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On the Capacity Achieving Covariance Matrix for Rician MIMO
Channels: An Asymptotic Approach

J. Dumont, W. Hachem, S. Lasaulce, Ph. Loubaton and J. Najim
9 juillet 2010

Abstract

In this contribution, the capacity-achieving input coeage matrices for coherent block-
fading correlated MIMO Rician channels are determined.dntast with the Rayleigh and
uncorrelated Rician cases, no closed-form expressionsh®rigenvectors of the optimum
input covariance matrix are available. Classically, bdta eigenvectors and eigenvalues are
computed by numerical techniques. As the correspondinigh@zttion algorithms are not very
attractive, an approximation of the average mutual infdgiomas evaluated in this paper in the
asymptotic regime where the number of transmit and receitenaas converge t¢oo at the
same rate. New results related to the accuracy of the camelgpg large system approximation
are provided. An attractive optimization algorithm of tlaigproximation is proposed and we
establish that it yields an effective way to compute the cdpachieving covariance matrix
for the average mutual information. Finally, numerical slation results show that, even for a
moderate number of transmit and receive antennas, the newagh provides the same results
as direct maximization approaches of the average mutuainrdtion, while being much more

computationally attractive.
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|. INTRODUCTION

Since the seminal work of Telatar [39], the advantage of idemsg multiple antennas at the
transmitter and the receiver in terms of capacity, for Gamsand fast Rayleigh fading single-
user channels, is well understood. In that paper, the figlimaesit chosen for characterizing
the performance of a coherdhtommunication over a fading Multiple Input Multiple Output
(MIMO) channel is the Ergodic Mutual Information (EMI). Thichoice will be justified in
section[1I-¢. Assuming the knowledge of the channel siafisit the transmitter, one important
issue is then to maximize the EMI with respect to the chammalti distribution. Without loss of
optimality, the search for the optimal input distributioancbe restricted to circularly Gaussian
inputs. The problem then amounts to finding the optimum daxmae matrix.

This optimization problem has been addressed extensivetiri@ case of certain Rayleigh
channels. In the context of the so-called Kronecker motleas$ been shown by various authors
(see e.g. [15] for a review) that the eigenvectors of thenagitinput covariance matrix must
coincide with the eigenvectors of the transmit correlatioatrix. It is therefore sufficient to
evaluate the eigenvalues of the optimal matrix, a problenchvban be solved by using standard
optimization algorithms. Note that [40] extended this feso more general (non Kronecker)
Rayleigh channels.

Rician channels have been comparatively less studied fnsypbint of view. Let us mention
the work [19] devoted to the case of uncorrelated Rician nhkywhere the authors proved that
the eigenvectors of the optimal input covariance matrixtheeright-singular vectors of the line
of sight component of the channel. As in the Rayleigh caseettjenvalues can then be evaluated
by standard routines. The case of correlated Rician chansieindoubtedly more complicated
because the eigenvectors of the optimum matrix have no dlfigen expressions. Moreover,
the exact expression of the EMI being complicated (see 23j),[both the eigenvalues and the
eigenvectors have to be evaluated numerically. In [42] redydnterior-point method is proposed
and implemented to directly evaluate the EMI as an expectaiihe corresponding algorithms
are however not very attractive because they rely on cortipotly-intensive Monte-Carlo
simulations.

In this paper, we address the optimization of the input dewae of Rician channels with a
two-sided (Kronecker) correlation. As the exact exprassibthe EMI is very complicated, we
propose to evaluate an approximation of the EMI, valid whenrtumber of transmit and receive

antennas converge tpoo at the same rate, and then to optimize this asymptotic appedion.

1. Instantaneous channel state information is assumecde aeteiver but not necessarily at the transmitter.



This will turn out to be a simpler problem. The results of thregent contribution have been

presented in part in the short conference paper [12].

The asymptotic approximation of the mutual information basn obtained by various authors
in the case of MIMO Rayleigh channels, and has shown to bee geliable even for a
moderate number of antennas. The general case of a Riciaslated channel has recently
been established in [17] using large random matrix theody@mpletes a number of previous
works among which [9], [41] and [30] (Rayleigh channels), #d [31] (Rician uncorrelated
channels), [10] (Rician receive correlated channel) a7 (Rician correlated channels). Notice
that the latest work (together with [30] and [31]) relies be powerful but non-rigorous replica
method. It also gives an expression for the variance of théuahunformation. We finally
mention the recent paper [38] in which the authors generalizr approach sketched in [12]
to the MIMO Rician channel with interference. The optimiaatalgorithm of the large system

approximant of the EMI proposed in [38] is however differémtm our proposal.

In this paper, we rely on the results of [17] in which a closen asymptotic approximation
for the mutual information is provided, and present new ltssioncerning its accuracy. We then
address the optimization of the large system approximation. the input covariance matrix
and propose a simple iterative maximization algorithm \Wwhict some sense, can be seen as
a generalization to the Rician case of [44] devoted to theldigly context : Each iteration
will be devoted to solve a system of two nonlinear equatiasvell as a standard waterfilling
problem. Among the convergence results that we provide {ancbntrast with [44]) : We
prove that the algorithm converges towards the optimumtimowariance matrix as long as
it converges. We also prove that the matrix which optimizes large system approximation
asymptotically achieves the capacity. This result has goitant practical range as it asserts
that the optimization algorithm yields a procedure thahgsiptically achieves th&gue capacity.

Finally, simulation results confirm the relevance of our raagh.

The paper is organized as follows. Sectfdn Il is devoted & hesentation of the channel
model and the underlying assumptions. The asymptotic appetion of the ergodic mutual
information is given in sectiorf |il. In sectiop JV, the striconcavity of the asymptotic
approximation as a function of the covariance matrix of thput signal is established; it
is also proved that the resulting optimal argument asynugalyy achieves the true capacity.
The maximization problem of the EMI approximation is stutii@ section[V. Validations,

interpretations and numerical results are provided iniceft]]



Il. PROBLEM STATEMENT
A. General Notations

In this paper, the notations x, M stand for scalars, vectors and matrices, respectively. As
usual, ||x|| represents the Euclidian norm of vectorand || M|| stands for the spectral norm
of matrix M. The superscripté.)” and(.)! represent respectively the transpose and transpose
conjugate. The trace dM is denoted byIr(M). The mathematical expectation operator is
denoted byE(-) and the symbol$t and & denote respectively the real and imaginary parts
of a given complex number. I is a possibly complex-valued random variab\éyr(z) =
E|z|? — [E(x)|* represents the variance of

All along this papery andt stand for the number of transmit and receive antennas. iGerta
quantities will be studied in the asymptotic regime— oo, r — oo in such a way that
; — ¢ € (0,+00). In order to simplify the notationg,— +oco should be understood from now
on ast — oo, 1 — o0 and; — ¢ € (0,+00). A matrix M; whose size depends anis said
to be uniformly bounded ifup, |M,| < +oc.

Several variables used throughout this paper depend ocougaparameters, e.g. the number
of antennas, the noise level, the covariance matrix of thesmitter, etc. In order to simplify

the notations, we may not always mention all these depeteienc

B. Channel model

We consider a wireless MIMO link withtransmit and- receive antennas. In our analysis, the
channel matrix can possibly vary from symbol vector (or sptime codeword) to symbol vector.
The channel matrix is assumed to be perfectly known at theivecwhereas the transmitter

has only access to the statistics of the channel. The retesigaal can be written as
y () = H(T)x(7) + 2(7) 1)

wherex(7) is thet x 1 vector of transmitted symbols at time H(7) is ther x ¢ channel
matrix (stationary and ergodic process) afa) is a complex white Gaussian noise distributed
as N(0,0°I,). For the sake of simplicity, we omit the time indexfrom our notations. The
channel input is subject to a power constralit/E(xx'’)] < ¢. Matrix H has the following
structure :

K 1

H= A+ v, 2
K+1 K+1 @

where matrixA is deterministic,V is a random matrix and constaht > 0 is the so-called

Rician factor which expresses the relative strength of tinectiand scattered components of



the received signal. MatriA satisfies%Tr(AAH) = 1 while V is given by
1 1 ~ 1
V=—C:2WC:= , 3
7 3)

whereW = (W;;) is ar x t matrix whose entries are independent and identically idistd
(i.i.d.) complex circular Gaussian random variab®%¥(0, 1), i.e. W;; = RW;; +i3W;; where
RW;; and3W;; are independent centered real Gaussian random variatitesaviance;. The
matricesC > 0 and C > 0 account for the transmit and receive antenna correlatitectsf
respectively and satis@fl“r(é) = 1andiTr(C) = 1. This correlation structure is often referred
to as a separable or Kronecker correlation model.

Remark 1:Note that no extra assumption related to the rank of the whiniétic component
A of the channel is done. Generally, it is often assumed Aditas rank one ([15], [27], [18],
[26], etc..) because of the relatively small path loss eenbrof the direct path. Although the
rank-one assumption is often relevant, it becomes quedilenif one wants to address, for
instance, a multi-user setup and determine the sum-cgpafcé cooperative multiple access
or broadcast channel in the high cooperation regime. Censa example a macro-diversity
situation in the downlink : Several base stations intereated] through ideal wireline channels
cooperate to maximize the performance of a given multirardereceiver. Here the matrix
is likely to have a rank higher than one or even to be of fullkrarAssume that the receive

array of antennas is linear and uniform. Then a typical stnecfor A is

1
A = %[a(al),...,a(ﬁt)]A y (4)
wherea(f) = (1,¢?,...,e~DNT and A is a diagonal matrix whose entries represent the

complex amplitudes of the line of sight (LOS) components.

C. Maximum ergodic mutual information

We denote byC the cone of nonnegative Hermitianx ¢ matrices and by, the subset of
all matricesQ of € for which %Tr(Q) = 1. Let Q be an element o€; and denote by (Q)

the ergodic mutual information (EMI) defined by :

[(Q) = Eg [log det (L + %HQHHH . )

Maximizing the EMI with respect to the input covariance mat® = E(xx’) leads to the
channel Shannon capacity féast fading MIMO channels i.e. when the channel vary from

symbol to symbol. This capacity is achieved by averaging ebannel variations over time.

2. For example in a cellular system the base stations areectethwith one another via a radio network controller.



We will denote byC'r the maximum value of the EMI over the sét :

Cp = sup I1(Q). (6)

Qce,

The optimal input covariance matrix thus coincides withdngument of the above maximization
problem. Note thatf : Q — I(Q) is a strictly concave function on the convex €gt which
guarantees the existence of a unique maxin@nisee [28]). WherC = I,, C = I,., [19] shows
that the eigenvectors of the optimal input covariance matdincide with the right-singular
vectors of A. By adapting the proof of [19], one can easily check that thisult also holds
whenC = I, andC andA A’ share a common eigenvector basis. Apart from these two simpl
cases, it seems difficult to find a closed-form expressionttier eigenvectors of the optimal
covariance matrix. Therefore the evaluation @f; requires the use of numerical techniques
(see e.g. [42]) which are very demanding since they rely anmdationally-intensive Monte-
Carlo simulations. This problem can be circumvented as thié EQ) can be approximated
by a simple expression denoted byQ) (see sectiof lJl) ag — oo which in turn will be
optimized with respect t® (see sectiof V).

Remark 2:Finding the optimum covariance matrix is useful in practiceparticular if the
channel input is assumed to be Gaussian. In fact, thereragisy practical space-time encoders
that produce near-Gaussian outputs (these outputs areassagputs for the linear precoder
Q1/2). See for instance [34].

D. Summary of the main results.

The main contributions of this paper can be summarized danfol:

1) We derive an accurate approximation/gf) ast — +oo : I(Q) ~ I(Q) where

1(Q) = log det | L + G(5(Q,3(Q)Q| +i(3(Q). 3(Q)) (7)

where(Q) and S(Q) are two positive terms defined as the solutions of a system of 2
equations (see Eq[ (33)). The functioBsandi depend on(6(Q),4(Q)), K, A, C, C,

and on the noise varianee. They are given in closed form.

The derivation of/(Q) is based on the observation that the eigenvalue distribuifo
random matrixHQH” becomes close to a deterministic distributiontas +oo. This

in particular implies that if(\;)1<;<, represent the eigenvalues HIQH#, then :

1 1 1 — \;
Zlogdet |I, + —HQH :—§:1 1+ 2
;. logde { + o2 Q ] r og< + 0,2>



has the same behaviour as a deterministic term, which twite ®e equal tof(r&). Taking
the mathematical expectation w.r.t. the distribution @& tthannel, and multiplying by
gives7(Q) ~ I(Q).

The error term/ (Q) — I(Q) is shown to be of orde®(1). As I(Q) is known to increase
linearly with ¢, the relative error%({)@) is of orderO(%). This supports the fact that
I1(Q) is an accurate approximation 6fQ), and that it is relevant to study(Q) in order
to obtain some insight of(Q).

2) We prove that the functio® — I(Q) is strictly concave or;. As a consequence,
the maximum ofI over G, is reached for a unique matriQ,. We also show that
I1(Q,) — I(Q.) = O(1/t) where we recall thaQ, is the capacity achieving covariance
matrix. Otherwise stated, the computatiorQf (see below) allows one to (asymptotically)
achieve the capacity(Q.).

3) We study the structure @), and establish tha®, is solution of the standard waterfilling

problem :

max log det (I + G(6s, S*)Q> )

Qec,

whered, = 6(Q,), 4, = 6(Q,) and

- —1

. 5, ~ 1 K 5

G(0,,0,) = ——C+—=—— A" |1, *_C A .
(34, 0) K+1 +ﬂkﬂ4 ( +K+1 )

This result provides insights on the structure of the apipmeiing capacity achieving
covariance matrix, but cannot be used to eval@tesince the parameteds andd, depend
on the optimum matrixQ,. We therefore propose an attractive iterative maximiratio
algorithm of I(Q) where each iteration consists in solving a standard wadiegfiproblem

and a2 x 2 system characterizing the parametgfs)).

IIl. ASYMPTOTIC BEHAVIOR OF THE ERGODIC MUTUAL INFORMATION

In this section, the input covariance matfx e C; is fixed and the purpose is to evaluate the
asymptotic behaviour of the ergodic mutual informatii@) ast — oo (recall thatt — +oo
meanst — oo, r — oo andt/r — ¢ € (0,400)).

