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On the Capacity Achieving Covariance Matrix for Rician MIMO
Channels: An Asymptotic Approach

J. Dumont, W. Hachem, S. Lasaulce, Ph. Loubaton and J. Najim
October 22, 2007

Abstract

In this contribution, the capacity-achieving input coeage matrices for coherent block-
fading correlated MIMO Rician channels are determined. dntast with the Rayleigh and
uncorrelated Rician cases, no closed-form expressionshiorigenvectors of the optimum
input covariance matrix are available. Classically, bdtd eigenvectors and eigenvalues are
computed by numerical techniques. As the correspondinghigattion algorithms are not very
attractive, an approximation of the average mutual infaiomas evaluated in this paper in the
asymptotic regime where the number of transmit and receitenaas converge téoo at the
same rate. New results related to the accuracy of the camelapg large system approximation
are provided. An attractive optimization algorithm of tlaigproximation is proposed and we
establish that it yields an effective way to compute the capachieving covariance matrix
for the average mutual information. Finally, numerical sliation results show that, even for a
moderate number of transmit and receive antennas, the nenwagh provides the same results
as direct maximization approaches of the average mutuainrdtion, while being much more

computationally attractive.
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I. INTRODUCTION

Since the seminal work of Telatar [39], the advantage of iclemgg multiple antennas at the
transmitter and the receiver in terms of capacity, for Gamsand fast Rayleigh fading single-
user channels, is well understood. In that paper, the figliraeasit chosen for characterizing
the performance of a coherértommunication over a fading Multiple Input Multiple Output
(MIMO) channel is the Ergodic Mutual Information (EMI). Thichoice will be justified in
section[1I-§. Assuming the knowledge of the channel stafisit the transmitter, one important
issue is then to maximize the EMI with respect to the champalt distribution. Without loss of
optimality, the search for the optimal input distributioancbe restricted to circularly Gaussian
inputs. The problem then amounts to finding the optimum daxae matrix.

This optimization problem has been addressed extensimetii@ case of certain Rayleigh
channels. In the context of the so-called Kronecker motbks been shown by various authors
(see e.g. [15] for a review) that the eigenvectors of thenagitinput covariance matrix must
coincide with the eigenvectors of the transmit correlatioatrix. It is therefore sufficient to
evaluate the eigenvalues of the optimal matrix, a problenchvban be solved by using standard
optimization algorithms. Note that [40] extended this fesm more general (non Kronecker)
Rayleigh channels.

Rician channels have been comparatively less studied finisrpbint of view. Let us mention
the work [19] devoted to the case of uncorrelated Rician obhEnwhere the authors proved that
the eigenvectors of the optimal input covariance matrixtheeright-singular vectors of the line
of sight component of the channel. As in the Rayleigh caseeifjenvalues can then be evaluated
by standard routines. The case of correlated Rician chanseindoubtedly more complicated
because the eigenvectors of the optimum matrix have no dlfigen expressions. Moreover,
the exact expression of the EMI being complicated (see 23j),[both the eigenvalues and the
eigenvectors have to be evaluated numerically. In [42] rédyanterior-point method is proposed
and implemented to directly evaluate the EMI as an expectaiihe corresponding algorithms
are however not very attractive because they rely on cortipo#dly-intensive Monte-Carlo
simulations.

In this paper, we address the optimization of the input dawae of Rician channels with a
two-sided (Kronecker) correlation. As the exact exprassibthe EMI is very complicated, we
propose to evaluate an approximation of the EMI, valid whenrtumber of transmit and receive

antennas converge tpoo at the same rate, and then to optimize this asymptotic appedgon.

Hnstantaneous channel state information is assumed aet®éver but not necessarily at the transmitter.



This will turn out to be a simpler problem. The results of thregent contribution have been

presented in part in the short conference paper [12].

The asymptotic approximation of the mutual information besn obtained by various authors
in the case of MIMO Rayleigh channels, and has shown to bee quiliable even for a
moderate number of antennas. The general case of a Riciaslated channel has recently
been established in [17] using large random matrix theody@mpletes a number of previous
works among which [9], [41] and [30] (Rayleigh channels), #d [31] (Rician uncorrelated
channels), [10] (Rician receive correlated channel) a7 (Rician correlated channels). Notice
that the latest work (together with [30] and [31]) relies be powerful but non-rigorous replica
method. It also gives an expression for the variance of théuahunformation. We finally
mention the recent paper [38] in which the authors generalizr approach sketched in [12]
to the MIMO Rician channel with interference. The optimiaatalgorithm of the large system

approximant of the EMI proposed in [38] is however differémm our proposal.

In this paper, we rely on the results of [17] in which a clo$exn asymptotic approximation
for the mutual information is provided, and present new ltssioncerning its accuracy. We then
address the optimization of the large system approximation. the input covariance matrix
and propose a simple iterative maximization algorithm Whion some sense, can be seen as
a generalization to the Rician case of [44] devoted to theldigly context : Each iteration
will be devoted to solve a system of two nonlinear equatichsvell as a standard waterfilling
problem. Among the convergence results that we provide {ancontrast with [44]) : We
prove that the algorithm converges towards the optimumtimowariance matrix as long as
it converges. We also prove that the matrix which optimizes large system approximation
asymptotically achieves the capacity. This result has gyoitant practical range as it asserts
that the optimization algorithm yields a procedure thahgstptically achieves thizue capacity.

Finally, simulation results confirm the relevance of our rapgh.

The paper is organized as follows. Sectfdn Il is devoted & presentation of the channel
model and the underlying assumptions. The asymptotic appedgion of the ergodic mutual
information is given in sectioff |Il. In sectiop ]V, the striconcavity of the asymptotic
approximation as a function of the covariance matrix of thput signal is established; it
is also proved that the resulting optimal argument asyrigatihy achieves the true capacity.
The maximization problem of the EMI approximation is stuti@ section[V. Validations,

interpretations and numerical results are provided iniceffl]



II. PROBLEM STATEMENT
A. General Notations

In this paper, the notationg x, M stand for scalars, vectors and matrices, respectively. As

usual,

x|| represents the Euclidian norm of vectorand ||M|| stands for the spectral norm
of matrix M. The superscripté.)” and(.)” represent respectively the transpose and transpose
conjugate. The trace dM is denoted byTr(M). The mathematical expectation operator is
denoted byE(-) and the symbolst and & denote respectively the real and imaginary parts
of a given complex number. If is a possibly complex-valued random variabléyr(z) =
E|z|? — |E(z)|* represents the variance of

All along this papery andt stand for the number of transmit and receive antennas. iGerta
guantities will be studied in the asymptotic regime— oo, r — oo in such a way that
; — c € (0,+00). In order to simplify the notations,— +oo should be understood from now
on ast — oo, 1 — 00 and; — ¢ € (0,+00). A matrix M; whose size depends anis said
to be uniformly bounded ifup, | M| < +oc.

Several variables used throughout this paper depend oougaparameters, e.g. the number
of antennas, the noise level, the covariance matrix of thestnitter, etc. In order to simplify

the notations, we may not always mention all these depeteienc

B. Channel model

We consider a wireless MIMO link withtransmit and- receive antennas. In our analysis, the
channel matrix can possibly vary from symbol vector (or gptime codeword) to symbol vector.
The channel matrix is assumed to be perfectly known at theivecwhereas the transmitter

has only access to the statistics of the channel. The retesigaal can be written as
y(7) = H(7)x(7) + 2(7) 1)

wherex(7) is thet x 1 vector of transmitted symbols at time H(7) is ther x ¢ channel
matrix (stationary and ergodic process) aid) is a complex white Gaussian noise distributed
as N(0,0°1,). For the sake of simplicity, we omit the time indexfrom our notations. The
channel input is subject to a power constralit/E(xx*’)] < ¢. Matrix H has the following
structure :

K 1

H= A+ v, 2
K+1 K +1 @

where matrixA is deterministic,V is a random matrix and constahAt > 0 is the so-called

Rician factor which expresses the relative strength of tinectand scattered components of



the received signal. MatriA satisfies%Tr(AAH) =1 while V is given by
L
Vit

whereW = (W;;) is ar x t matrix whose entries are independent and identically idistd

V=_—-C:WC: , (3)

(i.i.d.) complex circular Gaussian random variab&g¥(0, 1), i.e. W;; = RW;; +iSW;; where
RW;; and3W;; are independent centered real Gaussian random variatitesaviance;. The
matricesC > 0 and C > 0 account for the transmit and receive antenna correlatitectsf
respectively and satisﬁ}fTr((j) = 1andiTr(C) = 1. This correlation structure is often referred

to as a separable or Kronecker correlation model.

