FIG. 2 PARAMETRIZATION OF THE COMPLEX ADMITTANCE PLANE AT 1000MHZ. 

FIG.3 PARAMETRIZATION OF THE COMPLEX ADMITTANCE PLANE AT 2000MHZ. 

FIG. 4 PARAMETRIZATION OF THE COMPLEX ADMITTANCE PLANE AT 5000MHZ 

FIG. 5 SCATTER DIAGRAM (ε' IS ABSCIISSA, ε" IS ORDINATE) FOR THE VALIDITY OF THE LUMPED CAPACITY MODEL AT 1 GHZ. (OPEN SQUARES CORRESPOND TO 

PAIRS (ε’,ε’’) FOR WHICH THE MODEL ERROR IS < 1%) 
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ONE TABLE  

 

 

 

GHz C1 pF C2 pF 

0.1 0.597943 0.899251 

0.2 0.586221 0.899513 

0.3 0.562271 0.899963 

0.4 0.535866 0.900591 

0.5 0.498545 0.901392 

0.6 0.453240 0.990236 

0.7 0.400015 0.903505 

0.8 0.338888 0.904828 

0.9 0.270034 0.906322 

1.0 0.184453 0.909966 

TABLE I VARIATION OF C1 AND C2 WITH FREQUENCY FOR A 3.6 COAXIAL PROBE FOR THE PERMITTIVITY RANGE  5 ≤ ε’ ≤ 100 AND 5 ≤ ε’’ ≤ 100 
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FIVE FIGURES, ONE PER PAGE 

 

 

FIG. 1  PARAMETRIZATION OF THE COMPLEX ADMITTANCE PLANE AT 100MHZ.  
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FIG. 2 PARAMETRIZATION OF THE COMPLEX ADMITTANCE PLANE AT 1000MHZ. 
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FIG.3 PARAMETRIZATION OF THE COMPLEX ADMITTANCE PLANE AT 2000MHZ. 
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FIG. 4 PARAMETRIZATION OF THE COMPLEX ADMITTANCE PLANE AT 5000MHZ 
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FIG. 5 SCATTER DIAGRAM (ε' IS ABSCIISSA, ε" IS ORDINATE) FOR THE VALIDITY OF THE LUMPED CAPACITY MODEL AT 1 GHZ. (OPEN SQUARES CORRESPOND TO 

PAIRS (ε’,ε’’) FOR WHICH THE MODEL ERROR IS < 1%) 

 