As we shall see, it is possible to evaluate in closed form aurate approximatiod(Q) of
I(Q). The corresponding result is partly based on the resultd of flevoted to the study of

the asymptotic behaviour of the eigenvalue distributiormattrix ©37 whereX is given by

>=B+Y, (8)



matrix B being a deterministie x ¢ matrix, andY being ar x t zero mean (possibly complex
circular Gaussian) random matrix with independent entsiesse variance is given y|Y;;|? =
UTZJ Notice in particular that the variablgd;;; 1 < i < r, 1 < j < t) are not necessarily
identically distributed. We shall refer to the triangularay (afj; 1<i<r, 1<j<t)asthe
variance profile o2 ; we shall say that it is separableoifj = dicij whered; > 0for1 <i<r
and dj > 0 for 1 < j < t. Due to the unitary invariance of the EMI of Gaussian chasnel
the study of7(Q) will turn out to be equivalent to the study of the EMI of modf) (n the

complex circular Gaussian case with a separable variaraféepr

A. Study of the EMI of the equivalent modg! (8).

We first introduce the resolvent and the Stieltjes transfagsociated witlSX? (Section
-A.T) ; we then introduce auxiliary quantities (SectifiitA.2) and their main properties ; we
finally introduce the approximation of the EMI in this cas@¢8on[IlI-A.3).

1) The resolvent, the Stielties transforrenote byS(c?) and S(¢?) the resolvents of
matricesE X and =73 defined by :

S(0?) = 257 402, ", S§(0?) = [Es 4020, . 9)

These resolvents satisfy the obvious, but useful property :

S <X g < (10)

= o2 ~ o2
Recall that the Stieltjes transform of a nonnegative megsis defined by[ %. The quantity

s(0?) = 1Tr(S(s?)) coincides with the Stieltjes transform of the eigenvalustriiution of

o

matrix XX/ evaluated at point = —o2. In fact, denote by(\i)1<i<, its eigenvalues , then :

I~ 1 v(d\)
2 = — = _—
S(U)_r;)\i—lﬂﬂ /R+)\+02’
wherev represents the eigenvalue distribution3®*’ defined as the probability distribution :

1 T
I/:—g O
[ .

whered,. represents the Dirac distribution at pointThe Stieltjes transform(o?) is important

as the characterization of the asymptotic behaviour of thenealue distribution o2 is
equivalent to the study of(0?) whent — +oo for eacho?. This observation is the starting
point of the approaches developed by Pastur [29], Girko, [B&] and Silverstein [1], etc.

We finally recall that a positive x p matrix-valued measurg is a function defined on the

Borel subsets oR onto the set of all complex-valuedx p matrices satisfying :



(i) For each Borel seB, u(B) is a Hermitian nonnegative definite< p matrix with complex
entries;

(i) 1(0)=0;

(ii) For each countable familyB,,),cn Of disjoint Borel subsets oR,

H(Uan) = Z“’(Bn) :

Note that for any nonnegative Hermitianx p matrix M, thenTr(My) is a (scalar) positive
measure. The matrix-valued measyras said to be finite if Tr(u(R)) < +oc.

2) The auxiliary quantities3, 3, T and T: We gather in this section many results of [17]
that will be of help in the sequel.

Assumption 1:Let (B;) be a family of r x t deterministic matrices such that :
supy; Y5y |Bijl|* < 400, supy; >oi_y |Bijl* < +o0 .

Theorem 1:Recall thaty = B + Y and assume tha¥ — %Dixﬁé, whereD andD
represent the diagonal matricé = diagd;, 1 < i < r) andD = diagd;, 1 < j < t)
respectively, and wherX is a matrix whose entries are i.i.d. complex centered wittianae
one. The following facts hold true :

(i) (Existence and uniqueness of auxiliary quantjtiEsr o2 fixed, consider the system of

equations :

8= %Tr D (H(Ir +DJ) + B, + 1~)5)—1BH)71

1 (11)

3= %Tr D (&(It +DB) + B, + DB)’1B>

Then, the systen] (1) admits a unique couple of positivetisoisi(5(o?), (o2)). Denote

by T(0?) andT(c?) the following matrix-valued functions :

T(?) = [0%(X+ 3e*)D) + BA+ (o)D) 'BY] )
T(o?) = |02+ B(o3)D) + B (1 +f(o?)D)"'B|
Matrices T(c2) and T'(¢2) satisfy
T(0?%) < % T(0?) < % . (13)

(i) (Representation of the auxiliary quantitjeShere exist two uniquely defined positive

matrix-valued measurgs and i such thatu(R*) =1I,,, u(R*) = I, and

2\ _ p(dN) T2\ / a(dN)
T(U)_/R+A+a2’ T(o™) = R+ A 02 (14)
The solutions3(c2) and 5(02) of system [(@L) are given by :

B(0?) = %TrDT(aQ) N %Trf)'i‘(aQ) , (15)
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and can thus be written as

dA = iy (dA
sy = [ BB ey [ ) a6)

wherey, and i, are nonnegative scalar measures defined by

1 . 1 -
m(dA) = ST(Du(d)) and fi(dA) = S Tr(Da(dN).
(iii) (Asymptotic approximatignAssume that Assumptiol] 1 holds and that
sup |D|| < dax < +00  and sup ||D|| < diax < +00 .
t t

For every deterministic matricesl and M satisfyingsup, | M| < +oco andsup, [|M|| <

+00, the following limits hold true almost surely :

i 1y o°) —T(o =
{11mH+MT (S(e?) = T(e*)M] = 0 an

limy— 400 11T [(9(02) — T(O’z))M} =0

Denote byu and i the (scalar) probability measurgs= 1Trp and i = 1Tri, by (A;)
(resp.(S\j)) the eigenvalues cEX” (resp. of£' ). The following limits hold true almost

surely :

{ limy sy 2 320 6(N) — [iF 60N p(dd) = (18)

lime 00 L3701 0N) — JF® BN Aldy) = 0

for continuous bounded functiorsand ¢ defined onR™.

The proof of(i) is provided in Appendif] | (note that in [17], the existencelamiqueness
of solutions to the systenj ({L1) is proved in a certain clasanaflytic functions depending on
o2 but this does not imply the existence of a unique solu(i@n@’) wheno? is fixed). The rest
of the statements of Theorefh 1 have been established ingbd]their proof is omitted here.

Remark 3:As shown in [17], the results in Theorefd 1 do not require anyssm@mn
assumption foi. Remark that[(37) implies in some sense that the entrig(@?) andS(c?)
have the same behaviour as the entries of the deterministidga@sT (o) and T(c%) (which
can be evaluated by solving the systdn] (11)). In particuking (1) forM = I, it follows that
the Stieltjes transforns(o2) of the eigenvalue distribution £ behaves likel TrT (02),
which is itself the Stieltjes transform of measure= %Tm. The convergence statemeft](18)
which states that the eigenvalue distribution3®£” (resp.X %) has the same behavior as

(resp.fx) directly follows from this observation.
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3) The asymptotic approximation of the EMPenote byJ(0?) = Elog det (I, + o 2E%H)

the EMI associated with matri¥. First notice that

H r i
5 >:Zlog<1+?>,
i=1

where the);’s stand for the eigenvalues Bf>*. Applying [3) to functionp(\) = log(A+0?)

log det <I +

(plus some extra work sincg is not bounded), we obtain :

) 1 EEH “+oo 5
lim (—logdet |I+—— | — log(A+07) du(N) ) =0 . (19)
r g 0

t——+o0

Using the well known relation :

H 400
1log det <I + 222 ) = / (l - lTr(EEH —|—wI)_1) dw
T o o2 w T
teo /11
= — — -TrS(w) | dw, (20)
o2 w r
together with the fact tha$(w) ~ T'(w) (which follows from Theorenfi]1), it is proved in [17]
that :
H 400
lim [l log det (I + EZ; ) —/ <l — 1Ter(w)) dw] =0 (22)
t—+oo | T o o2 w T
almost surely. Define by (c?) the quantity :
_ teo /11
J(o?) = 7“/ <— - —TrT(w)) dw . (22)
o2 w T

Then,.J(c?) can be expressed more explicitely as :

J(02) = log det [Ir +B(c*)D + — B(It + B(c*)D)~ 1BH}
+ log det [It + B0 } — 2B(0?)B(0?), (23)
or equivalently as
J(0?) = log det [It + B(c?)D + %BH(IT + B(UQ)D)lB}
+ log det [Ir + B(UQ)D} — 2B(02)E(?) . (24)

Taking the expectation with respect to the chan®l in ([3), the EMI J(0?) =
Elogdet (I, + o~2XX*) can be approximated by(o?) :

J(o?) = J(c%) + o(t) (25)

ast — +oo. This result is fully proved in [17] and is of potential ingst since the numerical
evaluation ofJ(c?) only requires to solve the x 2 system [(Z1) while the calculation df(o?)
either rely on Monte-Carlo simulations or on the implemé&ataof rather complicated explicit

formulas (see for instance [22]).
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In order to evaluate the precision of the asymptotic appnation./, we shall improve[(25)
and get the speed(c?) = J(02?) +O(t~1) in the next theorem. This result completes those in
[17] and on the contrary of the rest of Theor¢n 1 heavily seb@ the Gaussian structure of
3. We first introduce very mild extra assumptions :

Assumption 2:Let (B;) be a family ofr x ¢ deterministic matrices such that

sup || B|| < bmax < +00 .
t

Assumption 3:Let D and D be respectively: x  andt x ¢ diagonal matrices such that
sup |D|| < diax < +00  and sup ||D|| < diax < +00 .
t t
Assume moreover that

irtlf %TrD >0 and irtlf%Trf) >0.

Theorem 2:Recall thats = B+Y and assume that = %Dixf)é, whereD = diag(d;)
andD = diag(d;) arer x r andt x ¢ diagonal matrices and whed¢ is a matrix whose entries
are i.i.d. complex circular Gaussian variab@¥ (0, 1). Assume moreover that Assumptiofls 2
and[B hold true. Then, for every deterministic matriddsand M satisfyingsup, | M|| < +oc

andsup, M| < +oo, the following facts hold true :
Var lTr [S(O’z)M] =0 L and Var lTr [S(O‘Q)M} =0 L (26)
T 12 t 12

whereVar(.) stands for the variance. Moreover,

1Tr [(E(S(6?)) — T(c?))M] = O (%) -
Ly [(E(S(UQ)) ~TE))M| = 0(L)
and
J(02) = J(62) + O <%> . (28)

The proof is given in Appendik]il. We provide here some comtsen
Remark 4: The proof of Theorenf] 2 takes full advantage of the Gaussiatsre of matrix
3 and relies on two simple ingredients :

() An integration by parts formula that provides an expi@sgor the expectation of certain
functionals of Gaussian vectors, already well-known andelyi used in Random Matrix
Theory [25], [32].

(i) Aninequality known as Poincaré-Nash inequality thatibds the variance of functionals
of Gaussian vectors. Although well known, its applicatienrandom matrices is fairly

recent ([6], [33], see also [16]).
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Remark 5: Equations[(26) also hold in the non Gaussian case and candisigised by using
the so-called REFORM (Resolvent FORmula Martingale) mettindroduced by Girko ([13]).

Equations|[(37) and (8) are specific to the complex Gaussiaatsre of the channel matrix
3. In particular, in the non Gaussian case, or in the real Gangsise, one would get(o?) =
J(a?) + O(1). These two facts are in accordance with :

(i) The work of [2] in which a weaker resulb(1) instead ofO(¢~1)) is proved in the simpler

case wherdB = 0;
(i) The predictions of the replica method in [30] (resp. JBib the case wher® = 0 (resp.
in the case wher® =1, andD = I,);

Remark 6 (Standard deviation and bia€jg. (26) implies that the standard deviation of
1Tr [(S(0?) — T(0?))M] and L1 Tr [(S(o2) - T(oz))lf/[} are of orderO(t ') terms. However,
their mathematical expectations (which correspond to ths)ltonverge much faster towardls
as (2F) shows (the order @(t2)).

Remark 7:By adapting the techniques developed in the course of thef moTheorem[],
one may establish that?ES(c?)v — u’T(c%)v = O (1) , whereu andv are uniformly
boundedr-dimensional vectors.

Remark 8:Both J(0?) and.J(¢?) increase linearly witht. Equation [(28) thus implies that the
relative error%‘f)w)

the observed fact that approximations of the EMI remainabdi even for small numbers of

is of orderO(t~2). This remarkable convergence rate strongly supports

antennas (see also the numerical results in seftion VIe Matt similar observations have been

done in other contexts where random matrices are used, geBk.[30].

B. Introduction of the virtual channeE[Qi

The purpose of this section is to establish a link betweesithelified model[[B) = = B+Y
whereY = %Dixfﬁ, X being a matrix with i.i.d2N (0, 1) entries,D andD being diagonal

matrices, and the Rician modd] (2) under investigatioH := |/ 57 A + \/%HV where
V = %C%WC%. As we shall see, the key point is the unitary invariance & BMI of

Gaussian channels together with a well-chosen eingenfeidiemvector decomposition.

We introduce the virtual channHQé which can be written as :
1 K 1 1 1 »» 1 ~ 1 1
HQ: = /——AQ> + ——C>—0(Q>CQ2)> , 29
Q K+1 Q K+1 t (Q*CQ2) (29)

where® is the deterministic unitary x ¢ matrix defined by

©=0C:Q:(Q:CQ:) > . (30)
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The virtual channeIHQé has thus a structure similar t#I, where (A,C,C,W) are

respectively replaced withAQ%, C, Q%CQ% ,W0O).

‘ i i it - C Q:CQs .
Consider now the eigenvalue/eigenvector decomp05|t|<bm\sxatbr|ces\/KJrl and e

€ _upu?  and LEY _gpor (31)

K+1 K+1
MatricesU and U are the eigenvectors matrices whileand D are the eigenvalues diagonal

matrices. It is then clear that the ergodic mutual inforovatdf channelHQé coincides with
the EMI of ¥ = UYHQ'/2U. Matrix ¥ can be written a& = B + Y where

K 1~ 1 1 ~ 1 . ~
B=,/——U”AQ:U and Y=-—=D:XD: with X=U'Weu. (32
K+1 Vi

As matrix W has i.i.d.CN(0,1) entries, so has matriX = UYW®OU due to the unitary
invariance. Note that the entries &f are independent sind® and D are diagonal. We sum
up the previous discussion in the following proposition.