Remark 1:Note that no extra assumption related to the rank of the iahnéstic component
A of the channel is done. Generally, it is often assumed Adtas rank one ([15], [27], [18],
[26], etc..) because of the relatively small path loss ermbrof the direct path. Although the
rank-one assumption is often relevant, it becomes queilenif one wants to address, for
instance, a multi-user setup and determine the sum-cgpafcé cooperative multiple access
or broadcast channel in the high cooperation regime. Cendat example a macro-diversity
situation in the downlink : Several base stations intereated® through ideal wireline channels
cooperate to maximize the performance of a given multifamdereceiver. Here the matrix
is likely to have a rank higher than one or even to be of fullkrarAssume that the receive

array of antennas is linear and uniform. Then a typical stinecfor A is

A= lal0). . al)]A @
wherea(d) = (1,¢?,...,¢/=DNT and A is a diagonal matrix whose entries represent the

complex amplitudes of theline of sight (LOS) components.

C. Maximum ergodic mutual information

We denote byC the cone of nonnegative Hermitiagnx ¢ matrices and by, the subset of
all matricesQ of € for which %Tr(Q) = 1. Let Q be an element o€, and denote by (Q)

the ergodic mutual information (EMI) defined by :

I(Q) =Egy [log det (Ir + %HQHHH . (5)

Maximizing the EMI with respect to the input covariance mat® = E(xx") leads to the
channel Shannon capacity féast fading MIMO channels i.e. when the channel vary from
symbol to symbol. This capacity is achieved by averaging ehannel variations over time.

2For example in a cellular system the base stations are ctethedth one another via a radio network controller.



We will denote byC'r the maximum value of the EMI over the sét :
Cp = sup 1(Q). (6)
Qe

The optimal input covariance matrix thus coincides withdhgument of the above maximization
problem. Note that : Q — I(Q) is a strictly concave function on the convex §gt which
guarantees the existence of a unique maxin@r(see [28]). WherC = I,, C = I, [19] shows
that the eigenvectors of the optimal input covariance matdincide with the right-singular
vectors of A. By adapting the proof of [19], one can easily check that thsult also holds
whenC = I, andC and AA* share a common eigenvector basis. Apart from these two simpl
cases, it seems difficult to find a closed-form expressiontlier eigenvectors of the optimal
covariance matrix. Therefore the evaluation@f requires the use of numerical techniques
(see e.g. [42]) which are very demanding since they rely onprdationally-intensive Monte-
Carlo simulations. This problem can be circumvented as thié EQ) can be approximated
by a simple expression denoted BbyQ) (see sectiof IJl) ag — oo which in turn will be

optimized with respect t® (see sectiof V).

Remark 2:Finding the optimum covariance matrix is useful in practiceparticular if the
channel input is assumed to be Gaussian. In fact, thereragisy practical space-time encoders
that produce near-Gaussian outputs (these outputs areassagputs for the linear precoder
Q'/2). See for instance [34].

D. Summary of the main results.
The main contributions of this paper can be summarized dsafsl:

1) We derive an accurate approximation/gf) ast — +oo : I(Q) ~ I(Q) where

1(Q) = log det I + G(5(Q,3(Q)Q| +i(3(Q). 3(Q)) (7)

where§(Q) and4(Q) are two positive terms defined as the solutions of a system of 2
equations (see Eq[ (33)). The functioBsandi depend on6(Q),4(Q)), K, A, C, C,

and on the noise varianee. They are given in closed form.

The derivation of/(Q) is based on the observation that the eigenvalue distribuifo
random matrixHQH? becomes close to a deterministic distributiontas +oo. This

in particular implies that if(\;)1<;<, represent the eigenvalues HIQH”, then :

1 1 gl 1w i



has the same behaviour as a deterministic term, which twin® e equal tef(%). Taking
the mathematical expectation w.r.t. the distribution @& tthannel, and multiplying by
givesI(Q) ~ I(Q).

The error term/ (Q) — I(Q) is shown to be of orde®(1). As I(Q) is known to increase
linearly with ¢, the relative errOIJ(Q}(;J)(Q) is of orderO(tiz). This supports the fact that
I(Q) is an accurate approximation 6fQ), and that it is relevant to stud}(Q) in order

to obtain some insight of(Q).

2) We prove that the functio® — I(Q) is strictly concave or;. As a consequence,
the maximum ofI over @, is reached for a unique matriQ,. We also show that
I1(Q,) — I(Q.) = O(1/t) where we recall thaQ. is the capacity achieving covariance
matrix. Otherwise stated, the computatiorQf (see below) allows one to (asymptotically)

achieve the capacity(Q.).

3) We study the structure @), and establish tha®, is solution of the standard waterfilling

problem :

max log det (I + G, &)Q) )

Qe

whered, = §(Q,), 6, = 0(Q,) and

~ —1
< s ~ 1 K 0
G(6:,0s) = ———C+ ———AT (1 - C| A.
(54, 3:) K+l~ PR+l <T+K+1 )
This result provides insights on the structure of the apipnakng capacity achieving
covariance matrix, but cannot be used to eval@teince the parametefis ands, depend
on the optimum matrixQ,. We therefore propose an attractive iterative maximizatio
algorithm of I(Q) where each iteration consists in solving a standard wdiegfiproblem

and a2 x 2 system characterizing the parametéﬁ,sz?).

I11. ASYMPTOTIC BEHAVIOR OF THE ERGODIC MUTUAL INFORMATION

In this section, the input covariance matfix € C; is fixed and the purpose is to evaluate the
asymptotic behaviour of the ergodic mutual informatiiQ) ast — oo (recall thatt — +oo
meanst — oo, r — oo andt/r — ¢ € (0, +0)).

As we shall see, it is possible to evaluate in closed form @urate approximatiod(Q) of
I1(Q). The corresponding result is partly based on the resultdof devoted to the study of

the asymptotic behaviour of the eigenvalue distributiomnattrix X7 whereX is given by

>=B+Y, (8)



matrix B being a deterministie x ¢ matrix, andY being ar x t zero mean (possibly complex
circular Gaussian) random matrix with independent entrilesse variance is given by|Y;;|? =
U—:J Notice in particular that the variablg3;;; 1 < i < r, 1 < j < t) are not necessarily
identically distributed. We shall refer to the triangularay (afj; 1<i<r, 1<j<t)asthe
variance profile o ; we shall say that it is separableoifj = didj whered; > 0forl1 <:<r
and ch > 0 for 1 < j < t. Due to the unitary invariance of the EMI of Gaussian chasinel
the study of7(Q) will turn out to be equivalent to the study of the EMI of modf) (n the

complex circular Gaussian case with a separable variaraféepr

A. Study of the EMI of the equivalent modg! (8).

We first introduce the resolvent and the Stieltjes transfassociated withie X (Section
-A.T) ; we then introduce auxiliary quantities (SectifitA.2) and their main properties ; we
finally introduce the approximation of the EMI in this case¢8on[IlI-A.3).

1) The resolvent, the Stieltjes transforrenote byS(c?) and S(02) the resolvents of

matricesE X and XX defined by :

S(0?) =[5 +0°L] ", §(o) = [2V5+0%] " . )

These resolvents satisfy the obvious, but useful property :

I S(0?) < L (10)

o2’ o2

S(0?) <

Recall that the Stieltjes transform of a nonnegative megsis defined by/ @. The quantity

z

s(o?) = 1Tr(S(0?)) coincides with the Stielties transform of the eigenvalustritiution of

—or

matrix XX/ evaluated at point = —o2. In fact, denote by(\i)1<i<, its eigenvalues , then :

I~ 1 v(d\)
2 = — = _
S(J)_T;)\i+02 /R+)\+O'27
wherev represents the eigenvalue distributionXE*’ defined as the probability distribution :

1 r
Vv = ;Zé)‘l
i=1

whered,. represents the Dirac distribution at pointThe Stieltjes transform(o?) is important

as the characterization of the asymptotic behaviour of therealue distribution o=X is
equivalent to the study of(c?) whent — +oo for eacho?. This observation is the starting
point of the approaches developed by Pastur [29], Girko, [B3] and Silverstein [1], etc.

We finally recall that a positive x p matrix-valued measurg is a function defined on the

Borel subsets oR onto the set of all complex-valugdx p matrices satisfying :



(i) For each Borel seB, u(B) is a Hermitian nonnegative definitex p matrix with complex

entries;
(i) 1(0) =0;

(iii) For each countable familyB,,),en Of disjoint Borel subsets oR,
w(UnBp) = ZH(BH) .