Proposition 1: Let W be ar x ¢ matrix whose individual entries are i.i.8.N (0, 1) random
variables. The two ergodic mutual informations

HQHY )
2

(2

) b3) Nl
I(Q) =Elogdet [ I+ and  J(o%) =Elogdet { I+ —
o

are equal provided that chanr#l is given by :
K 1
A A\'%
K1t VK +1
with V = -C>WC: ; channelX by ¥ = B+ Y with Y = 2:D>XD> and that [3p),[31)
and (32) hold true.

H-=

C. Study of the EMI(Q).
We now apply the previous results to the study of the EMI ofrctedH. We first state the
corresponding result.
Theorem 3:For Q € C1, consider the system of equations
i = f(54,Q)
0 = f6,0,Q)
where f(5,6,Q) and (8,0, Q) are given by :

; (33)

7(6.5.Q) = %Tr{C{az (1 + == C)

K Aqt (1 0 lél_llAH*1 34
+K—+1 Q2<t+K—+1Q2 Q2> Q: } }7 (34)
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K+1
- —1
K 1 H 5 1 -1
QA (IH—K—HC) AQz} } (35)

Then the system of equations}33) has a unique strictly ipessblution (6(Q), 5(Q)).
Furthermore, assume thatip, || Q|| < +oo, sup; [|[A| < +oo, sup; ||C| < +oo, and
sup, ||C|| < +oco. Assume also thainf; A\pin(C) > 0 where A, (C) represents the smallest

eigenvalue ofC. Then, ast — +oo,

1(Q) = T(Q)+0 <3> (36)

~ -1
1(Q) = log det (m 29 qioqt+ L K qiar (IT ) C) AQ;)

+ log det

K+1

N

Ir+@0>— " 5Q)é@). @7)

or equivalently by

K+1 o2 K+1 K+1

+ log det <It + &Qlﬂé(fﬂ) —

5 -1
(@) = log det (Iﬁ@miimé (1 29 qear) Q%AH>

to?

7T 10@0Q). (38

K+1
Proof: We rely on the virtual channel introduced in Sectfon [jl-Bdaon the eigenva-
lue/eigenvector decomposition performed there.

Matrices B, D, D as introduced in Propositioﬂ 1 are clearly uniformly bouhdehile
inf, \TrD = inf, 1TrC = 1 due to the model specifications andf; 1TrQ:CQz >
inf; Amin(C)2TrQ > 0 as 1TrQ = 1. Therefore, matrice8, D and D clearly satisfy the
assumptions of Theorenfip 1 afjd 2.

We first apply the results of Theorefh 1 to matlix and use the same notations as in the
statement of Theoreff 1. Using the unitary invariance ofréeetof a matrix, it is straightforward

to check that :

~ r - —1
f6,0,Q 1 ) 5 -6 \T'ow
L3 nlo (o (1ep ) em(en ) ) |

_ - -1 -1
f((Sa >Q) _ l B 2 M J H 0
= = 7fTr D(O’ (I—i—D K+1>+B (I+D\/K—+1> B) ]

]
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Therefore, (,) is solution of [3B) if and only if( 2=, —=2—) is solution of [IL). As the

6,0) to (@3) exists, is unique

g

system [[@1) admits a unique solution, gk ), the solution

—~

and is related to{ﬁ,ﬁ) by the relations :

5
K+1°

5 _
B = , B=

K+1 (39)

In order to justify [3F) and[(38), we note thdto?) coincides with the EMI/(Q). Moreover,
the unitary invariance of the determinant of a matrix togethith (39) imply that/(Q) defined
by @B7) and [(38) coincide with the approximationgiven by (28) and[(34). This provef |36)
as well. |

In the following, we denote b{l'xc(¢%) and Tk (02) the following matrix-valued functions :

5 1 1~ 1 1 -1
Tor) = [P0 R0+ daQins ghaicah teiar]
~ 1~ 1 1 s 1 -1
Ti(?) = [20+£5Q:0Q%) + £ QAT 1+ £2:0)'AQ}]
They are related to matricéE and T defined by [@R) by the relations :
; (41)

Tk(0?) = UT(c?)UH
Tg(0?) = UT(c?)UH

and their entries represent deterministic approximatiafs (HQH" + ¢%I,)"! and
(Q:HPHQ: + ¢2I,)! (in the sense of Theorefi) 1).

As ITiTx = ITYyT and iTrTx = 1TrT, the quantities! TrTx and 1 TrTy are the
Stieltjes transforms of probability measurgsand /i introduced in Theorenf] 1. As matrices
HQH” and =%/ (resp.Q:H”HQ: and =7 %) have the same eigenvaluef](18) implies
that the eigenvalue distribution BIQHY (resp.Q:H”HQ:3) behaves likeu (resp.f).

We finally mention that(c2) and(c?) are given by

6(02):%TrCTK(02) and 5(02):%TrQ§CQ1/2TK(02), (42)

and that the following representations hold true :

5(0,2) :/R Md(d)‘) and 5(0,2) _ /R+ ﬂd(d)‘) 7 (43)

s A+o02

where 114 and ji; are positive measures dR™ satisfying uq(R*) = %TrC and jig(R*) =

ITrQl/2CQY/2.
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IV. STRICT CONCAVITY OF I(Q) AND APPROXIMATION OF THE CAPACITY I(Q.)
A. Strict concavity of (Q)

The strict concavity of (Q) is an important issue for optimization purposes (see Seffjo
The main result of the section is the following :
Theorem 4:The functionQ  I(Q) is strictly concave or€;.

As we shall see, the concavity dfcan be established quite easily by relying on the concavity

of the EMI I(Q) = Elogdet (I + H%{H). The strict concavity is more demanding and its
proof is mainly postponed to Appendjx]Iil.

Recall that we denote by, the set of nonnegative Hermitiarx ¢ matrices whose normalized
trace is equal to one (i.et"'TrQ = 1). In the sequel, we shall rely on the following
straightforward but useful result :

Proposition 2: Let f : ¢; — R be a real function. Theyf is strictly concave if and only if

for every matricedQ;, Q2 (Q1 # Q2) of €4, the functiong(\) defined on|0, 1] by

d(A) = f(AQ1+ (1 -X1)Q2)

is strictly concave.

1) Concavity of the EMI:We first recall that/ (Q) = E log det (I + HQHH) is concave on

€1, and provide a proof for the sake of completeness. Denot@ by A\Q; + (1 — A\)Q2 and
let () = I(AQ; + (1 — \)Qy). Following Propositior{]2, it is sufficient to prove thatis
concave. Adog det (I + HQHH) = log det (I + HHIJIQ), we have :

o2 o

H
»(A) = Elogdet <I+HQH > )

o2

o2

H —1 yrlg

#(\) = ETr <I+ H UI;IQ> 1 H(Q1 - Q2),
-1

<I+ HHHQ> HYH

02 o2

¢"(\) = —ETr

H -1 1xH
(Ql—Q2)<I+HUI;IQ> H'H

(Q1 — Qz)] :

o2

o? o

H -1 H . . .
In order to conclude that”()\) < 0, we notice that(I +H HQ) H"H coincides with

HQHY\ ' H
HH<I+ Q2 ) —

g (o2

(use the well-known inequalitfl + UV)~'U = U(I+ VU)~! for U=H” andV = HQ )

0-2

We denote byM the non negative matrix

HQHY\ 'H
M:HH<I+ Q )

o2 o2
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and remark that

¢"(\) = —ETr [ M(Q1 — Q2)M(Q:1 — Q)] (44)
or equivalently that
(b”()‘) — _ETy Ml/Q(Ql - QQ)Ml/QMl/Q(Ql o QQ)Ml/Q

As matrix M'/2(Q; — Q2)M'/? is Hermitian, this of course implies that’(\) < 0. The
concavity of¢ and of I are established.
2) Using an auxiliary channel to establish concavity/¢Q)): Denote by the Kronecker

product of matrices. We introduce the following matrices :
A=I,®C, A=L,8C, A=I,®A, Q:Im®Q'

Matrix A is of sizerm x rm, matricesA andQ are of sizetm x tm, andA is of sizerm x tm.

Let us now introduce :

- 1 1w~ 1 . K . 1 .
V=——A>2WA: and H= A+ VvV,
vmt K+1 VK +1

whereW is arm x tm matrix whose entries are i.i.@N (0, 1)-distributed random variables.

Denote by7,,(Q) the EMI associated with channk :

I,,(Q) = Elog det <I + HQ?H> .

g

Applying Theorem[B to the channdll, we conclude thatl,,(Q) admits an asymptotic
approximationI,,(Q) defined by the system (34)-{35) and formu(a](37), where onié wi

substitute the quantities related to chanHeby those related to channHl, i.e. :
temt, romr, AsA QoQ Cos A CoA.

Due to the block-diagonal nature of matricas Q, A and A, the system associated with
channeH is exactly the same as the one associated with ch&f@in&loreover, a straightforward

computation yields :
1 . _
- — > 1.
mIm(Q) 1(Q), Vm>1

It remains to apply the convergence res[il (36) to conclbdé t

lim —1,,(Q) = 1(Q) .

m—oo M

SinceQ — I,,(Q) = I,(I,, ® Q) is concave,l is concave as a pointwise limit of concave

functions.
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3) Uniform strict concavity of the EMI of the auxiliary chagln Strict concavity off (Q):
In order to establish the strict concavity 6{Q), we shall rely on the following lemma :

Lemma 1:Let ¢ : [0,1] — R be a real function such that there exists a fanfiby, ),>1 of
real functions satisfying :

() The functionsg,, are twice differentiable and there exists< 0 such that
Vm >1, VAe€|0,1], "N <k<O0. (45)

(i) For every\ € [0,1], (V) — d(N).
Then ¢ is a strictly concave real function.

Proof of Lemm4[]J1 is postponed to Appen(lif IlI.

Let Q1, Q2 in Cp; denote byQ = A\Q; + (1 = AN)Q2, Q1 = I, ® Q1, Q2 = [;, ® Qq,
Q = I,, ® Q. Let H be the matrix associated with the auxiliary channel and tiehyp :
HQHH>

5 .

g

1
dm(A) = —Elogdet <I +
m

We have already proved that,, ()\) — ey 2 I(AQ1 + (1 — \)Qzy). In order to fulfill
assumptions of Lemmf 1, it is sufficient to prove that thenstex < 0 such that for every
A €10,1],

limsup ¢/, (\) <k <0 . (46)

m—r00

(£8) is proved in the Appendik]Il.

B. Approximation of the capacity(Q.)

Sincel is strictly concave over the compact €kt it admits a unique argmax we shall denote
by Q,, i.e.:
I(Q.) = max I(Q) .

Qe

As we shall see in Sectidn] V, matr@@, can be obtained by a rather simple algorithm. Provided
that sup, [|Q,|| is bounded, Eq.[(36) in Theorefh 3 yieldsQ,) — 1(Q,) — 0 ast — oo. It
remains to check that(Q.) — I(Q,) goes asymptotically to zero to be able to approximate
the capacity. This is the purpose of the next proposition.

Proposition 3: Assume thasup, ||A|| < oo, sup, ||C|| < oo, sup; ||C|| < oo, inf; Apin(C) >
0, andinf; Apin(C) > 0. Let Q, and Q. be the maximizers ove®; of I andI respectively.
Then the following facts hold true :

(i) sup, [|Q.ll < oc.

(i) sup, [|Q.] < oo.
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(i) 1(Q.) =1(Q.) +O(t™).
Proof: The proof of items (i) and (ii) is postponed to Appenli} VI.tles prove (iii). As

(1(Q) - 1(Q.) + (I(Q,)—1(Q.))
>0 >0
= (1(Q.) - 1(Q.)) +  (IQ.)-1Q.) (47)
=0(t™) =0(t™)
by (i) and Th.[B Eq.[(36) by (i) and Th.[B Eq.[(36)

where the two terms of the lefthand side are nonnegativealtieetfact thaQ, andQ, are the

maximizers ofl and I respectively. As a direct consequence[of (47), we H@@.) - 1(Q,) =
O(t~') and the proof is completed. [ |

V. OPTIMIZATION OF THE INPUT COVARIANCE MATRIX

In the previous section, we have proved that ma@ix asymptotically achieves the capacity.
The purpose of this section is to propose an efficient way okimizing the asymptotic
approximation/(Q) without using complicated numerical optimization algmits. In fact, we

will show that our problem boils down to simple waterfillinggarithms.

A. Properties of the maximum &fQ).

In this section, we shall establish some@f’s properties. We first introduce a few notations.
Let V(k, kR, Q) be the function defined by :

K 1~ 1 K 1 I;J -1 1
V(k, 7, Q) =logdet [I;, + —— Q:CQ:z + ——— QzA" (I, C| AQ:
(K, R, Q) Oge(t+K+1Q Q +02(K+1)Q < TR ) Q)
3 to’kk
or equivalently by
V(i Q) = logdet [T, + ——C+ —L_AQ} (1, + ——Qi€Q} 71Q1AH
ot = OB I T T T S(K 1 1) "TK+1
K ~ tolki
logdet (I, + ——Q'/2CQY? ) — . (49
+log e<t+K+1Q Q Kr1 @9

Note that if (5(Q),6(Q)) is the solution of systen] (83), then :

I(Q) =V (§(Q),4(Q).Q) .
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Denote by(d,,d,) the solution(5(Q,),5(Q,)) of (B3) associated witlQ,. The aim of the

section is to prove tha®, is the solution of the following standard waterfilling prebt :

I(Q*) = gleaé{l V(6*>S*a Q) .

Denote byG(k, <) thet x ¢ matrix given by :

K = K P -1
G(k, i) = C AT (1, Cc|] A. 50
(% 8) = 757C* 1 ( TR ) (50)
Then,V(k, &, Q) also writes
- - r to2kk
V(k,k,Q) = logdet (I+ QG(k,R)) + log det <Ir + e IC> KTl (51)

which readily implies the differentiability ofx, x, Q) — V(k,k,Q) and the strict concavity
of Q — V(k,k,Q) (x and & being frozen).

In the sequel, we will denote by F'(z) the derivative of the differentiable functioA' at
point z (z taking its values in some finite-dimensional space) andWwy'(x),y) the value of
this derivative at poiny. Sometimes, a function is not differentiable but still aténdiirectional

derivatives: The directional derivative of a functiof' at = in directiony is

F ty) — F
[0 t

when the limit exists. Of course, i is differentiable atz, then F'(z;y) = (VF(z),y). The
following proposition captures the main features needetthénsequel.

Proposition 4: Let F': ¢; — R be a concave function. Then :

(i) The directional derivative?”’ (Q; P — Q) exists in(—oo, o] for all Q,P in C;.

(i) (necessary conditignif I attains its maximum foQ, € Gy, then :

vQe€, F'(Q;Q-Q,)<0. (52)
(iii) (sufficient conditioh Assume that there exis®, € €; such that :

vQee, F(Q;Q-Q,) <0 (53)

Then I admits its maximum a@, (i.e. Q, is an argmax ofF’ over ;).

If F is differentiable then both condition {52) ard](53) write :

Although this is standard material (see for instance [4,p@#122]), we provide some elements

of proof for the reader’s convenience.
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1>

Proof: Let us first prove item (i). AQ +t(P — Q) = (1 —t)Q + tP € Cy, A(?)
t 1 (F(Q+t(P—-Q)) — F(Q)) is well-defined. Let) < s < ¢ < 1 and consider

A(t) — A(s) = %{iF((l—t)QthP)th—TSF(Q)—F((l—S)Q+sP)}7
« %{F<S(1—t)?+tP+t;sQ>_F((I_S)Q+3P)},
_ é{F((l—s)Q#—sP)—F((l—s)Q+sP)} - 0,

where (a) follows from the concavity ofF. This shows thatA(¢) increases as | 0, and in
particular always admits a limit if—oo, oo].

Item (i) readily follows from the fact thaf’((1 — +)Q, + tP) < F(Q,) due to the mere
definition of Q,. This implies thatA(¢) < 0 which in turn yields [5R).

We now prove (iii). The concavity of’ yields :

As limy o A(t) < 0 by (B3), one gets YP € €, F(P) — F(Q,) < 0. Otherwise statedf’

(P) — F(Q.)-

attains its maximum a®, and Propositiorf]4 is proved. [ |
In the following proposition, we gather various propertietated tol.
Proposition 5: Consider the functions(Q),4(Q) and I(Q) from €; to R. The following
properties hold true :
(i) Functionss(Q),4s(Q) andI(Q) are differentiable (and in particular continuous) o@gr
(i) Recall thatQ, is the argmax off overCy, i.e.¥Q € €1, I(Q) < I(Q,) . LetQ € C;.
The following property :

VP e €, (VIQ),P-Q)<0

holds true if and only ifQ = Q,.

(i) Denote by d, andé, the quantities’(Q,) and §(Q,). Matrix Q, is the solution of
the standard waterfilling problem : Maximize ov& € C; the functionV((S*,S*,Q) or
equivalently the functiofiog det(I + QG (4, 4,)).

Proof: (i) is established in the Appendix. Let us establish (ii)c®ethatI(Q) is strictly
concave by Theoreif] 4 (and therefore its maximum is attaiteat most one point). On the
other hand,/(Q) is continuous by (i) ovef; which is compact. Therefore, the maximum of
I(Q) is uniquely attained at a poil@,. Item (i) follows then from Propositiofi 4.

Proof of item (iii) is based on the following identity, to beoped below :

(VI@Q.),Q-Q.) = (VaV (5-,4.Q.).Q-Q.) . (54)
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where Vq denote the derivative of/(x, <, Q) with respect toV’s third component, i.e.
VqQV(k, &, Q) = VI'(Q) with T' : Q — V(k, %, Q). Assume that[(84) holds true. Then item
(ii) implies that (Ve V/ (5*,5*,6*) ,Q—Q,) <0foreveryQ € €. As Q — V(d,,0,,Q)

is strictly concave or€;, Q, is the argmax oﬁ/(é*,S*, -) by Propositio}4 and we are done.

It remains to prove[(34). Consid€ and P in ¢;, and use the identity

(VI(P),Q —P) = (VqV(3(P),6(P),P),Q — P))

(P),P) (Vi(P),Q — P)

+
N
Q|
&
"
=
=
qul

+ (52 ) 0)5m).P) (viP).Q-P)

We now compute the partial derivatives Bfand obtain :

ov 2 ~
ov t0'2 9 (55)
% - _K—I—I(K_f(li’g’Q))

wheref and f are defined by[(34) and (85). The first relation follows frdr)(and the second
relation from [4D). As(6(Q),4(Q)) is the solution of systenf (B3), equatiofis] (55) imply that :

ov

2L 6Q).5(Q).Q) = -

= 570(Q),0(Q),Q) = 0. (56)

Letting P = Q, and taking into accounf (p6) yields :

(VI(Q.). Q- Q.) = (VQV(0(Q.),4(Q.),Q.).Q - Q.) ,

and (iii) is established. |
Remark 9: The quantitiess, andd, depend on matri@Q,. Therefore, Propositiof] 5 does not
provide by itself any optimization algorithm. However, ivgs valuable insights on the structure
of Q*. Consider first the cas€ = I andC = 1. Then,G((S*,S*) is a linear combination of
I and matrix A A. The eigenvectors o, thus coincide with the right singular vectors of
matrix A, a result consistent with the work [19] devoted to the mazation of the EMI/(Q).
If C = I andC # I, G(4,,4,) can be interpreted as a linear combination of matri€es
and A? A. Therefore, if the transmit antennas are correlated, thengectors of the optimum
matrix Q, coincide with the eigenvectors of some weighted sunCofind A A.. This result
provides a simple explanation of the impact of correlateshdmit antennas on the structure
of the optimal input covariance matrix. The impact of caatetl receive antennas @, is

however less intuitive because maté’ A has to be replaced with " (I + §,C) ' A.
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B. The optimization algorithm.

We are now in position to introduce our maximization alduritof 7. It is mainly motivated
by the simple observation that for each fixéed %), the maximization w.r.tQ of function
V(k, k%, Q) defined by [Bll) can be achieved by a standard waterfilling galoxe, which, of
course, does not need the use of numerical techniques. Oatliee hand, forQ fixed, the
equations[(33) have unique solutions that, in practice,mobtained using a standard fixed-
point algorithm. Our algorithm thus consists in adaptingapaetersQ and g, separately by
the following iterative scheme :

— Initialization : Qo =1, (41, 51) are defined as the unique solutions of systfrh (33) in which
Q = Qo = L. Then, defineQ, are the maximum of functio®@ — V(d1,4;,Q) on Cy,
which is obtained through a standard waterfilling procedure

— lterationk : assumeQy,_1, (6,_1,0,_1) available. Then(d;, d;,) is defined as the unique
solution of [3B) in whichQ = Qj_;. Then, defineQ, are the maximum of function
Q — V(0 6, Q) on ;.

One can notice that this algorithm is the generalizationhaf procedure used by [44] for

optimizing the input covariance matrix for correlated Ragh MIMO channels.

We now study the convergence properties of this algorithmd, state a result which implies

that, if the algorithm converges, then it converges to thiguaargmaxQ,, of I.
Proposition 6: Assume that the two sequend@s)x>o and(Sk)kZO verify

lim 6 — 61 — 0, lm & —0p_1 — 0 (57)

k—+o00 k——+o00

Then, the sequend®;.),>o converges toward the maximu@, of I on €;.
The proof is given in the appendix.

Remark 10:If the algorithm is convergent, i.e. if sequen(@;),>o converges towards a
matrix P, Proposition{Jp implies thaP, = Q,. In fact, functionsQ — 4(Q) andQ — 4(Q)
are continuous by Propositi¢h 5. As = §(Q_1) andd; = 6(Qy_1), the convergence diQ;,)
thus implies the convergence 6f,) and (0;), and [5F) is fulfilled. Propositiofi] 6 immediately
yields P, = Q,. Although we have not been able to prove the convergenceeoélgorithm,
the above result is encouraging, and tends to indicate twitim is reliable. In particular, all
the numerical experiments we have conducted indicategdhbatlgorithm converges towards a

certain matrix which must coincide by Propositign 6 .



25

VI. NUMERICAL EXPERIMENTS.
A. When is the number of antennas large enough to reach thamstic regime ?

All our analysis is based on the approximation of the ergadigtual information. This
approximation consists in assuming the channel matrix tdabge. Here we provide typical
simulation results showing that the asymptotic regime &hed for relatively small number of
antennas. For the simulations provided here we assume :

-Q=1.

— The chosen line-of-sight (LOS) componetis based on equatiofi (4). The angle of arrivals

are chosen randomly according to a uniform distribution.

— Antenna correlation is assumed to decrease exponentdhythe inter-antenna distance

ie. éij ~ p‘Ti_j‘, Cij ~ p‘é_j‘ with 0 < pr <1 and0 < pi < 1.

— K is equal tol.

Figure[]1 represents the EMI(Q) evaluated by Monte Carlo simulations and its approximation
I(Q) as well as their relative difference (in percentage). Hére,correlation coefficients are
equal to(pr, pr) = (0.8,0.3) and three different pairs of numbers of antenna are coresder
(t,r) € {(2,2),(4,4),(8,8)}. Figure[lL shows that the approximation is reliable evenrfes
t = 2 in a wide range of SNR.

B. Comparison with the Vu-Paulraj method.

In this paragraph, we compare our algorithm with the methoesgnted in [42] based
on the maximization off(Q). We recall that Vu-Paulraj's algorithm is based on a Newton
method and a barrier interior point method. Moreover, therage mutual informations and
their first and second derivatives are evaluated by MontésGamulations. In fig[]3, we have
evaluatedCr = maxqee, [(Q) versus the SNR for = ¢ = 4. Matrix H coincides with
the example considered in [42]. The solid line correspormdshe results provided by the
Vu-Paulraj’'s algorithm; the number of trials used to evéduthe mutual informations and
its first and second derivatives is equal 30.000, and the maximum number of iterations
of the algorithm in [42] is fixed to 10. The dashed line cormsps to the results provided
by our algorithm : Each point represeni$Q,) at the corresponding SNR, wheR®, is
the argmax ofl ; the average mutual information at poi@@, is evaluted by Monte-Carlo
simulation (30.000 trials are used). The number of iteratits also limited to 10. Figurf] 3
shows that our asymptotic approach provides the same sabalh the Vu-Paulraj's algorithm.

However, our algorithm is computationally much more effiti@as the above table shows.
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20 T
—— Montecarlo Simulations ( 2*2)

* Deterministic Approximant ( 2*2 )
15+ | — Montecarlo Simulations ( 4*4 )

% Deterministic Approximant ( 4*4 )
—— Montecarlo Simulations ( 8*8)
<! Deterministic Approximant ( 8*8 )
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=
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g

c 3k —— Relative Error (2*2) a
g —— Relative Error (4*4)

LI:J —>— Relative Error ( 8*8)
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=

g

[0)

o4

SNR in dB

Fig. 1. The large system approximation is accurate for ¢ated Rician MIMO channels. The relative difference
between the EMI approximation and that obtained by MontdeCgimulations is less thah % for a 2 x 2 system

and less thal % for a8 x 8 system.

The table gives the average executation time (in sec.) ofitenation for both algorithms for

r=t=2,r=t=4,r=t=_8.

In fig. A, we again compare Vu-Paulraj’s algorithm and ourppsal. MatrixA is generated
according to [(4), the angles being chosen at random. Thesrtirand receive antennas
correlations are exponential with parameter< pr < 1 and0 < pr < 1 respectively.
In the experimentsy = ¢t = 4, while various values opr, pr and of the Rice factor
have been considered. As in the previous experiment, thenmax number of iterations for
both algorithms is 10, while the number of trials generatedevaluate the average mutual
informations and their derivatives is equal to 30.000. Oppraach again provides the same
results than Vu-Paulraj's algorithm, except for low SNRs f6= 1, pr = 0.5, pg = 0.8 where
our method gives better results : at these points, the Vir&agualgorithm seems not to have

converge at the 10th iteration.



n=N=2|n=N=4|n=N=8
Vu-Paulraj 0.75 8.2 138
New algorithm 1072 3.1072 7.1072
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Fig. 2. Average time per iteration in seconds
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Vu-Paulraj L
L *  New Algorithm i
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T T T
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Capacity (bps/Hz)

-5 0 5 10 15
SNR (dB)

Fig. 3. Comparison with the Vu-Paulraj algorithm |

VIl. CONCLUSIONS

In this paper, an explicit approximation for the ergodic vaitinformation for Rician MIMO
channels with transmit and receive antenna correlatiomagigled. This approximation is based
on the asymptotic Random Matrix Theory. The accuracy of fhgr@ximation has been studied
both analytically and numerically. It has been shown to ey @ecurate even for small MIMO
systems : The relative error is less thalfh for a2 x 2 MIMO channel and lesg % for an
8 x 8 MIMO channel.

The derived expression for the EMI has been exploited toveeain efficient optimization

algorithm providing the optimum covariance matrix.

APPENDIX |

PROOF OF THE EXISTENCE AND UNIQUENESS OF THE SYSTE(L]).

We consider functiong

—~

k, k) andg(k, &) defined by
_ ) e
%Tr D (H(IT + D&) + B(IL + Df@)_lBH>

(58)

1 [ - -1
ST (D <02(It +Dr) +BHE, + Dr@)*lB)
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20

—5— K=0.1,p =098, p;=0.99 A

18| o k=01, p,=0.8, p=0.5

16| —*—K=1,p =038, p=0.5

Capacity (bps/Hz)

SNR (dB)

Fig. 4. Comparison with the Vu-Paulraj algorithm II

For eachs > 0 fixed, functionk — g(k, &) is clearly strictly decreasing, converges towareo
if x — 0 and converges t0 if x — +o0o. Therefore, there exists a unique> 0 satisfying
g(k, k) = 1. As this solution depends or, it is denotedh(%) in the following. We claim that

— (i) Functionk — h(%) is strictly decreasing,

— (ii) Function — Rkh(k) is strictly increasing.
In fact, considersy > &;. It is easily checked that for each > 0, g(k,k1) > g(k,R2).
Hence, the solutiork(%;) and h(k2) of the equationg(k, %) = 1 and g(k,ke) = 1 satisfy
h(k1) > h(k2). This establishes (i). To prove (ii), we use the obviousti@hag(h(k1),<1) —
g(h(Rz2), k2) = 0. We denote by(U;);- » the matrices

I N1
U; = o (h(&;)I + £;h(R;)D) + B <m - D> B!