Note that for any nonnegative Hermitianx p matrix M, thenTr(Mg) is a (scalar) positive
measure. The matrix-valued measyres said to be finite ifTr(u(R)) < +oo.
2) The auxiliary quantitiess, 3, T andT: We gather in this section many results of [17]

that will be of help in the sequel.

Assumption 1:Let (B;) be a family of r x t deterministic matrices such that :

supy ; Yoy |Bij|? < o0, sup, ; >i_; [Bij|* < 400 .

Theorem 1:Recall thaty = B + Y and assume tha¥ = %D%Xf)%, whereD andD
represent the diagonal matric& = diagd;, 1 < i < r) andD = diag(cij, 1 <j<t)
respectively, and wherX is a matrix whose entries are i.i.d. complex centered wittianae

one. The following facts hold true :

(i) (Existence and uniqueness of auxiliary quantjti€sr o2 fixed, consider the system of
equations :
1 ~ ~ -1
§=Tr|D (02(1r +DfF) + B, + Dﬂ)‘lBH)
N . . i 1 (11)
3= %Tr D (02(It +Dp) +BH(L, + Dﬁ)‘1B>
Then, the systenf (1.1) admits a unique couple of positivetisnisi(3(c2), (c?)). Denote

by T(¢%) andT(c?) the following matrix-valued functions :

{ T(o?) = [02(I+B(02)D)+B(I+ﬂ(02)ﬁ)IBH%1 : (12)

T(o?) = [02(1 + B(62)D) + BH(I + 5(c*)D)~'B
MatricesT(c2) and T (c?) satisfy

L,

T <=5 T <. (13)

(i) (Representation of the auxiliary quantitfje$here exist two uniquely defined positive

matrix-valued measurgs and & such thatu(R*) =1I,,, a(R*) = I; and

v [ M we [ E
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The solutions3(c2) and 3(c2) of system [(1) are given by :
Bo?) = TIDT() ,  Bo?) = 1D (15)

and can thus be written as

pip(dA) - fip(dN)

2\ 2\
st = [ RS Beh= | A

(16)

where i, and i, are nonnegative scalar measures defined by
1 _ 1.~
po(dX) = STr(Dp(dA)) and fiy(dA) = STr(Dp(dX)).
(iii) (Asymptotic approximatignAssume that Assumptidi] 1 holds and that

sup |D|| < dmax < +00  and  sup ||D|| < dmax < +00 .
t t

For every deterministic matricésl and M satisfyingsup, | M| < 40 andsup, |M|| <
+00, the following limits hold true almost surely :
{ limy oo LT0 [(S(02) = T(62))M] = 0 a
limy 4o 2T [(S(UZ) - T(&))M} ~ 0
Denote by and i the (scalar) probability measurgs= 1Trp and i = 1Trf, by (\;)
(resp.(S\j)) the eigenvalues aEX (resp. of=# X). The following limits hold true almost

surely :
{ im0 5210 600) = [ 00 (@) = 0 (18
limy— oo 7 30521 6(A) = fo ™ B(A) ildA) = 0
for continuous bounded functionsand ¢ defined onR™.
The proof of (i) is provided in Appendif] | (note that in [17], the existencelamiqueness
of solutions to the systenj ({11) is proved in a certain clasanaflytic functions depending on
o? but this does not imply the existence of a unique solu(i@rﬁ) wheno? is fixed). The rest

of the statements of Theorefh 1 have been established indbd]their proof is omitted here.

Remark 3:As shown in [17], the results in Theorefd 1 do not require anysS@mn
assumption fol. Remark that[(37) implies in some sense that the entried@?) andS(o?)
have the same behaviour as the entries of the deterministica@sT (o) and T(c2) (which
can be evaluated by solving the systdn] (11)). In particuking 1) forM = I, it follows that
the Stielties transform(o2) of the eigenvalue distribution aEX* behaves like TrT(o?),
which is itself the Stieltjes transform of measure= %Tru. The convergence statemept](18)
which states that the eigenvalue distribution3®£ (resp.X %) has the same behavior as

(resp.f) directly follows from this observation.
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3) The asymptotic approximation of the EMYenote byJ(c?) = Elogdet (I, + o 22%)

the EMI associated with matri¥. First notice that
)3) Ll : i
logdet [ I = 1 14+ —=
0ge<+ O_2> ;0g<+02>,

where the);'s stand for the eigenvalues 8%, Applying [3) to functionp(\) = log(A+0?)

(plus some extra work sincg is not bounded), we obtain :

) 1 ZEH +oo )
lim ( ~logdet (I+—5— | — log(A+07) du(N) ) =0 . (19)
r g 0

t—+4o00

Using the well known relation :

1 ) fee /11
—log det <I +— ) = / (— — ~Tr(xxH +wI)_1> dw
r o o

2 w T
teo /11
= / ——-TrS(w) | dw, (20)
o2 w T
together with the fact tha$(w) ~ T'(w) (which follows from Theorenfi]1), it is proved in [17]
that :
H +o00
lim F log det <I + ZZ; > —/ <l — 1TrT(uJ)) dw} =0 (21)
t—+oo | T o o2 w T
almost surely. Define by (c?) the quantity :
= R |
J(o?) = 7“/ <; — ;TrT(w)) dw . (22)

Then,J(0?) can be expressed more explicitely as :
J(0?) = log det [Ir + B(e?)D + %B(It + 6(02)]3)_1BH}
+ log det [It + 5(02)15} — 2B(0?)B(0?) , (23)
or equivalently as
J(0?) = log det [It + B(c?)D + %BH(IT + 5(02)D)‘1B]
+ log det [IT + B(ﬁ)n} — 2tB(0D)B(0%) . (24)

Taking the expectation with respect to the chan®l in (£3), the EMI J(o?) =
Elogdet (I, + o~2XX*) can be approximated by(c?) :

J(0?) = J(c%) + o(t) (25)

ast — +oo. This result is fully proved in [17] and is of potential ingst since the numerical
evaluation ofJ (o) only requires to solve the x 2 system [[Z1) while the calculation of(c?)
either rely on Monte-Carlo simulations or on the implemé&ataof rather complicated explicit

formulas (see for instance [22]).
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In order to evaluate the precision of the asymptotic appnaion./, we shall improve[(25)
and get the speed(c?) = J(0?) + O(t~!) in the next theorem. This result completes those in
[17] and on the contrary of the rest of Theor¢gn 1 heavily sebe the Gaussian structure of

3. We first introduce very mild extra assumptions :
Assumption 2:Let (B;) be a family ofr x ¢ deterministic matrices such that
sup || B|| < bmax < +00 .
t
Assumption 3:Let D and D be respectively: x ~ andt¢ x ¢ diagonal matrices such that
sup |D|| < dmax < +00  and  sup ||D|| < dmax < +00 .
t t

Assume moreover that

! R

lItlf ;TrD >0 and ugf;TrD > 0.

Theorem 2:Recall that¥ = B+Y and assume thaf’ = %D%Xf)%, whereD = diag(d;)
andD = diag(d;) arer x r andt x ¢ diagonal matrices and whed¢ is a matrix whose entries
are i.i.d. complex circular Gaussian variab@y (0, 1). Assume moreover that Assumptiofls 2
and[B hold true. Then, for every deterministic matriddsand M satisfyingsup, | M| < +oc

andsup, |M]| < +oo, the following facts hold true :
Var (L1e[se>M] ) =0 (%) and Var (17 [S(UQ)M} ol (26)
r 12 t 12

whereVar(.) stands for the variance. Moreover,

LTy [(E(S(0%) — T(e))M] = O (2) o
1y [(E(S(cf?)) ~TE))M| = 0(L)
and
2 T2 1
J(O’):J(U)-I-O(;) . (28)

The proof is given in Appendik]il. We provide here some comtsen

Remark 4:The proof of Theorenf] 2 takes full advantage of the Gaussiaiststre of matrix

3 and relies on two simple ingredients :

(i) An integration by parts formula that provides an expi@sgor the expectation of certain
functionals of Gaussian vectors, already well-known andelyi used in Random Matrix
Theory [25], [32].

(i) An inequality known as Poincaré-Nash inequality thauhds the variance of functionals
of Gaussian vectors. Although well known, its applicationrandom matrices is fairly
recent ([6], [33], see also [16]).
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Remark 5: Equations[(26) also hold in the non Gaussian case and candisigised by using
the so-called REFORM (Resolvent FORmula Martingale) mettindroduced by Girko ([13]).

Equations|[(37) and (28) are specific to the complex Gaussiactsre of the channel matrix
3. In particular, in the non Gaussian case, or in the real Gagsse, one would get(c?) =

J(o?) + O(1). These two facts are in accordance with :

(i) The work of [2] in which a weaker resulb(1) instead ofO(t~!)) is proved in the simpler

case wherdB =0;

(i) The predictions of the replica method in [30] (resp. [Bih the case wherd = 0 (resp.

in the case wher® =1, andD = L,);

Remark 6 (Standard deviation and biadjg. (26) implies that the standard deviation of
1Tr [(S(0?) — T(0?))M] and +Tr [(S(az) - ’i‘(a2))1\71] are of orderO(t~!) terms. However,
their mathematical expectations (which correspond to ths)lwonverge much faster towards
as (2F) shows (the order 8(t2)).

Remark 7:By adapting the techniques developed in the course of thef moTheorem[],
one may establish that”’ ES(c?)v — u”T(c%)v = O (1) , whereu and v are uniformly

boundedr-dimensional vectors.

Remark 8:Both J(0?) and.J(c?) increase linearly with. Equation[(28) thus implies that the
relative error% is of orderO(t=2). This remarkable convergence rate strongly supports
the observed fact that approximations of the EMI remainabdi even for small numbers of
antennas (see also the numerical results in seftion VI Mait similar observations have been

done in other contexts where random matrices are used, geBk.[30], [37].

B. Introduction of the virtual channeE[Qé

The purpose of this section is to establish a link betweesithglified model[B) = = B+Y

whereY = %D%Xf)%, X being a matrix with i.i.d2N (0, 1) entries,D andD being diagonal

matrices, and the Rician modd] (2) under investigatioH := |/ ;A + \/;—HV where

V = %Céwfﬁ. As we shall see, the key point is the unitary invariance & BMI of

Gaussian channels together with a well-chosen eingen'eesvector decomposition.
We introduce the virtual channHQé which can be written as :
K 1 w
_t®

MBS
W=

=/ ——AQ: + C:
K+1 Q K+1 Wt

where® is the deterministic unitary x ¢ matrix defined by

HQ (Q:CQ2)3 , (29)

®@=C:Q:(Q:CQ:) s . (30)
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The virtual channeIHQé has thus a structure similar tbI, where (A,C,C,W) are

respectively replaced withAQ:, C, Q:CQz:, W®O).

1= 1
Consider now the eigenvalue/eigenvector decompositibmsatrices -S— and 2592 -

VE+1 VE+1
€ _upu? and LE¥ _gpor (31)
VK +1 K+1

MatricesU and U are the eigenvectors matrices whilkand D are the eigenvalues diagonal
matrices. It is then clear that the ergodic mutual inforovatbf channe[HQ% coincides with
the EMI of £ = UZHQY2U. Matrix  can be written a& = B +Y where

B = KLHUHAQ%fJ and Y = %Déxf)% with X =UYWeU . (32)
As matrix W has i.i.d.CN(0,1) entries, so has matriX = UYW®OU due to the unitary
invariance. Note that the entries af are independent sind® and D are diagonal. We sum

up the previous discussion in the following proposition.

Proposition 1: Let W be ar x ¢ matrix whose individual entries are i.i.@.N (0, 1) random

variables. The two ergodic mutual informations

HQHY )

o2

H
and  J(0?) = Elog det (I + E)

1 =Elogdet (I
@ Bloar (11 :

are equal provided that chanr#dl is given by :

K 1
A+ Vv
K+1 VK +1

with V = 2-C2WC? ; channelE by ¥ = B+ Y with Y = 2.D3XD* and that [3p),[31)

and (32) hold true.

H=

C. Study of the EMI(Q).

We now apply the previous results to the study of the EMI ofrctedH. We first state the

corresponding result.

Theorem 3:For Q € C, consider the system of equations

5 = f(54,Q) (33)
5 = f(6,6,Q)
where £(6,6,Q) and f(4,4, Q) are given by :
1(6,0,Q) = %Tr{C[JZ (I, + KLH C)

K . § T e e
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~ ~ 1 ~ 1 5 1~ 1
f6.6.Q) = %Tr{QECQE 7 (I + - QICQY)
~ -1
K 1 H 5 1 -1
A (I’"JFK—HC) AQ3 | } (35)

Then the system of equations [33) has a unique strictly ipesiblution(5(Q),4(Q)).
Furthermore, assume thatip, [|Q| < +oo, sup, ||A|| < 400, sup, |C|| < +oo, and
sup; ||C|| < +oco. Assume also thainf; Ayin(C) > 0 where A\, (C) represents the smallest

eigenvalue ofC. Then, ast — +o0,

1(Q) = (Q) +0 G) (36)

where the asymptotic approximatidiiQ) is given by

~ —1
1(Q) = log det (mé@ seqQi e L K qian <1r+ Q) C) AQ;)

K+1 o2 K+1 K+1
5 to? <
4 log det <IT+K(—‘E>10> - @)@ . (D)

or equivalently by

K+1 02 K+1 K+1

+ log det (It + —Ii(Q) Q1/26Q1/2> —

5 -1
1(Q) = log det (IT cedler LA (v p Y aicel) @ AH>

to?

7T 0@0Q). (38

+1
Proof: We rely on the virtual channel introduced in Sectjon [ll-Bdaan the eigen-
value/eigenvector decomposition performed there.

Matrices B, D, D as introduced in Propositiof] 1 are clearly uniformly bouhdehile
inf, \TrD = inf, 1TrC = 1 due to the model specifications andf, 1TrQ:CQz >
inf; /\min(é)%T‘rQ > 0 as %TrQ = 1. Therefore, matrice®, D and D clearly satisfy the
assumptions of Theorenfip 1 afjd 2.

We first apply the results of Theorefh 1 to matlx and use the same notations as in the
statement of Theoreff 1. Using the unitary invariance ofrtheetof a matrix, it is straightforward

to check that :

~ B ~ —1
f6,6,Q 1 ) 5 R .
-t (o (o) em (1 ) ) }

~—

]

g
&
f S
“le
Il
|
o
lwh
Y
qm
N
[
+
lwh
<
+
—_
SN——
+
vs)

T
7 N
[

+
w)
ﬁ S

—_
N———
N——
|
Y
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Therefore,(8,4) is solution of [3PB) if and only if( 1§+1’ [gﬂ) is solution of [IJ1). As the

system [[J1) admits a unique solution, s@ ), the solution

i

6,0) to (B3) exists, is unique

—

and is related tds, 3) by the relations :

PR S
S VK+1U U VK1

In order to justify [3F) and[(38), we note thdto?) coincides with the EMI/(Q). Moreover,

(39)

the unitary invariance of the determinant of a matrix togethith (39) imply that/(Q) defined
by @7) and [[38) coincide with the approximatidngiven by (2B) and[(34). This provef [36)
as well. |

In the following, we denote b{l'x (¢?) and T i (c2) the following matrix-valued functions :

s 1 1~ 1 1 -1
Ti(0?) = |0+ 550)+ 7 AQI I+ QI CQH) Qi AY] )
~ 1= 1 1 5 111
Ti(o?) = [P0+ £5Q30Q%) + QAT (T + £20) ' AQ?]
They are related to matricéE and T defined by [@2) by the relations :
Tk(0?) = UT(c?)UH
~K(U) ~~(0)~ | (1)
Tk(c?) = UT(c?)UH

and their entries represent deterministic approximatiafs (HQH” + ¢%I,)~! and
(Q?H”HQ:? + ¢2I,)~* (in the sense of Theorefi 1).

As ITrTx = ITvT and }TeTx = 1TrT, the quantiies: TrTx and 1TrTx are the
Stieltjes transforms of probability measurgsand /i introduced in Theorenf] 1. As matrices
HQH' and =2/ (resp.Q%HHHQé and ©7X) have the same eigenvaluef,] (18) implies
that the eigenvalue distribution BIQH" (resp.QéHHHQé) behaves likeu (resp.f).

We finally mention that(c%) andd(c?) are given by

6(0—2):%TrCTK(02) and 5(02):%TrQ%(~3Q1/2TK(02), (42)

and that the following representations hold true :

2 pa(d ) RN fa(d\)
i0?)= | Koy and %)= [ BT 43)

where ;14 and fig are positive measures di satisfying puq(R™) = +TrC and fig(RT) =
. -
1TrQl/2CQl/2.
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IV. STRICT CONCAVITY OF I(Q) AND APPROXIMATION OF THE CAPACITY I(Qs)
A. Strict concavity o (Q)

The strict concavity of (Q) is an important issue for optimization purposes (see Sefo

The main result of the section is the following :

Theorem 4:The functionQ + I(Q) is strictly concave ore;.