It is clear thatg(h(7;), &) = 1TYDU; . We expresgi(h(&1), 1) — g(h(f2), R2) as

g(h(Fr),Ra) — g(h(2), R2) = TTID(U;* ~ Uz")

and use the identity

Ul-ul=ut(u,-U) Ut (59)
Using the form of matrice$U;);—; 2, we eventually obtain that
9(h(R1), R1) — g(h(R2), Rz) = u(h(R2) — h(R1)) + v(Rzh(Rz) — Rih(R1))
wherew andv are the strictly positive terms defined by

1 - -
u= ;TrDUl’l (021 + B(I + h(ke)D) (I + h(kl)D)_lBH) Ut
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and

1
v=-TrDU;'DU, " .
t

As u(h(fig) — h(fil)) + U(ﬁgh(fig) — filh(fil)) =0, (h(fig) — h(fil)) < 0 Implles that
Roh(R2) — R1h(R1) > 0. Hence,kh(F) is a strictly increasing function as expected.
From this, it follows that functionx — g(h(k), %) is strictly decreasing. This function

converges tot+oo if & — 0 and to0 if # — +oo. Therefore, the equation
k= g(h(k), k) =1

has a unique strictly positive solutigh If 3 = h(j3), itis clear thay(j, ) = 1 andg(8, 3) = 1.
Therefore, we have shown th@t, ) is the unique solution of (11) satisfyingy> 0 andj > 0.

APPENDIX I

PROOF OFTHEOREM]

This section is organized as follows. We first recall in sufise [[I-A] some useful
mathematical tools. In subsectipn 1-B, we establ{sh (26)I-C] we prove [2]) and[(28).

We shall use the following notations.fis a random variable, the zero mean random variable
u—E(u) is denoted byi. If z = z +1iy is a complex number, the differential operat%sand
£ are defined respectively b%/(% — ia%) and 3 (a% + ia%)- Finally, if ,B,Y are given
matrices, we denote respectively §y, b, y; their columns.

A. Mathematical tools.

1) The Poincaré-Nash inequalitysee e.qg. [7], [21]). Lek = [z1,...,z/]" be a complex
Gaussian random vector whose law is givenlbix] = 0, E[xx’] = 0, and E[xx*] = E.
Let® = &(x1,...,20,71,..., 20 ) be aC' complex function polynomially bounded together

with its partial derivatives. Then the following inequslitolds true :
WMQQDSEFUM@TEVﬂ&ﬂ+EkVﬂ&ﬁHEY@M@},

whereV, & — [9B /021, ..., 0 /92n]T and V. d — [08/0z,,. .., 0D /07T
Let'Y be ther x ¢ matrix Y = --D:XD=, whereX has i.i.d.CN (0, 1) entries and consider

>
the stackedt x 1 vectorx = [Y11,...,Y.]?. In this case, Poincaré-Nash inequality writes :
r t 2 2
1 ~ 0P(Y) 0P(Y)
P(Y)) < - d;d;E || ——— —_— 60
Var (®( >>_t;; j 'aym ‘ayi’j (60)
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2) The differentiation formula for functions of Gaussiamdam vectorsWith x and® given
as above, we have the following
M
_ 0P (x
E[z,®(x)] = Y [E],, E [%} . (61)
m=1 m
This formula relies on an integration by parts, and is thderred to as the Integration by
parts formula for Gaussian vectors. It is widely used in Mathatical Physics ([14]) and has

been used in Random Matrix Theory in [25] and [32].

If x coincides with thert x 1 vectorx = [Y11,..., Y7, relation [6IL) becomes
dyd, (Y
E[Y,,®(Y)] = 21K [a _( )} . (62)
t 8qu
Replacing matrixY by matrix Y also provides
— dyd, . [0B(Y)
E[Y,,®(Y) = 21K . 63
7o (0] = e | 2] (63
3) Some useful differentiation formula3he following partial derivative?éSTiﬁ) and %
for eachp,q € {1,...,r} andl <i <r, 1 < j <t will be of use in the sequel. Straightforward
computations vyield :
as H
SR = =5, (&S
o5, (& 5), (64)
ayf: - _Sm (Sg)p

B. Proof of [2p)

We just prove that the variance &fTr(MS) is a O(¢t~2) term. For this, we note that the
random variable; Tr(MS) can be interpreted as a functidr(Y) of the entries of matrixy,

and use the Poincaré-Nash inequalfty] (60yptd). Function®(Y) is equal to

1
®(Yq::'gj£:ﬂ4¢p5ﬁq'
P,q

8D(Y)
BY”

Therefore, the partial derivative of(Y) with respect toY;; is given by
13,4 My, 55 which, by [6F), coincides with

oD(Y 1 1
(__) == ZMWsp,i(g;HS)q = —- (¢f'sms). .
oY t 4= t

As d; < diax @ndd; < dpax, it is clear that
t

) ) roi 0P(Y
< dmax@max Z ZE ‘ a}(/z] )

r

~ 0P(Y
szidjE'#

i=1 j=1

2

i=1 j=1
It is easily seen that

- 8‘1’(Y) ? 1 H 2ngHQeH
;E‘ oY, = B (¢/SMS*M7s¢])
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As S| < % andsup, |M|| < oo, £¥'SMS?M7S¢! is less thands sup, | M]|? |£,]%. Mo-
reoverE||¢,]|? coincides with||b||2+1d; 37, d;, which is itself less thab2,,, + diaxdmax &,

2
a uniformly bounded term. Thereforg,’_, E ‘agg)‘ is aO(¢~2) term. This proves that

of3).

~ 2
It can be shown similarly that=' "7, Z;ZldidjE‘agg)

1, - |00(Y)
zzzdidjE‘ 9

i=1 j=1

= O (t7?) . The conclusion

follows from Poincaré-Nash inequality {60).

C. Proof of [2]) and[(28).

As we shall see, proofs of (27) anfi [28) are demanding. We ifitatduce the following

notations : Define scalar parametexs?), a(o?), a(o?) as

2
Q
N>
I

1Tr (DS(0?))] (65)
(

and matriceR(0?), R(0?) as

-1 -1
R(0?) = {02 (1+aD) + B <I+aD) BH]
) ) . (66)
R(0?) = [02 (1 + aD) + B (I+aD)™" B}
We note that, as(c?) > 0 anda(o?) > 0, then
2 I, (2 I
0<R(0c7) < =, 0<R(07) < (67)
(o (o

It is difficult to study directly the tern} TtM(E(S) — T). In some sense, matriR can be seen
as an intermediate quantity betweB(8) andT. Thus the proof consists into two steps : 1) for
each uniformly bounded matriki, we first prove thatt TrM(E(S) — R) and 2TrM(R — T)
converge to0 ast — oo; 2) we then refine the previous result and establish in faat th
1ITrM(E(S) — R) and L1 TrM(R — T) are O(t~2) terms. This, of course, imply (7). E{_128)
eventually follows from Eq.[(27), the integral represeiotat

J(0?) = J(0?) = / Tr (E(S(w)) — T(w)) dw, (68)

2

which follows from (2p) and[(32), as well as a dominated cogeace argument that is omitted.
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1) First step : Convergence &fIrM(E(S) — R) and 2TrM(R — T) to zero: The first step
consists in showing the following Proposition.
Proposition 7: For each deterministie x r matrix M, uniformly bounded (for the spectral

norm) ast — oo, we have :

. 1
t£+moo ;Tr M(E(S)—R)]=0 (69)
. 1
tilgloo ;Tr M(R)-T)] =0 (70)

Proof: We first prove [[69). For this, we state the following usefuhirea.
Lemma 2:Let P, P; andP5 be deterministie- x ¢, ¢ x t, t x r matrices respectively, uniformly

bounded with respect to the spectral norntas oc. Consider the following functions oY.

/

®(Y) = %Tr [SP=], w(Y)= %Tr [S=P,=P,|, ¥ (Y)= %Tr [SEP, Y7 P, .

Then, the following estimates hold true :

Var(®) = O <t12> , Var(®) =0 <t12> , Var(¥')=0 <tl2> :

The proof, based on the Poincaré-Nash inequdity (60), iftean
In order to use the Integration by parts formua] (62), notieat

o?S(0%) +S(c)ZxH =1. (71)
Taking the mathematical expectation, we have for eaghe {1,...,r} :
0°E(Spy) +E [(SEE),] =5 —q) . (72)

A convenient use of the Integration by parts formula allowexpressE [(SEEH)pq] in terms

of the entries ofE(S). To see this, note that

E [(SEx7),] = ZZE(sz‘Ez‘jz—qﬂ

For eachi, E(S,:%;;3,;) can be written as

E(Spi%ij2qj) = E(Spi) BijByj + E (SpiYg5) Bij + E (SpiYijXg5) -

Using (62) with function®(Y) = S,,%,; and (6B) with®(Y) = S,;, and summing over index
1 yields :

E [(Séj)pm] = @E(Spq) - ‘ZjE [W(Sfj)pm] - dqdjE [ pqéHSb ] ‘HE[(Sb ) ] qj -

(73)
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Eqg. (26) forM = D implies thatVar(n) = O(t2), or equivalently thalE(%Q) =O0(t7?). We
now complete proof of[(§9). We take Eq.{73) as a startingtpaind write) asn = E(n)+7 =

o + 1. Therefore,
E [1(S€,) qg) = B [(S€,), Tas] +E [7(8€,), 505 -

Plugging this relation into[(T3), and solving w.fR.[(S¢;), X, j] Yields

_ 1 d,d: 1 _
E|(SE:),>, - 1) _R(S —E|[(Sb.),| B,;
[( Ej)p QJJ t1+adj ( pq)+ 1+ ad, [( ])P] qJ
- — —E |S,,£Sb,| — —E S€.), Y, .
751+ozdj [ pq&] J] 1+ozdj [77( Ej)p QJ]

Writing §; = b;+y;, and summing ovej provides the following expression H[(SZZH)M] X

E[(SznH),] = dq%Tr [f)(IJraf))*l] E(S,,)

+E [(SB(I v af))—lBH)pq

1 ~ =
] —d,E [SquTr (SBD(I +aD) 1BH)}
_ 1 - N—IvHY| o ~ S\ — 1 H
dyE | Sy Tr (SBD(I 4 aD) 'Y E |7 (SEDI+oD) 'S . (74)
p,q
The resolvent identity[(T1) thus implies that

Wp—a) = oE(Sy) + T [DL+ aD) ! E(S,

+E [(SB(I +aD)"'B") ] ~d,E [Spq%Tr (sBD(L +af))1BH)}

pq
—d,E [Spq%Tr (sBD( + aﬁ)_lYH)} _E {% (s=Da+ aﬁ)—lzﬂ)m] . (75)
In order to simplify the notations, we defing and p, by
o= %Tr (SBf)(I + af))—lBH) and p, = %Tr (SBf)(I + af))—lYH) .
Fori = 1,2, we write E(S,,p;) as
B(Supi) = BlSy) Elpi) + E (S ) -

Thus, [7b) can be written as

Sp—a) = O"E(S) +dy;Tr [DI+aD) ] E(S,,)

1

+ (E(S)B(I+aD)"'B7) -4, E(Sp) 7T (E(S)BD(1 + aD)~'B")

rq

1 . - ° o ° o
— dyE(Spq)E [;Tr (SBD(I + aD)lYH)] —d,E <5pq p1> —d,E <qu ,02)

—E[% (szﬁ(naﬁ)—lsz)pq] . (76)
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We now establish the following lemma.

Lemma 3:

1 - _
Epy — E [;Tr (SBD(I + aD)_lYH)}

= —a %Tr (E(S)BD*(I + aD) B ) ~E (i} ) . (77)

where ps is defined by
1 - -
ps=7Tx (SBDQ(I + aD)_QEH) .
Proof: We expres€(py) as

d;
E(p2) = %22:1 1tad, E(Ybej)

1 t d, r SV (78)
= 12j=1 Trad, > o1 E((Sby):Yy)
and evaluaté® ((Sb;);Y;;) using formula [(3) for®(Y) = (Sb,);. This gives
0Sik
(Sb;),Yy;) = dd E< )Bk».
( Z aY'Z] J
By (€4).
0S;
E( %) = —E(Su(bS)) —E (Su(yls)) -
oYy,
Therefore,
E (y;'Sb;) = —d;E (nb}'Sb;) — d;E (ny,Sb;) .
Writing againn = E(n) + 1 = a + 1, we get that
E(y/sb;) = -—adE (blSb;) - adiE (yisb;) 79)

~d;E (i1bl'sb; ) — 4;E (ylsb;) .