As we shall see, the concavity dfcan be established quite easily by relying on the concavity

o2

of the EMI I(Q) = Elogdet <I + HQHH). The strict concavity is more demanding and its
proof is mainly postponed to Appendjx]Iil.

Recall that we denote by; the set of nonnegative Hermitiarx ¢ matrices whose normalized
trace is equal to one (i.e™'TrQ = 1). In the sequel, we shall rely on the following

straightforward but useful result :
Proposition 2: Let f : ¢; — R be a real function. Thetf is strictly concave if and only if
for every matricedQ, Q2 (Q1 # Q2) of €4, the functiong(\) defined on[0, 1] by
p(A) = f(AQ1+ (1 -2)Qz2)
is strictly concave.

1) Concavity of the EMI:We first recall that/ (Q) = Elog det (I + HQHH) iS concave on

o2

C1, and provide a proof for the sake of completeness. Denot@ by AQ; + (1 — \)Q. and
let () = I(AQ1 + (1 — A\)Qg). Following Propositior{]2, it is sufficient to prove thatis
concave. Adog det (I + HQHH) = log det (I + HHHQ), we have :

o2 o2

H
»(A) = Elogdet <I+HQH > ;

o2

H —1 yrH
) = IETY<1+HJI;IQ> H H(Ql—Q2)>

H'HQ\ ' HYH
(1+75%)

o2

¢"(\) = —-ETr

o2 02 02

HHHQ>‘1 HYH
2

(Q1 — Q2) (I + (Q1— Qz)] :

H -1 . . .
In order to conclude thap”()\) < 0, we notice that(I +H HQ> H'H coincides with

HQHY\ ' H
H
H (1+ Y ) =

(use the well-known inequalityl + UV)~'U = U(I+ VU)~! for U = H¥ andV = 22

oz /7t

We denote byM the non negative matrix

o2 2

HQHY\ ' H
(o

M = H <I+
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and remark that
¢"(A) = —ETr [M(Q1 — Q2)M(Q1 — Q2)] (44)
or equivalently that
¢"(N) = ~ETr [MY?(Q1 — Q2)M'*M'2(Q; — Qu)M'/?

As matrix M'/2(Q; — Q2)M'/? is Hermitian, this of course implies that’(\) < 0. The
concavity of¢ and of I are established.
2) Using an auxiliary channel to establish concavitylg)): Denote by the Kronecker

product of matrices. We introduce the following matrices :
A=1,9C, A=I1,%C, A=1,0A, Q=I1,Q.

Matrix A is of sizerm x rm, matricesA andQ are of sizeim x tm, andA is of sizerm x tm.

Let us now introduce :

. . K . 1 -
V=——A2WA: and H= A+ Vv,
vmt K+1 vVK+1

whereW is arm x tm matrix whose entries are i.i.N (0, 1)-distributed random variables.

Denote byI,,(Q) the EMI associated with channH :

I,(Q) = Elog det (I + HQHH) .

o2
Applying Theorem[B to the channdll, we conclude thatl,,(Q) admits an asymptotic
approximationT,,,(Q) defined by the system (34)-{35) and formuf@](37), where onie wi

substitute the quantities related to chanHeby those related to channHl, i.e. :
temt, reomr, A—-A Q—Q CoA CoA.

Due to the block-diagonal nature of matricAs Q, A and A, the system associated with
channeH is exactly the same as the one associated with ch&fingloreover, a straightforward

computation yields :
1. . _
_ — > 1.
—I,(Q=1Q), VYmz=1

It remains to apply the convergence res[il (36) to conclbdé t

lim —1,,(Q) = 1(Q) .

m—oo M

SinceQ — I,,(Q) = I,,(I,, ® Q) is concave,l is concave as a pointwise limit of concave

functions.
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3) Uniform strict concavity of the EMI of the auxiliary chagin Strict concavity off (Q):

In order to establish the strict concavity 6fQ), we shall rely on the following lemma :

Lemma 1:Let ¢ : [0,1] — R be a real function such that there exists a fanfiby, ),,>1 of

real functions satisfying :

(i) The functionsg,, are twice differentiable and there exisis< 0 such that
Vm>1, VAe€]o,1], "N <k<O0. (45)

(i) For every\ € [0,1], ¢m(A) —— o(N).

m—0o0

Then ¢ is a strictly concave real function.
Proof of Lemmd[J1 is postponed to Appen(if IlI.

Let Q1, Q: in €;; denote byQ = Q1 + (1 — M)Q2, Q1 = I, ® Q1, Q2 = I, ® Qo
Q = I,, ® Q. Let H be the matrix associated with the auxiliary channel and tiehyp :
HQHH>

Odm(A) = %Elog det (I + 2
We have already proved that,,()\) — (N 2 IAQ1 + (1 — A)Qg2). In order to fulfill
assumptions of Lemmfg 1, it is sufficient to prove that thenstex < 0 such that for every
A€ [0,1],

limsup ¢, (\) <k <0 . (46)

m—0o0

(A9) is proved in the Appendix]Il.

B. Approximation of the capacity(Q.)

Sincel is strictly concave over the compact $gt it admits a unique argmax we shall denote
by Q,, i.e.:
1(Q,) = max I1(Q) .

Qe
As we shall see in Sectidr] V, matr@, can be obtained by a rather simple algorithm. Provided
that sup, |Q,|| is bounded, Eq.[(36) in Theorefh 3 yieldsQ,) — 1(Q,) — 0 ast — oo. It
remains to check that(Q.) — I(Q,) goes asymptotically to zero to be able to approximate

the capacity. This is the purpose of the next proposition.

Proposition 3: Assume thasup, || A|| < oo, sup, ||C|| < oo, sup; |C|| < oo, inf; Amin(C) >
0, andinf; Apin(C) > 0. Let Q, and Q, be the maximizers ovet; of I and I respectively.

Then the following facts hold true :

(@) sup, Q.| < oc.
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(ii) sup, |Q.|| < oc.
(i) I1(Q.) =1(Q.) +O(t™).
Proof: The proof of items (i) and (ii) is postponed to Appenli} VI.tles prove (jii). As
>0 >0
= 0@ =0(t™")
by (i) and Th.[B Eq.[(36) by (i) and Th.[B Eq.[(36)

where the two terms of the lefthand side are nonnegativedaltigetfact thaQ. andQ, are the

maximizers ofl andI respectively. As a direct consequence[of (47), we Ha@.) —1(Q,) =
O(t~!) and the proof is completed. [ |

V. OPTIMIZATION OF THE INPUT COVARIANCE MATRIX

In the previous section, we have proved that ma®ix asymptotically achieves the capacity.
The purpose of this section is to propose an efficient way okimizing the asymptotic
approximation/ (Q) without using complicated numerical optimization algamits. In fact, we

will show that our problem boils down to simple waterfillinggarithms.

A. Properties of the maximum &fQ).

In this section, we shall establish some@f’s properties. We first introduce a few notations.
Let V(k, R, Q) be the function defined by :

N -1

K 1~ 1 1 K 1

7,Q)=logdet [I; + —— Q2CQ:z + ———— Q:zA" (1, AQ:
V(k, R, Q) = log et<t+K+1Q CcQ +02(K+1)Q ( +K+1C> Q)

K to“Kk
+10gdet<IT+K—+10>_K+1 (48)
or equivalently by
V(k,k,Q) =logdet [ I, + " C+ K AQ: (I, + ——Q:CQ: _1Q1AH
o e) =108 TR 02K +1) TRt

K+1 K+1
Note that if (5(Q), 5(Q)) is the solution of systen] (33), then :

~ 2 s
+ log det (It + LQWCQV?) _LOTRE S a9

I(Q) =V (§(Q),4(Q).Q) .
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Denote by(d,,d,) the solution(5(Q,),5(Q,)) of (B3) associated witfQ,. The aim of the

section is to prove thaB, is the solution of the following standard waterfilling prebt :

I(Q,) = max V(é*,g*,Q) )

Qety

Denote byG(k, <) thet x ¢ matrix given by :

N KR ~ K H P -1
G(K’K)_K—|—1C+02(K+1)A (Ir+ C> A . (50)

Then,V(k, &, Q) also writes

V (k. 7, Q) = log det (T + QG(k, 7)) + log det (T, + ——C _ Lotk (51)
1R, Q) = log ) & "TK 1 K+1’

which readily implies the differentiability ofx, &, Q) — V(k,k, Q) and the strict concavity
of Q — V(k,k,Q) (x and & being frozen).