Solving this equation w.r.fE (nybj> yields

d; d; d; .
E(yHSb;) = —— % _E (blsb,) - — Y bl Sh; I _E(7yHsb;) (80
(5" Sb;) Trad, (bj'Sb;) Trod, E (77bfsb; ) - Tod (y]'sb;) (80)

or equivalently
d; i o

E (y!Sb,) = —— 2% _E (bHSb;) — _E (n¢Shb;) . 81
(v/'8y) = — e B (b)'Sb)) - L (g]'sb) (81)
Eq. (77) immediately follows from[{¥8)[(B1), and the retatif(r) p3) = E( p3). n

Plugging [7]7) into[(76) yields
d(p—q) + Ay
_E(S,,) [02 +d, (%Trf)(l +aD)! —E(py) + a%TrE(S)Bf)z(I + aﬁ)2BH>]

+ [E(S)BI+aD) 1B (82)

pq
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where A is ther x » matrix defined by
By =8 [i (SEDM+aD) 15 | +4,5 (S5 + 32)) - dB(S) % (i)

for eachp, ¢ or equivalently by

o o

A=E [7‘3 (SEf)(I + 0415)_12]{” +E <(p1 + o) s) D-E (%p%,) E(S)D .
Using the relatiomD(I 4+ aD)~' =1 — (I+aD)~!, we obtain that
a%Tr (E(S)Bf)?(l +oD)2BH )
_ 1 ~ S1pH) 1 B N 2R H
= Tt (E(S)BD(I+aD)'B JTr (E(S)BD(I+ aD) B
1 - -
= E(p) - T (E(S)BD(I+aD)_2BH) . (83)
Therefore, the term
%Trf)(l +aD)  —E(p) + a%Tr (E(S)Bf)?(l v af))_QBH>
is equal to
1 ~ ~ 1 1 ~ N 2R H
SID(I+aD)™! - S (E(S)BD(I +aD)"?B )
- %Tr [f)(I +aD)"! (I ~ BHE(S)B( + af))*l)]
which, in turn, coincides witly? 7, where7 is defined by
~ 2y 1 = 2 =\ 7! _ pH 2 Y\ —1
#(0?) = ST [D (0*I+aD))  (I-B"E(S(s*)B(L+aD) (84)
Eqg. (82) is thus equivalent to
(E(S) [02(I+%D) +B(I+af))_1BHD —I+A (85)
or equivalently to
(E [S (02(1 +aD) + B(I+ aﬁ)*lBH)D —1+0%a-7ES)D + A
or to
E(S) =R+ ¢*(@ — 7)E(S)DR + AR . (86)
We now verify that if M is a deterministic, uniformly bounded matrix for the spattmorm
ast — oo, thent 'TrARM = O (¢t~2) . For this, we writel TTARM as ; TTARM =
T + Ty — Ty where
T, = E [?, LTy (SEf)(I+af))_1EHRM>] ,

T, = E(
E

Ty = (5’7 °3) LTy (E(S)DRM) .

o o

(p1+p2) ¢ Tr(éDRM)) ;
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We denote by, the term
1 - -
pr=Tr (SED(I v aD)—leRM)

and notice thatl; = E(n p4 Eq. (26) implies thaﬁE( ) andE [% Tr <§DRM)>}2 are
O(t~2) terms. Moreover, matriR is uniformly bounded for the spectral norm @as> co (see
(B?). Lemma[R immediately shows that for eachk= 1,2, 3, E(,Sf) is a O(t~2) term. The
Cauchy-Schwarz inequality eventually provid?s‘rARM =0(t2).

In order to establish|__(_$9), it remains to show tldat- 7 — 0. For this, we remark that

exchanging the roles of matric& and ¥ leads to the following relation

E(S) = R+ 0%(a — 7)E(SDR) + AR (87)
wherer(o?) is defined by
(0?) = %Tr D (o1 +aD)) ™ (1- BE(S(0?) B (1+aD) )] (88)
and whereA, the analogue of\, satisfies
1 <~ 1
ZTr(AM) = O (?) (89)

for every matrixM uniformly bounded for the spectral norm.

Equations[(86) and(B7) allow to evaluateand7. More precisely, writingy = 1 Tr(DE(S))
and using the expressiop [87) BfS), we obtain that

_ —Tr(DR) +o2(a— T)%Tr(f)E(g)f)f{) 4 %Tr(f)Af{) . (90)
Similarly, replacingE(S) by (88) into the expressiof (84) 6f we get that
7= Ly [D(02(1+a]5)*1(1—BHRB(IJFOCD)%}
—(a—F)LTr [f)(I +aD) 'BYE(S)DRB(I + oz]j)_l} (91)
LTy [13(02(1 +aD) 'BYARB(I + ozf))_l} .
Using standard algebra, it is easy to check that the first tefrthe righthandside of[ (p1)
coincides with} Tr(DR). Substracting[(31) from[(0), we get that

(o — 7)iig + (6 — 7)ii = & (92)
where
iy = o” ¢ Tr(DE (é)f)ﬁ)
B = 1— 17y [ (I+ D) 'BYE(S)DRB(I + aﬁ)*l} (93)
¢ = lT(DAR)+1Tr[D [ (02(I+aD)"'BFARB(I + aﬁ)*l} .
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Using the properties oA and A, we get that = 0(t~2).

Similar calculations allow to evaluate and r, and to obtain

(= T)ug + (& — T)vg =€ (94)
where
w = 1-1Tr [D(I +aD)"'BE(S)DRBH(I + aD)"! )
vg = o*1Tr(DE(S)DR)

and wheres = O(¢t2). (04, @) can be written as

ug Yo o —

\]
[}

- . (96)

ﬂo ?70 a—T €
If the determinantugty — ugvy of the 2 x 2 matrix governing the system is nonzeto;- 7 and
& — T are given by :

~ ~ u0€ - ﬂoe
—  a—F = ———, ©7)
UpVo — Uovo Upvo — Uovo

U~0€—’UQ€
a—T =

As matricesR andE(S) are less thank I, and matriceR andE(S) are less thank1,, it is
easy to check that, v, @ig, 7o are uniformly bounded. Ag andé are O(t~?2) terms, (o — 7)
and (& — 7) will converge to0 as long as the invers@iyvy — iigvg) ! of the determinant is
uniformly bounded. For the moment, we show this propertydsorarge enough. For this, we
study the behaviour of coefficients, i, vy, 79 for large enough values af?. It is easy to
check that :

1 r 7 2
u > 1- ol 1 dmaxdmaxbmax 5

~ 1 2
Vo 2 1-— ot dmaxdmaxbmax ) 08
~ 72 ( )
iy < mgs

doax
Vo S % o2

As L — ¢, it is clear that there exists] and an integet, for which ug > 1/2,5y > 1/2,1 <
1/4,v9 < 1/4 fort > tg ando? > 0. Thereforeuoty — tigvg > 15 for t > to ando? > of. Eq.
(P?) thus implies that itb? > o3, thena — 7 anda — 7 are of the same order of magnitude as
¢ = O(t~?), and therefore converge to 0 whens co. It remains to prove that this convergence
still holds for 0 < 02 < o2. For this, we shall rely on Montel's theorem (see e.g. [5]}pal
frequently used in the context of large random matricess lbased on the observation that,
considered as functions of parametér o (o?) — 7(0?) anda(o?) — 7(c?) can be extended to
holomorphic functions ot — R~ by replacings? by a complex numbet. Moreover, it can be
shown that these holomorphic functions are uniformly bathdn each compact subsit of

C—R7, in the sense thatip; sup,cx |a(z) —7(2)| < oo andsup; sup.cx |a(z) —7(2)] < oo.
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Using Montel’s theorem, it can thus be shown that(2) —7(o?) anda(o?) —7(0?) converge
towards zero for each? > o3, then for eachh € C—R~, a(z) —7(2) anda(z) —7(z) converge
as well towards 0. This in particular implies thato?) — 7(0?) and a(o?) — 7(0?) converge
towards 0 for eacla®> > 0. For more details, the reader may e.g. refer to [17]. Thispletas
the proof of [6D).

We note that Montel's theorem does not guarantee that~ anda — 7 are still O(t~2)

terms foro? < o3. This is one of the purpose of the proof of Step 2 below.

In order to finish the proof of Propositidjj 7, it remains to chehat (7P) holds. We first
observe thaR —T =R (T~! — R™!) T. Using the expressions &' andT~!, multiplying
by M, and taking the trace yields :

%Tr M®R-T) = (B-a) az%Tr(MRDT) +

(a—B) %Tr [MRB(I + 5D)~'D(I + 5D)'B"T| . (99)

As the termsZ-Tr(MRDT) and L Tr [MRB(I + BD)'D(I + ﬁD)*lBHT} are uniformly

bounded, it is sufficient to establish that — 3) and (& — ) converge toward§. For this, we
note that [[6P) implies that

o — %Tr(DR)—i—e', a - %Tr (BR) +¢ . (100)

wheree” andé’ converge towards 0. We expregs— 3) = 1 TrD(R—T) +¢. UsingR — T =
R (T~' —R™!) T, multiplying by D from both sides, and taking the trace yields

(a—f) (1 - %Tr [DRB(I + AD)'D(I + ﬁf))lBHTD +(@—-p5) UQ%Tr(DRDT) =c.
(101)

Similarly, we obtain that
(a—B) 02%Tr(ﬁf{fﬁ) +(a—-p) <1 - %Tr [DRB" (1 + fD) DI+ BD)lDTD _Z

Equations [(TJ1) and (IP2) can be interpreted as a lineaemsgstv.r.t.(a — 8) and (& — 3).
Using the same approach as in the proof[of (69), we prove(that 3) and (& — /3) converge
towards 0. This establishef [70) and completes the proofagdgition [J). [ |

2) Second step 1 TrM(E(S) — R) and L TrM(R — T) are O(t~2) terms: This section is

devoted to the proof of the following proposition.
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Proposition 8: For each deterministie x r matrix M, uniformly bounded (for the spectral

norm) ast — oo, we have :

%Tr M (E(S) — R)| = O(+2) (103)

%Tr IM(R) = T)] = O(t2) (104)
Proof: We first establish[(103). For this, we prove that the inverk¢he determinant
ugly — tigvp Of linear system[(36) is uniformly bounded for each> 0. In order to state the

corresponding result, we defirte, v, a,v) by

v = 1-1iTy(DTB(I+ D)"'D(I+ AD) !'BT)

7 = 1-iT(DTB+ D) 'D(+ D) 'BT) (105)
v = 0?1 Tr(DTDT)
i = 21T (DTDT)

The expressions of(u,v,w,0) nearly coincide with the expressions of coefficients
(uo,vo, 0o, Vo), the only difference being that, in the definition(af, v, @, v), matrices E(S), R)

are both replaced by matrif, matrices (S), R) are both replaced by matri¥ and scalars
(o, @) are replaced by scalatg, 3). (69) and [7p) immediately imply thdis, v, o, 7o) can

be written as
U)=U+ €y, Vg=70+€, Vg=V-+€, Uy=1Uu-+Ey, (106)

wheree,, €,, €,, €, converge to0 whent — oo. The behaviour ofuv — v is provided in the
following Lemma, whose proof is given in paragraph 11]C.3.

Lemma 4: Coefficients(u, v, u,v) satisfy : (i) u = v, (i) 0 < v < 1 andinf;u > 0, (iii)

0 < ud — @ < 1 andsup, —1— < occ.
(L0%) and Lemm4]4 immediately imply that it exigtssuch that) < uvy — vy < 1 for each
t>to and
sup % <00 . (207)
t>t, WOV — UV
This eventually showst — 7 anda — 7 are of the same order of magnitude thaandeé, i.e.
areO(t2) terms.

In order to prove[(IQ4), we first remark that, By (JL08)andé defined by [[100) are©(t—2)
terms. It is thus sufficient to establish that the inversehef determinant of the linear system
associated to equatiorfs (101) apd]102) is uniformly bodngg. [7D) implies that the behaviour
of this determinant is equivalent to the study:af — @w. Eq. (L0}) thus follows from Lemma

A. This completes the proof of Propositifjn 8.
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[ |
3) Proof of Lemmd]4.1n order to establish item (i), we notice that a direct apgtlan of

the matrix inversion Lemma yields :
TB?(I1+ D)™ = (1+ D) 'BYT . (108)

The equalityu = v immediately follows from [(108).
The proofs of (ii) and (iii) are based on the observation thaiction o> — o23(0?) is
increasing while function? — 6(02) is decreasing. This claim is a consequence of Eq. (16)

that we recall below :

o?) = dpip(A) 3(52) — dfip(A)
B(o?) = ﬂ; B(o?) A;

+ A+ o2’ + A+o02’
wherey, (RY) = 1Tr(D) andji,(RT) = +Tr(D). Note that3 is decreasing becausé — 1
is decreasing and?3(0?) is increasing because® #; is increasing. Denote by the
differentiation operator w.r.tz2. Then,(¢2)" > 0 and3" < 0 for eachs?. We now differentiate
relations [(1p) w.r.to%. After some algebra, we obtain :
o (02B) + 0% f = 1Tr(DTB(I+ D)~} (I+4D)'BAT) (109)
% (0%8) +uf = ~{T'TDT

As ' < 0, the first equation of[(109) implies that(c25)" > 0. As (623)" > 0, this yields
v > 0. As v < 1 clearly holds, the first part of (ii) is proved.

We now prove thainf; o > 0. The first equation of[ (109) yields :

1
(a2B)
—L_ >0, inf;|8'| > 0 and thatinf, v > 0.

7> —o2vf (110)

In the following, we show thainf; o )

By representatior] (16),

5 diip(N) o28(02)) — Adpip(N)
_ﬁ - /Pﬁ ()\—|—02)2 and ( 2B( 2)) - /R+ ()\+02)2

(A+a2)z < L for X >0, (6?8) < Lu(RT) = 1TrD. Therefore, the term(ol—, is

As 25)

lowerbounded byr?(+TrD)~!. As 1TrD < Zdyax, We haveinf, gy >0

2B)
We now establish thainf; ]ﬁ] > 0. We first use Jensen’s inequality : As measure

(+TrD)~! djiy(N) is a probability distribution :

ke (10) ] < [t (10 .

In other words,|5’| = fR+ A+<72) >djiy(\) satisfies

Bz s | [ 52 (r<AﬂQ— L
o %Trf) R+ A+ o2 i N %Tr]i .
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As mentioned above(%Trf))—1 is lower-bounded by(dy..)~!. Therefore, it remains to
establish thainf, 32 > 0, or equivalently thainf, 5 > 0. For this, we assume thatf, 3,(02) =

0 (we indicate tha3 depends both os? andt). Therefore, there exists an increasing sequence
of integers ()0 for which limy . B, (02) = 0 i.e. limp o [p+ 1557 dﬂét’“)()\) =0,
Whereﬁgf’“) is the positive measure associated with(o2). As D is uniformly bounded, the
sequencéjil’™)),> is tight. One can therefore extract fraf|™*));> a subsequend@l(f;))lzo

that converges weakly to a certain measjfewvhich of course satisfies
/ L i) =0
R+ A+ o2 Ho o

This implies thatji; = 0, and thusi;(R™) = 0, while the convergence C(f&l(,t;))zzo gives

1 -
lim —,Trth >0

l—00 tl

fiy(RY) = lim " (RY)
l—00
by assumption[{3). Therefore, the assumptiofy Bt(o—Q) = 0 leads to a contradiction. Thus,
inf, 3;(0?) > 0 andinf, |5'| > 0 is proved.
We finally establish that is lower-bounded, i.e. thahf,; %TrDTDT > 0. For any Hermitian

positive matrixM,

1 1 2

;Tr(MQ) > [;Tr(M)] .

We use this inequality foM = T'/2DT'/2. This leads to

1 1 1 > 1 2
-TDTDT = ;TrMQ > [;Tr(M)} = [;Tr(DT)} =p%.

Therefore,inf; %TrDTDT > inf, 32. Using the same approach as above, we can prove that

inf; 32 > 0. Proof of (ii) is completed.