In the sequel, we will denote by F'(z) the derivative of the differentiable functioA at
point z (z taking its values in some finite-dimensional space) andWy'(x),y) the value of
this derivative at poing. Sometimes, a function is not differentiable but still atindiirectional

derivatives: The directional derivative of a functioR' at - in directiony is

’ t10 t

when the limit exists. Of course, iF is differentiable atr, then F'(x;y) = (VF(x),y). The

following proposition captures the main features needetthénsequel.
Proposition 4: Let ' : €; — R be a concave function. Then :
(i) The directional derivative®”’(Q; P — Q) exists in(—oo, oo] for all Q,P in C;.

(i) (necessary conditignf I attains its maximum foQ, < Cy, then :

vQe €, F'(Q;Q-Q)<0. (52)
(iii) (sufficient conditioh Assume that there exis®, € €; such that :

vQel, F'(Q;Q-Q,) <. (53)

Then F admits its maximum aQ, (i.e. Q, is an argmax ofF' over ;).
If F is differentiable then both conditionf {52) arfd](53) write :

Although this is standard material (see for instance [4,p@#122]), we provide some elements

of proof for the reader’s convenience.
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1>

Proof: Let us first prove item (i). AQ +t(P — Q) = (1 —t)Q +tP € Cy, A(t)
t=H(F(Q+t(P - Q)) — F(Q)) is well-defined. Leth < s < ¢ < 1 and consider
t—s

A(t) — A(s) = {iF((l—t)QthP)Jr

: F@Q - F((1-9Q+sP)} |
(@) 1{ ((1—t)Q+tP t—s
< —<F|s +

1

t Q) - F(1-sa e

= J{F({(1-5Q+sP)-F(1-5)Q+sP)} = 0,

where (a) follows from the concavity ofF. This shows thatA(¢) increases as | 0, and in
particular always admits a limit ig—oo, oo].

Item (ii) readily follows from the fact thaf'((1 — ¢)Q, + tP) < F(Q,) due to the mere
definition of Q,. This implies thatA(¢) < 0 which in turn yields [BR).

We now prove (iii). The concavity of" yields :

As lim; o A(t) < 0 by (53), one gets VP € €1, F(P) — F(Q,) < 0. Otherwise stated}’

attains its maximum aQ, and Propositiorf]4 is proved. [ |

In the following proposition, we gather various propertietated tol.

Proposition 5: Consider the functions(Q),4(Q) and I(Q) from €; to R. The following

properties hold true :

(i) Functionsd(Q),4(Q) andI(Q) are differentiable (and in particular continuous) o@er

(i) Recall thatQ, is the argmax off over Gy, i.e.VQ € €1, I(Q) < I(Q,) . Let Q € C;.
The following property :

VP €€, (VIQ),P-Q)<0

holds true if and only ifQ = Q,.

(i) Denote by d, and 4, the quantities’(Q,) and 5(Q,). Matrix Q, is the solution of the
standard waterfilling problem : Maximize ov&) < ©; the function V(é*,S*,Q) or
equivalently the functiofiog det(I + QG (4., d,)).

Proof: (i) is established in the Appendix. Let us establish (ii)cRethatI(Q) is strictly
concave by Theoreirf] 4 (and therefore its maximum is attaiteat most one point). On the
other hand,I(Q) is continuous by (i) ove; which is compact. Therefore, the maximum of
I(Q) is uniquely attained at a poi@,. Item (i) follows then from Propositiofi 4.

Proof of item (iii) is based on the following identity, to beoped below :

(VI@.).Q-Q.) = (VaV (6-,3..Q.).Q-Q.) . (54)
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where Vq denote the derivative o¥/(x, %, Q) with respect toV’s third component, i.e.
VqQV(k, & Q) = VI(Q) with T : Q — V(k, %, Q). Assume that[(§4) holds true. Then item
(ii) implies that (Vg V (5*,5*,6*) ,Q—Q,) <0foreveryQ € ;. As Q — V(4,,0,,Q)

is strictly concave or€;, Q, is the argmax oﬂ/’(é*,g*, -) by Propositiof}4 and we are done.

It remains to prove[(34). Consid€ andP in €, and use the identity

(VI(P),Q - P) = (VqV((P),5(P),P),Q — P))

(P),P) (Vi(P),Q - P)

+
N
Q| @
e
N~
=
=
“%z

N @_V) (6(P),5(P),P) (V5(P),Q ~ P) .

We now compute the partial derivatives Bfand obtain :

ov 2 .

% = k(iR Q)

av t0'2 B I (55)
% = _K_i_l("{_f(l{v’{?Q))

wheref and f are defined by[(34) and (85). The first relation follows frdrf)(4nd the second
relation from [@P). As(5(Q),4(Q)) is the solution of systenf (B3), equatiofis](55) imply that :

8_V
ok

oV

= 5-(0(Q),0(Q),Q) =0. (56)

(5(Q),4(Q), Q)

Letting P = Q, and taking into accounf (p6) yields :

and (iii) is established. |

Remark 9: The quantities), ands, depend on matriQ,. Therefore, Propositiof] 5 does not
provide by itself any optimization algorithm. However, ivgs valuable insights on the structure
of Q,. Consider first the cas€ = I andC = I. Then,G(4,,0d,) is a linear combination of
I and matrix A A. The eigenvectors o, thus coincide with the right singular vectors of
matrix A, a result consistent with the work [19] devoted to the maxzation of the EMI/(Q).

If C =IandC # I, G(J,,4,) can be interpreted as a linear combination of matri€es
and A A. Therefore, if the transmit antennas are correlated, thenwectors of the optimum
matrix Q, coincide with the eigenvectors of some weighted sunCoénd A A. This result
provides a simple explanation of the impact of correlatesthdmit antennas on the structure
of the optimal input covariance matrix. The impact of caatetl receive antennas @@, is

however less intuitive because matax’ A has to be replaced witA” (I + 5,C) ' A.
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B. The optimization algorithm.

We are now in position to introduce our maximization alduritof 7. It is mainly motivated
by the simple observation that for each fixée 7<), the maximization w.r.tQ of function
V(k, k%, Q) defined by [Bll) can be achieved by a standard waterfillinggaioe, which, of
course, does not need the use of numerical techniques. Oatltee hand, forQ fixed, the
equations[(33) have unique solutions that, in practice, maobtained using a standard fixed-
point algorithm. Our algorithm thus consists in adaptingapaetersQ and g, separately by

the following iterative scheme :

— Initialization : Qo =1, (51,51) are defined as the unique solutions of systerh (33) in which
Q = Qo = 1. Then, defineQ; are the maximum of functio® — V(él,Sl,Q) on Gy,

which is obtained through a standard waterfilling procedure

— lterationk : assumeQ;._1, (5k_1,5k_1) available. Then(ék,&) is defined as the unique

solution of [3B) in whichQ = Q_;. Then, defineQ,, are the maximum of function
Q - V(ékvgk’v Q) on el-
One can notice that this algorithm is the generalizationhaf procedure used by [44] for

optimizing the input covariance matrix for correlated Ragh MIMO channels.

We now study the convergence properties of this algorithmd, state a result which implies

that, if the algorithm converges, then it converges to thigumargmaxQ, of 1.

Proposition 6: Assume that the two sequend@s),>o and (d;)r>o Verify

lim 5k — 5k—1 — O, lim Sk — Sk—l — 0 (57)
k—+00 k—+o00

Then, the sequend®))x>o converges toward the maximu@®, of 7 on €;.

The proof is given in the appendix.

Remark 10:If the algorithm is convergent, i.e. if sequen@®y)r>o converges towards a
matrix P,, Propositior[p implies thaP, = Q,. In fact, functionsQ — §(Q) andQ — §(Q)
are continuous by Propositi¢h 5. As = 6(Qy_1) andd;, = S(Qk_l), the convergence diQy)
thus implies the convergence 6f,) and (), and [GF) is fulfilled. Propositiof] 6 immediately
yields P, = Q,. Although we have not been able to prove the convergenceeoflgorithm,
the above result is encouraging, and tends to indicate tfuritdm is reliable. In particular, all
the numerical experiments we have conducted indicatedhatlgorithm converges towards a

certain matrix which must coincide by Propositign 6 wi.
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VI. NUMERICAL EXPERIMENTS.
A. When is the number of antennas large enough to reach theapstic regime ?

All our analysis is based on the approximation of the ergadigtual information. This
approximation consists in assuming the channel matrix tdabge. Here we provide typical
simulation results showing that the asymptotic regime é&lhed for relatively small number of

antennas. For the simulations provided here we assume :
- Q=1.

— The chosen line-of-sight (LOS) componeAt is based on equatiorf](4). The angle of

arrivals are chosen randomly according to a uniform distidn.

— Antenna correlation is assumed to decrease exponentiditythe inter-antenna distance

ie. Cij ~ pljiw_jl, Cij ~ p|}i%—j| with 0 < pr <1 and0 < pr < 1.
— K is equal tol.

Figure[1 represents the EMI(Q) evaluated by Monte Carlo simulations and its approximation
I(Q) as well as their relative difference (in percentage). Hére,correlation coefficients are
equal to(pr, pr) = (0.8,0.3) and three different pairs of numbers of antenna are coresider
(t,r) € {(2,2),(4,4),(8,8)}. Figure[lL shows that the approximation is reliable evenrfer

t =2 in a wide range of SNR.

B. Comparison with the Vu-Paulraj method.

In this paragraph, we compare our algorithm with the methogsgnted in [42] based
on the maximization off(Q). We recall that Vu-Paulraj's algorithm is based on a Newton
method and a barrier interior point method. Moreover, therage mutual informations and
their first and second derivatives are evaluated by MontésGamulations. In fig[]3, we have
evaluatedCr = maxqee, I(Q) versus the SNR for = ¢ = 4. Matrix H coincides with
the example considered in [42]. The solid line correspormshe results provided by the
Vu-Paulraj's algorithm; the number of trials used to evéduthe mutual informations and
its first and second derivatives is equal 30.000, and the maximum number of iterations
of the algorithm in [42] is fixed to 10. The dashed line cormggs to the results provided
by our algorithm : Each point represeni$Q,) at the corresponding SNR, wheR®, is
the argmax ofl ; the average mutual information at poi@}, is evaluted by Monte-Carlo
simulation (30.000 trials are used). The number of iteratits also limited to 10. Figurf] 3

shows that our asymptotic approach provides the same sabalb the Vu-Paulraj's algorithm.
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20 T
—— Montecarlo Simulations ( 2*2)
* Deterministic Approximant ( 2*2 )
15} [ — Montecarlo Simulations ( 4*4 )
x  Deterministic Approximant ( 4*4 )
—— Montecarlo Simulations ( 8*8)
<! Deterministic Approximant ( 8*8 )
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—— Relative Error (4*4)
—>— Relative Error ( 8*8)
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Fig. 1 — The large system approximation is accurate for taed Rician MIMO channels.
The relative difference between the EMI approximation ahdt tobtained by Monte-Carlo

simulations is less thah % for a 2 x 2 system and less than% for a8 x 8 system.

However, our algorithm is computationally much more effiti@as the above table shows.
The table gives the average executation time (in sec.) ofitengtion for both algorithms for

T:t:277“:t:477':t:8-

In fig. @, we again compare Vu-Paulraj's algorithm and ourppsal. MatrixA is generated
according to [4), the angles being chosen at random. Thesrtirand receive antennas
correlations are exponential with parameter< pr < 1 and0 < pr < 1 respectively.
In the experimentsy = ¢t = 4, while various values op, pr and of the Rice factorx
have been considered. As in the previous experiment, thenmax number of iterations for
both algorithms is 10, while the number of trials generatedevaluate the average mutual
informations and their derivatives is equal to 30.000. Ogpraach again provides the same
results than Vu-Paulraj's algorithm, except for low SNRsf0= 1, pr = 0.5, pr = 0.8 where

our method gives better results : at these points, the Vir&aualgorithm seems not to have
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n=N=2|n=N=4|n=N =28

Vu-Paulraj 0.75 8.2 138

New algorithm 1072 3.1072 7.1072

Fig. 2 — Average time per iteration in seconds

converge at the 10th iteration.

[N
0o

T T T
Vu-Paulraj L
L *  New Algorithm i

= P = =
o N ~ o
T T T

o]
T

Capacity (bps/Hz)

-5 0 5 10 15
SNR (dB)

Fig. 3 — Comparison with the Vu-Paulraj algorithm |

VIlI. CONCLUSIONS

In this paper, an explicit approximation for the ergodic valtinformation for Rician MIMO
channels with transmit and receive antenna correlatiomagiged. This approximation is based
on the asymptotic Random Matrix Theory. The accuracy of fhgr@ximation has been studied
both analytically and numerically. It has been shown to ey @ecurate even for small MIMO
systems : The relative error is less ths# for a 2 x 2 MIMO channel and lesg % for an
8 x 8 MIMO channel.

The derived expression for the EMI has been exploited tovdeain efficient optimization

algorithm providing the optimum covariance matrix.
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20

;
—&—K=0.1,p=0.98, p=0.99 A

B 4 k=01, p,70.8,p=0.5

16| —+—K=1,p=0.8,p=0.5

14t

i
N
T

10f

Capacity (bps/Hz)

SNR (dB)

Fig. 4 — Comparison with the Vu-Paulraj algorithm I

APPENDIX I

PROOF OF THE EXISTENCE AND UNIQUENESS OF THE SYSTE).

We consider functiong

—~

k, k) and g(k, k) defined by
] ) »
Tr |D <02(IT +D#&) + B(L + D/{)‘lBH>

(58)

~ ~ —17
Tr|D (az(It +Dr) + BH(I, + DR)‘1B>

For eachs > 0 fixed, functionk — g(k, &) is clearly strictly decreasing, converges towareo
if x — 0 and converges t0 if x — 4oo. Therefore, there exists a unique> 0 satisfying

g(k, k) = 1. As this solution depends of, it is denotedh(%) in the following. We claim that
— (i) Functionk — h(k) is strictly decreasing,
— (i) Functions — &h(k) is strictly increasing.

In fact, considersy > &;. It is easily checked that for each > 0, g(k,%1) > g(k,R2).
Hence, the solutiork(%;) and h(ks) of the equationg)(x,<1) = 1 and g(k, k2) = 1 satisfy
h(k1) > h(k2). This establishes (i). To prove (ii), we use the obviousti@tag(h(%1),R1) —
g(h(R2), R2) = 0. We denote by(U;);-1 » the matrices

I
h(F:)

It is clear thatg(h(k;), ki) = %TrDU;l. We expresg(h(k1), k1) — g(h(Rz2), R2) as

-1
U; = o2 (h(#;)I + £;h(%;)D) + B ( + f)> B

o(h(R1). 1) — g(h(Rr). Fo) = TTXD(UT — U3
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and use the identity

Ul-uyt=ut(u,-u) Uyt (59)
Using the form of matrice$U;);—; 2, we eventually obtain that
g(h(R1), k1) — g(h(R2), R2) = u(h(R2) — h(k1)) + v(Reh(F2) — R1h(F1))
wherew andv are the strictly positive terms defined by
u:%ﬁDuf(£I+Ba+h@gﬁrwr+mmﬂm4BH)U;

and

1
v=-TrDUT'DU; ! .
t

As u(h(fﬁg) — h(/?al)) + ’U(/?agh(/?;g) — th(;&l)) = 0, (h(fﬁg) — h(/?al)) <0 |mp|l€S that
Roh(R2) — R1h(R1) > 0. Hence,kh(k) is a strictly increasing function as expected.
From this, it follows that functionx — g(h(k), %) is strictly decreasing. This function

converges tot+oo if & — 0 and to0 if # — +oo. Therefore, the equation
i — §(h(7), 7) = 1

has a unique strictly positive solutigh If 5 = h((3), itis clear thay(5, 3) = 1 andg(8, 3) = 1.
Therefore, we have shown th@t, ﬁ) is the unique solution of (11) satisfying> 0 andgs > 0.

APPENDIX I

PROOF OFTHEOREMf]

This section is organized as follows. We first recall in setise [lI-A] some useful
mathematical tools. In subsecti¢n |I-B, we establiff (26)[1-C, we prove [2]7) and[(28).
Technical details that are needed to establish (27) prjdd@8nlso given in subsectiops 1}-D

and[IT-§.

We shall use the following notations.ufis a random variable, the zero mean random variable
u—E(u) is denoted bycl. If 2 =z +1iy is a complex number, the differential operat%sand
£ are defined respectively b%’(a% — i%) and } (a% + i%). Finally, if ,B,Y are given
matrices, we denote respectively §y, b, y; their columns.
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A. Mathematical tools.