In order to establish (iii), we use the first equation [of {1@9pxpresgs?3)" in terms of 5,
and plug this relation into the second equation[of(109)sTives :

(u-

The righthand side of (T]L1) is negative as wellf@sThereforeu — 1av > 0. As ¥ is positive,

U

%Tr(DTB(I +8D) (14 8D)'BYT) . (111)

ST

., 1 -
fw) 15} :—ETrTDT—

029

u? — v is also positive. Moreovel et v are strictly less than 1. A8 andv are both strictly

positive,u — @v is strictly less than 1. To complete the proof of (iii), we ieetthat by [11]1),
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13| cIearIy satisfies 3’| < L 1TrD and is thus upper bounded b%;— (ii) implies that

ot t
sup, 2 < +oco. It remains to verify thainf, 1 T*TDT > 0. Denote byz = 1 TrTDT.

t
;zczz\ Tl

i=1 7j=1
In order to use Jensen’s inequality, we consudzet , and notice tha% Z (R =1 x

can be written as )
t

t
L= 15 1/2
xz;TrD;Elm E \T:41%)
1=

By Jensen’s inequality

1 t t 2 1 t t 2
XA DTS RS WA
=1 : =1 :
Moreover,
L t 2 1 2 1 —1 72
- 1/2 - T . I
2R D) = [ 5a ] =|(7m0) ]
Finally,

—1
1, o~ 1, = ~
r=-TrTDT > <¥TrD) 62 .

~+

Sinceinf; 32 > 0, we haveinf, JTYTDT > 0 and the proof of (iii) is completed.

APPENDIX I

STRICT CONCAVITY OF I(Q) : REMAINING PROOFS
A. Proof of Lemm4]1

Remark thatp,, is strictly concave due t§ (#5). Remark also thas concave as a pointwise
limit of the ¢,,’s. Now in order to prove the strict concavity @f assume that there exists a

subinterval, saya, b) C [0,1] with a < b where¢ fails to be strictly concave :

YA€ [0,1], é(Aa+ (1 —N)b) = Ap(a) + (1 —N)p(b) .
Otherwise stated,

o(b) — d(a)

=AY (1 — ) + (a).

Vz € (a,b), o(z)=

Let z € (a,b) andh > 0 be small enough so that— ~» andz + h belong to(a, b) ; recall the

following inequality, valid for differentiable concaverfations :

6m(z) = Sz — 1) b + 1) = 6 (2)
’ > g, (@) > ) .
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Letting m — oo, we obtain :

(@) = oz —h) > limsup ¢, (x) > liminf¢), (z) > oz +h) - o) .

h m—00 m—00 h

In particular, for allx € (a,b), lim, 00 ¢, (x) = w . Now let [z, x+h] € (a,b). Fatou’s

lemma together with[(45) yield :

m—0o0

x+h
0 < kh < / lim inf ¢! (u) du

m—o0 m—o0

x+h
< liminf / () du = lim (¢ (x+h) — @) = 0.

This yields a contradiction, therefore must be strictly convex of0, 1].

B. Proof of [4p).

We defineM as thetm x tm matrix given by

AQA"\ ' |
p .

o2

N - T <1+

We have :

or equivalently

1

oo —1
<I+HQH ) H

@ - QN - QQ)I&H]
Recall thatTr(AB) > A\nin(A)Tr(B) for A, B Hermitian and nonnegative matrices. In

particular :

Tr
o

aQEA\ T E
(1+555) ;(Ql—QQ)M(Ql—QQ)HH]

Similarly, we obtain that

Tr [%(Ql - Q2)M(Q; — Q)H”

This eventually implies that

v v~ H _1 -
Tr <I + H?? > g(Ql - Q2)M(Q: — Q2)HH] >
TOTTH\ L T H T H
Ain <I + HE? Tr [Hag (Q1 — Q2)H02H(Q1 - Q2)}
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As .
HQH"\ ™ 1 1
Anin (I+ ) > > —
o N (T+BE) ™ (14072 Q [HHH])’
we have
1 1 H'H . . HIH . §

7)< —— T — — .
P (A) < - ((1+U_2HQH HﬁHHH)2> X r< - (Q1— Qo) 2 (Qu Qz))]

Let us introduce the following notations :

1 1 [HHH . HH

== - - - ) 5m:_T Q Q
(1+0-2|Q|| [H7H]|)? m Q)

The following properties whose proofs are postponed to Adpelll-C| hold true :

@-Q)|

Proposition 9: (i) lim,, o var(B,) =0,

(i) For all m > 1, E(8,) = E(8)) = ETy [H”H<Q - Qo) H Q- Q)| >0
(i) There existsd > 0 such that for all\ € [0,1], liminf,, 0o E(ay) >0 >0 .

We are now in position to establish [46). By Propositipn)9:fie have

IE(tm Bim) — E(m)E(Bm)| < v/ var(Bm) VE(a2,) < v/var(f,) — 0 .

*)OO

By Proposition[p-(ii),(iii), we have :

lim inf (o, 8n) = hm me(am) (Bm) = E(51) lﬂigofE(am) > 0E(51) >0

m—r00
The bound[(46) is now established for= —JE(3;). Applying LemmglL tap,,, (\), we conclude
that A — ¢()\) is strictly concave for ever;, Qs in C; (Q1 # Qsz), and so isQ — I(Q) by
Proposition[p.

C. Proof of Propositior]9

Proof: [Proof of (i)] In order to prove thatim,, var(53,,) = 0, we shall rely on Poincaré-

Nash inequality. We shall use the following decomposffon

C% 1 ~ 1 ~ ~ 1 ~
— UD:U"; C: = UD:U",
VK 1
In particular, H writes

5 UAWU -,
UYHU = UHAU+D27 B

1/ 7

A ~ 1 AN
= B+D2—D5 = B+Y
\/_

(1>

X,

3. Note that the notations introduced hereafter slightffedifrom those introduced in Sectign B but this

should not disturb the reader.
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whereX is ar x t matrix with i.i.d. CN (0, 1) entries. Consider now the following matrices :

B=1,%B, I'=1,®D, I'=1,9D, v=1,0U, V=I,%U.

Similarly, H writes :

X
vmit
where X is a mr x mt matrix with i.i.d. @N(0,1) entries. Denote by® = UY(Q, —
Qz)fj and by® = V7 (Q; — Q,)V(= I,, ® ®). The quantity(,, writes then :43,, =

LTrex2ex”3. Considerings,, as a function of the entries aK = (X;;), i.e.

1>

VIHV =B 4T I

g

= ¢(X), standard computations yield
X)) _ 2 gsrses)
8Xz‘j m

Ji -

Poincaré-Nash inequality yields then

b = 45 e[

mit &— 2t2 Ji
7/7]
4dmaxdmax A HSSASYCWASCSASAHSNSHSNAH
< — 7 ETr (0X"3ex"1e"x"1e")
m3t3
4 max ~max 1 > Y A N N V &
< Aoty gig e (Lpsisesisersis) .
m2t2 mt
Moreover, Schwarz inequality yields
1 . s . . . 1 . . 1/2 1 . . . o . . . 1/2
—Treizef(nin)le < [—Tr(EHE)z] [—Tr (@H(2H2)2@(~)H(2H2)2@)}
mt mt mt
so that

1 . o . o . . 1 5 . 1/2 1 5 . 1/2
—Treyelsive < e [—tTr(EHE)z] [—Tr(EHE)‘l] :
m

mt mt

Schwarz inequality yields then

5 . 5 1/2 1 5 5 1/2
E< reinel ) < ||efe| [ < Tr(Z 2)2)] [E (—Tr(z:Hz)‘lﬂ .
mt mt

It is tedious, but straightforward, to check that

supE <LT1"(§V3HZV])2) < 400

m mt
and

supE <LTr(2H2)4) < 400

m mt
which, in turn, imply thatvar(8,,) = O(-%). |
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Proof: [Proof of (ii)] Write E 3,,, as

EB, = —ETrE’30ex s6

1 o e HaanH o 1 o H
= ——TrB"BeB"Be + ——ETrB"BOY’YO
m a=m

1 s e H
—— ETrY"BOB”Y®O
g m

1 ey H <
—— ETrY?YOY"YO
g m

where (a) follows from the fact that the terms whelé appears one or three times are readily
zero, and so are the terms lieTrBYY®B”Y®. Therefore, it remains to compute the

following four terms :

T e s e s
—TrB”"BOB"BO |,
m

Ty

1>

1 e e s
—ETrBPBOYH YO ,
m

1 e e
—ETrBfYOY B6O ,
m

1 . . e~ . .
“ETrY?YOYZYO .
m

15

1>

13

1>

T}

Due to the block nature of the matrices involvéd, = Tr BPBOB#B® ; in particular, T}
does not depend om. Let us now computd’. We haveT) = m 'TrBYBOE (YY) ©
andE (YY) = (mt)"'T2E (XI'X) Iz = (mt)~"Tr(T")T. Therefore T, writes :

1 1
I = —Tr (I') —
2 mr()mt

B 1 .
Tr (BHBG)I‘G)) = Tr (D) ;Tr (BHBG)DG)) ,
and this quantity does not depend on. We now turn to the term7s. We have
T3 = m 'Tr BYE (YOY#) BO. The same computations as before yi@ldYOYH) =
(mt) 1 Tr (f‘é(;)f%) I'. ThereforeTs writes :

1 1

Ty = —Tr (T:67% ) —Tr (B"TBO) = Tr (D:OD: ) Tr (B'DBO) |,
m mt t
which does not depend an. It remains to computdy = LTr [E (Y7/YOYY) O]
~ ~ o~ -~ ~ 1 ~ 1 > L~ 1 v~ 1 « ~ 1
E(Y/YOY"Y) = —TiE(XTX[:O0:XIX)I .
(mt)?

Computing the individual terms of matrik (XI‘Xf‘%G)f‘%XI‘X yields (denote byG =
I':OI: for the sake of simplicity) :

[E (XFXGXFX)]kZ = Z E (§i17kxi17j1§izyjzxiz,f> I‘ilyilGjlyj2I‘i27i2
i1,J1,J2,02

= (TrT)> Gy + Tr (T%) Tr G Gy
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whered;, stands for the Kronecker symbol (i&, = 1 if kK = ¢, and 0 otherwise). This yields

E(Y/YOYHY) (mlt) T )Tr (r*) T (F)
and
T, = ;2 <E) —Tx (f‘@f‘@)-ﬁ-liT (I‘Q)m (Tr@r)

= (D) T (DODB) + 4T (D?) (TreD)” |

which does not depend an. This shows thaks,,, does not depend om, and thus coincides
with ES;. In order to complete the proof of (i), it remains to verifyatE5; > 0, or equivalenlty
that ES, is not equal to 0. IfES; was indeed equal to 0, then, matrix

1/2 1/2

(H"H) " (Q: — Qo) (H'H)

or equivalently matrix

H"H(Q: - Q2)
would be equal to zero almost everywhere. ®s # Q-, it would exist a deterministic non
zero vectorx such thatx” HY Hx = 0 almost everywhere, i.ddx = 0, or equivalently

WCY2x = —VKtC /?Ax . (112)

As matrix C'/2 is positive definite, vectoilC'/2x is non zero. Relation[(1]12) leads to a
contradiction because the joint distribution of the emstrad W is absolutely continuous. This

shows that£3; > 0. The proof of (ii) is complete. |

Proof: [Proof of (iii)] In order to controla,,, = L_____ first notice that|Q|| =
N N (14+o-2|Ql [ F||)
1Qll. Now [H”H|| = |H|]* and
~ K . 1 1 ~ 1 W
H| < /= [|A] + ———— | A3 || |AF]] | —=]| .
B < /oIl + e adiiad) | |
Now ||A|| = ||A]], ||Az]| = ||Cz]|| and||Az || = |CZ||. The behaviour of the spectral norm of
(mt)~z W is well-known (see for instance [36], [1])H:(mt)*§WH oo 1+ y/1/c almost
surely. Therefore, Fatou’s lemma vyields the desired rediit inf,,, E«,,, > § > 0, and (iii) is

proved. ]

APPENDIX IV
PROOF OFPROPOSITIONE, ITEM (1).
By B0) and [51L),(x, %, Q) — V(k, &, Q) is differentiable fromR* x R x €; to R. In
order to prove thatl (Q) = V(§(Q),4(Q), Q) is differentiable, it is sufficient to prove the
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differentiability of 6,4 : €, — R. Recall thats andé are solution of systen{ (B3) associated
with matrix Q. In order to apply the implicit function theorem, which withmediatly yield

the differentiablity of§ andé with respect toQ, we must check that :

1) The function

(57S7Q)'_>T(5757Q): ( ~ .

is differentiable.

2) The partial jacobian

D(&S)T((Sa 5>Q) = ( 9

is invertible for everyQ € C;.

In order to check the differentiability of’, recall the following matrix equality
I+UV)'u=ua+vu)! (113)

which follows from elementary matrix manipulations (cfO[2Section 0.7.4]). Applying this
equality toU = Q: andV = §CQ:, we obtain :
1 1~ 1\ —1 1 ~ —1
AQ? (I + 6Q5CQE) QA" — AQ (I + 5CQ) A
which yields

S K (5 ~ -1 Hil
r+—K+IC)+—K+1AQ<IH——K+1CQ> A} }

7(5,5,Q) = %Tr{C [UQ (1
Clearly, f is differentiable with respect to the three variabdes and Q. Similar computations
yield

1

~ —1
P | =T o 5§ - K g ) -1
f(5,5,Q)—tTr{QC[a (It+—K+1CQ)+—K+1A (Ir+—K+1C> AQ} }

and the same conclusion holds for Therefore, (5,4, Q) — Y(4,4, Q) is differentiable and 1)
is proved.

In order to study the jacobia@(575)T, let us compute firs%.

of - - 1 § -~ \!' Cq § AN\ y K
e = = —C — _(1+——C AT
86(6’5’@ tTrCTKAQ<I+K+1 Q> K+1 +K+1 Q KK +1
1 1 6 1~ 1 71Q%CQ%
= I OTrAQ <I+K—+1QZCQZ> K1

K
K+1’

Q:CQ: § s\ g
— ([ I+ —Q=2CQ> :AYT
“Kr1 TRy Q K

) %Tr (DTB(I + D)~ 'D(I+ D) 'BYT)
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where(a) follows from the virtual channel equivalencgs](3L)] (3Qether with [3P) and[(41).
Finally, we end up with the following :

= %(5, 5.Q) =1- %Tr(DTB(I 4+ 3D)"'D(I + D) 'BHT) .

Similar computations vyield

‘;ﬁ (6,0,Q) = 1-— %Tr(f)'i‘BH(I + 6D)"'D(I+ D) 'BT)

af B o?
86(55 Q) = =T (DTDT),

of o
~55(0.0.Q) = —Tr (DIDT) .

The invertibility of the jacobiarD ; ;T follows then from Lemmd]4 in Append[x l}C and 2) is
proved. In particular, we can assert titat> Q — §(Q) and@; > Q — 4(Q) are differentiable

due to the Implicit function theorem. Item (i) is proved.

APPENDIXV

PROOF OFPROPOSITIONE

First note that the sequenc€;) belongs to the compact s€;. Therefore, in order to
show that the sequence converges, it is sufficient to eshaltiiat the limits of all convergent
subsequences coincide. We thus consider a convergentgsigee extracted froniQy)x>o.
say (Qq(x))r=>0, Where for eaclk, ¢ (k) is an integer, and denote l@}f its limit. If we prove
that

<VI(QY).Q-Q¢><0 (114)

for eachQ € €, Proposition[]s-(ii) will imply thatQZ{’ coincides with the argma®, of I
over C;. This will prove that the limit of every convergent subseqgte converges towardy,,
which in turn will show that the whole sequen(@;);>o converges taQ,.

In order to prove [(134), consider the iteratig{k) of the algorithm. The matrixQ i)
maximizes the functioQ +— V((Sw(k),&}(k),Q). As this function is strictly concave andd

differentiable, Propositiof] 4 implies that

< VQV (6 Opk)> Qur))» Q — Quey > < 0 (115)

for everyQ € C; (recall thatVq represents the derivative &f(x, %, Q) with respect tol’’s
third component). We now consider the pair of soluticélﬁ@(k)ﬂ,gw(k)ﬂ) of the system[(33)
associated with matrix. ).

Due to the continuity ob(Q) andS(Q), the convergence of the subsequefkg;, implies

the convergence of the subsequen(:(é)g(k)ﬂ,gw(k)ﬂ) towards a limit (53{’,55’). The pair
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(67,57) is the solution of systen] (B3) associated W@}y i.e. §¥ = 5(Q¥) ands! = 5(Q¥);
in particular :
ov
Ok

av

v 5 YY) —
(5*75*7Q*) al‘%

(67,0¢,Q¥) =0

(see for instance (b6)). Using the same computation as iprbef of Propositior{]5, we obtain

(VI(QY). Q- QY) = (VV (3,3/.Q) Q- QY) (116)

for everyQ € €;. Now condition [5]7) implies that the subsequeqggy,, 5¢(k)) also converges

toward (5}?,5,?). As a consequence,

Hm (VV (640005 Ou(h)s Qur))» Q — Queny) = (VV(6Y,5Y,QY),Q — QY) .

k—+o00
Inequality (1Ip) thus implies thaWV (6¥,6%,QY),Q — Q¥) < 0 and relation [(176) allows us

to conclude the proof.

APPENDIX VI
END OF PROOF OFPROPOSITIONA
Proof of Propositior{]3 relies on properties @f, established in Propositidj 5—(iii). Denote
by

A = max <sup |A |, sup ||C||, sup HC||) < oo and a=min (irgf Amin(C), irgf )\min(C)) >0.
t t t

Proof of (i): Recall that by Propositiof] 5—(iii)Q, maximizeslog det(I + QG(ds,d.)).

This implies that the eigenvalugs;(Q,)) are the solutions of the waterfilling equation

Vi=1...,t X(Q,) = max <”_%G)’O>
J

wherey is tuned in such away that ; \; (Q,) = t. Itis clear from this equation thdQQ, || < 7.
If v < Amin(G) 7! then [|Q, ]| < Amin(G)7L If v > Apin(G) ™! theny > X;(G)~! and we

have :
— 1
=M@ =Y g
= —~%(G)

hence

In both cases, we have

(117)
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It remains to prove

VQee, inf A (G5(Q).5(Q) >0 (118)

and we are done. To this end, we first show thdt5(Q) > 0 for all Q € €,. From Equations

(BQ) and [4R), we have :

Q) = %trCTK(UQ)
> )\min(C)%trTK(o—z)

0_2

K+15C
o

1
> )\min(c) |:¥t1‘ <U2Ir +

-1
K

+K+1

-1
1/2 _ 9 Al2601/2 1/2 A H
AQ <It+K+1Q cQ ) Q7 A )]
(b) 1 9 0.2 ~ K " —1
> : — -
> Amin(C) (ttr <a IT+K+150+ K+1AQA )) (119)

where (a) follows from Jensen’s Inequality an@) is due to the facts that(I; + Y) ! < 1
andtr(XY) < || X][tr(Y) whenY is a nonnegative matrix. We now find an upper bound for
6. From (1) and[(@3), we hayeT'x (0?)| < 1/0>. Using {@2) we then have

- ~ 1 - - =1 A
0 < [Tx|;0CQ < [ Tx|[ICll;trQ < —

(recall that{tr Q = 1). Getting back to[(1]9), we easily obtain

1 9 o? - K " r( A A’K t
Lo (021, fct+ - _Aqaf) <’ < tr), -
tr<0 TR T AR )—t<" Trri) TRy =G YO, Do

whereCy is a certain constant term. Hence we ha@®) > aC,; '. By inspecting the expression
(EQ) of G(4,4), we then obtain

2, v1—1
Amin(C) > 2 o0

aCyt
)\min G) > J
(&) - K+1

“K+1 =01>0
and (I1B) is proven. It remains to plug this estimate ifitoffland (i) is proved.

Proof of (ii): We begin by restricting the maximization ¢fQ) to the setCd = {Q
Q = diag(qs, ..., q) > 0,tr(Q) = t} of the diagonal matrices withi&;, and show thaQ? =
arg maxqees 1(Q) satisfiessup, |Q¢|| < co where the bound is a function ¢f, A, 2, ¢, K)
only. The sete is clearly convex and the solutid® is given by the Lagrange Karush-Kuhn-

Tucker (KKT) conditions

ornQ) o .
5 = 9, EIQI =05 (120)

where J(Q) = logdet (I, + SHQH") and the Lagrange multipliers and the 3; are

associated with the power constraint and with the posjticibnstraints respectively. More
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specifically,n is the unique real positive number for whi(‘ﬁﬁ}:1 q; = t, and thep; satisfy

5j:0if qj>0and6j20if qj:O.Wehave

91(Q)
aq]'

whereh; the j'' column of H. By consequenceE [09(Q)/dq;] < SE [||h;|?]. As h; is a

1 H 1 H o

Gaussian vector, the righthand side of this inequality finée and therefore, by the Dominated

Convergence Theorem, we can exchafgé@q; with E in Equation [12PD) and write

01Q) _ 1
8(]]' N 02E

-1
hH< +%HQHH> hj] (121)

Let us denote byH; the r x (t — 1) matrix that remains after extractirlgy from H. Similarly,

we denote byQ; the (¢t — 1) x (¢ — 1) diagonal matrix that remains after deleting row and
columnj from Q. Writing R; = (Ir + #HijHf)_l, we have by the Matrix Inversion
Lemma ([20, 80.7.4))

1 o - _ qj H
(Ir + EHQH > =R; - o2 +qjh§{thjRthhj R; .

By plugging this expression into the righthand side of Emuat{IZ]), the Lagrange-KKT

conditions become

X;
|2 | —p_p 122
[a2+quj] n=bi (122)

whereX; = hHR-h» A consequence of this last equation is that 1/7 for every;. Indeed,

assume thag; > 1/n for somej. Theno? + ¢;X; > X;/n henceE { } <, therefore

2+q X
B; > 0 (L22), which implies thay; = 0, a contradiction. As a result, in order to prove that
sup; |QZ|| < oo, it will be enough to prove thatup, 1/n7 < co. To this end, we shall prove

that there exists a constafit> 0 such that

max P(X; <C)——0. (123)
J=1,...t t—ro0
Indeed, let us admi{ (IP3) temporarily. We have
X; C X; C X
— = E| 5211y, +E J 1x.
[02 + quj] o2 +q;C 02 +q;X; il P q;C o2 +q;X; Xi=C
C
—=P(X; >C) — 5———5
o2+ ¢q;C (% ) o2+ q;C
wheree; = 2+q =P(X; < C), and the inequality is due to the fact that the functjdn) =
2+q - is increasing. As

C
max |£]|<— max ]P’(X <C)——0
7j=1 o2 j=1 t—00

----------
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by ([23), we have

limtinfmin<E[ 2Xj }— 20 >20.
j o+ q; X; o +q;C
Getting back to the Lagrange KKT conditidn (122) we therefoave for large enoughy—g3; >
#/]20/2 for everyj =1,...,t. By consequence,
nTn-8 C 7

for larget. Summing overj and taking into account the power constraE; q; = t, we obtain

t 202t ; 1 202
E<T+t’ |.e.5<7+1and

d 20
sup [|Q5 || < <~ t 1 (124)
t

which is the desired result. To proe (123), we make use of MMStimation theory. Recall

thatH = /"~ A +

= \ﬁf/CWVVCl/2 Denoting bya; andz; the j* columns of the

matricesA and WC'/2 respectively, we have

K 1 1 K 1 1
X;=(y/———=al + zHCY? | R, C'/%; | .
d ( K19 " URTivi? WY Rt
We decomposez; as z; = u; + ujL where u; is the conditional expectatiom; =
E (z]|21,...,2j-1,2j41,--.,2], in Other words,u; is the MMSE estimate of; drawn from

the other columns oW C1/2, Put

o 1 1 Hoaan K L 1 apy,
% 2(¢—fﬂCRﬂ< K19 VKTV ))

12R .12yt 12
oY "R, cV ) (125)
Then
K H 1 1 H~1/2 K 1 1 2
> ;. (126)

Let us study the asymptotic behaviour 6f;. First, we note that due to the fact that

the joint distribution of the elements oW C!/? is the Gaussian distributionujL and

vj = [2],...,2]_\,2},,,...,2{]" are independent. By consequenesg; and (R;,u;) are
independent. Let us derive the expression of the covarianagix R, = E[ujujH].

From the well known formulas for MMSE estimation ([35]), wave R, = E[zjzf] -

-1
E(z;v}] (E[vjvf]) E[v;z{']. To obtainR,, we note that the covariance matrix of the
vectorz = [z],...,2]|" is E[zz"] = CT @1, (just check that® |[WC'/?];;[WC1/2],| =

§(i—k)[C];;). Let us denote by;, ¢; andC; the scalag; = [C];;, the j*" vector column ofC
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without element;, and the(t — 1) x (¢ — 1) matrix that remains after extracting row and column
j from C respectively. With these notations we hakg = (Ej — (:fé;léj) I.. Recalling that
u-L and(R;,u;) are independent, one may see that the first term of the rigtiteiae of [12b)
is negligible while the second is close g = 1%tr(R ;C). More rigorously, using
this independence in addition t = max(||A|, |C||,||C||) < oo and||R;|| < 1, we can prove
with the help of [1, Lemma 2.7] or by direct calculation thhete exists a constadt; such
that

E[(s; -0 < (127)
In order to prove[(133), we will prove that the are bounded away from zero in some sense.

First, we have
~ o) T~ -1() . ~
& —elClg @ [C*l}jj > 1C7Y™ = Anin(€) > a

(for (a) see [20, 80.7.3] and fafb), use the fact thalfX]x;| < || X]| for any elementk,!) of

a matrix X). By consequence,

a)\min (C) 1

1 —1
pj zKH;w@+;m%$ﬂ

@ aAmin(C) (1 1 2\ 7!
z‘f?rG“@+ﬁm%W>)

(b a2 r X . _
> /2 1/2 1
—-KH( OWHWHWWHWWOtmw

where(a) is Jensen Inequality and) is due totr(XY) < || X||tr(Y) whenY is a nonnegative

matrix. As lim, H%WH = 1+ 4/1/c with probability one ([1]), and furthermorer(Q) = ¢,

we have with probability one

a? A? 2\
hmtmfjir%m pj > X1 <c1 + P (2 + 0*1/2) ) =Cy . (128)

Choose the constaidt in the lefthand side off (123) a8 = C5/4. From (12p) we have

maxP(X; <C) < maxP(S5; <0O)
J j
= maxP(5; < C,[8; —p;| = O) + maxP(5; < C, |5 — p;| < O)
j j

< maxP(|S; — pj| = C) + max P (p; < 20C)
J J

1 2
< EmaXE [(Sj - pj) } +H1]§%XIP’(,0]' <20)

1 .
< gomaxE [(Sj - PJ)Q} +P (Injm pj < 20)

9 o)
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where (a) is Tchebychev's Inequalityb) is due tomax; P(€;) < P(U;E€;), and(c) is due to
(L27) and to[(198).

We have proven[(123) and hence tf = arg maxqcca 1(Q) satisfiessup, QS| < oo.

In order to prove thaQ, = argmaxqee, 1(Q) satisfiessup, | Q.|| < oo, we begin by noticing
that

1
max I(Q) = e max E [log det (IT + ;HUAUH HY )] (129)

wherel; is the group of unitary x ¢t matrices. For a given matrikl € Uy, the inner maximiza-

tion in ([L29) is equivalent to the problem of maximizing thetmal information oved when
the channel matriH is replaced withH' = HU = KLHAH- \/ﬁﬁclﬂw'é’lﬂ. Here,
matrix C' is defined byC' = U”CU, A’ = AU, W = WO where ® is the unitary
matrix ® = CY/2UC' /2. As U € U, we clearly have|A’|| = ||A], ||C']| = ||C],
and ||C'~!'|| = ||C~!||. By consequence, the boundsand 4, and hence the constaft in
the left hand member of (IR3) (which depends only (@nA, o2, ¢, K)) remain unchanged
when we replaced with H'. By consequence, for evelJ € U; the matrix A,(U) that
maximizesE [log det (I, + ZHUAUYH#)] satisfies|A.(U)|| < 20%/C + 1 (see [12}4))

which is independent 0BJ. Hence||Q.| < 20%/C + 1 which terminates the proof of (ii).
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