1) The Poincaré-Nash inequalitybet x = [z1,...,25]7 be a complex Gaussian random
vector whose law is given bfE[x] = 0, E[xx”] = 0, and E[xx*] = E. Let & =
®(xq,...,207,%1,...,Z0) be aCl complex function polynomially bounded together with

its partial derivatives. Then the following inequality bsltrue :
Var(®(x)) < E [vch(x)T = vz<1>(x)} +E [(V5<I>(x))H = V5<I>(x)] ,

whereV,® = [0®/0z,...,00/0zy]|" andV:® = [00/0z,...,09/0zy]" .
This inequality is well known (see e.g. [7] and [21]).

LetY be ther x ¢ matrix Y = -D2XD?, whereX has i.i.d.€N(0,1) entries and consider

Vit
the stackedt x 1 vectorx = [Y11,...,Y.]”. In this case, Poincaré-Nash inequality writes :
Var (® ZdeE )2+ o8(Y) | (60)
=i =1 =1 8Yw Y i

2) The differentiation formula for functions of Gaussiamdam vectorsWith x and® given

as above, we have the following

f: =], { 8;:)} : (61)

This formula relies on an integration by parts, and is thderred to as the Integration by
parts formula for Gaussian vectors. It is widely used in Mathtical Physics ([14]) and has

been used in Random Matrix Theory in [25] and [32].

If x coincides with thert x 1 vectorx = [Y11,..., Y], relation [6]L) becomes
E[Y,,®(Y)] = mE {aq)_(Y) ] . (62)
t aqu

Replacing matrixY by matrix Y also provides

_ dydy_ [0D(Y)
E|Y,,®(Y)| = —IE : 63
70 (v)] = e | 55 (63
3) Some useful differentiation formula3he following partial derivativesmsﬁ and gipq
for eachp,q € {1,...,r} andl <i <r, 1 < j <t will be of use in the sequel. Straightforward
computations yield :
aSPq J—
aqu J—
me = —Si(S6),
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B. Proof of [2p)

We just prove that the variance dfTr(MS) is a O(%) term. For this, we note that the
random variablel Tr(MS) can be interpreted as a functidr(Y) of the entries of matrixy,
and use the Poincaré-Nash inequalfty] (60yptd). Function®(Y) is equal to

1
= n Z Mg pSpq -
P:q

Therefore, the partial derivative d@f(Y) with respect toy;; is given by

20(Y) 1 0S4
oy, 1M

= PGy
P.q *

which, by (64), coincides with

9D (Y)
Yy,

1 1
=D My;pS,i(£)'S), = — (&SMS), .

p,q

As d; < diax andd; < dpax, it is clear that

d OP(Y
ZdeE‘ 35(@)

i=1 j=1

It is easily seen that

(5HSMS2MH55§I ) -

ZE' B

As ||S|| < & andsup, [|[M]|| < +oo, £SMS?2MYS¢T s less thank sup, | M2 Hst?.

o2

Moreover, E||,||?> coincides with ||b,[|> + +d; >_;_, d;, which is itself less tharb?

max

dmaxdmaxg, a uniformly bounded term. Therefore,

ZE‘ aYm

is aO(%) term. This proves that

—ZdeE‘M’ )"

=1 j=1

It can be shown similarly that

—ZdeE‘aq’ Y)[*

=1 j=1

-o(a)

The conclusion follows from Poincaré-Nash inequalfty] (60)
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C. Proof of [2f) and[(28).

As we shall see, proofs of [27) anfi[28) are demanding. We ifitatduce the following

notations : Define scalar parameteis?), a(o?), a(0?) as

n(o?) = 7 Tr (DS(0?))
a(o?) = E[$Tr (DS(0%))] (65)
a(o?) = 1Tr [f) <02(I—|—af)) _1( —BHE(S(UZ))B(I—I—af))_l)]

and matriceR(0?), R(0?) as

-1 -1
R(0?) = [02 (I+aD)+B (1 + aD> BH}

. 1 (66)
R(0?) = [02 (I+aD)+B (1 + aD) BH}
It is difficult to study directly the tern} TtM(E(S) — T). In some sense, matriR can be seen
as an intermediate quantity betweB(S) and T. Thus the proof consists into two steps : 1)
first, studying2 TrM(E(S) — R) and 2) studying" TrM(R — T).

1) First step: The first step consists in showing the following Proposition

Proposition 7: For each deterministic x » matrix M, uniformly bounded (for the spectral
norm) asr — oo, we have :
1 1
?Tr M (E(S)—R)]| =0 (t_2> : (67)
We just sketch the proof of this proposition, and provide dieailed proof in subsectidn TI}D.
In order to use the Integration by parts formula) (62), renthst

0?S(0%) +S(c*)ZXH =1. (68)
Taking the mathematical expectation, we have for gaghe {1,...,7} :
o?E(Spq) + E [(SZE), ] = d(p —q) - (69)

A convenient use of the Integration by parts formula allowgxpressE [(SEEH)pq] in terms
of the entries of£(S). To see this, note that

T

[ SZZH pq = Z E(Spizijz—qj)
7j=11i=1

For eachi, E(S,;%;;3,;) can be written as

E(SpiZijXq;) = E(Spi) BijByj + E (Spi¥qs) Bij + E (SpiYijZes) -
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Using (62) with function®(Y) = S,;3,; and (6B) with®(Y) = S,;, and summing over index
1 yields :

E [(Sfj)pm] -

dyd: . — dyd; .
%E(Spq) - djE [U(SEj)pzq,j] - %E [Spqgg'{Sbj] +E [(Sbj)p] qu :

(70)
Eq. (2§) forM = D implies thatVar(n) = O(%), or equivalently thatE(?;z) = O(%). This,
in some sense (details are given in subsedior 1I-D), allmespproximatet [n(SEj)pm by
E(n)E [(S€;)p2q,;] = oE [(SE;)pEq,;]. Therefore, EQ.[(70) can be written as
E [(Sfj)pm] = qudjE(Spq) - anIE [(Sfj)pzq,j - @E [SpqngbJ‘] +E [(Sbj)p] B—qj :
Solving w.r.t.E [(S€;),%,,;], we obtain
1 dyd; 1

1 dyd;
E[(SE) T ] ~ = _E(S,,) + —E[(Sb;),] By — - —L
[(S€)p2q,j 1+ ad (Spq) 1+ ad, [(Sb;)p] By, 11+ ad,

Writing £, = b; + y;, and summing ovej provides the following approximate expression of

E[(SZE)p] :

E [qugf Sb;] .

E[SE8H),] ~ d, %ﬂ B +aD) ] E(S),)
+E [(SB(I + af))_lBH>pq] —d,E [Spq%ﬁ (SBD( + ozf))_lBH>]
—d,E [qu%ﬁ (SBf)(IJraf))_lYH)] . (71)
Using similar calculations, it is possible to establishttha
E [Spq%Tr (SBf)(I + af))_lYH>] ~ —E(S,)E [%Tr (SBf)(I + aﬁ)‘lYHﬂ
E [Spq%Tr (SBf)(I + af))_lBH>] ~ E(S,)E ETr (SBf)(I + af))_lBHﬂ
and that
E [%Tr (SBf)(I + af))_lYH>] ~—a %Tr (E(S)Bf)z(l + af))—2BH> . (72)
Therefore E [(S©X*),,] can be approximated by
d, %Tr [13(1 + aﬁ)—l} E(Spq) + E [(SB(I + aﬁ)—lBH> ]
prq
— dy E(Spq)E [%Tr (SBf)(I + af))_lBH)}
+ ady E(Spq)E [%Tr (SBf)Z(I +aD)2BH )] . (73)

Plugging the above approximate expressioEc@(SZEH)pq] into (69), and solving with respect

to E(S,,), we obtain after some algebra that

<IE [S <02(I +aD) +B(I+ ozf))‘lBH)] )pq ~5(p—q)
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or equivalently that

E(Spq) = Ryq -

In order to prove Propositiofl 7, it is of course necessaryviluate the convergence speed
toward O of the error term&(S,,) — R,,. Fortunately, Poincaré-Nash inequality allows to
study these terms rather easily, and to prdvé (67). Morelsletee given in subsectidn I1}D.

2) Second stepThe second step consists in showing the Proposition :

Proposition 8: For each deterministic matri®vI, uniformly bounded for the spectral norm

ast — oo, we have :

%Tr M(R—T) =0 <tl2> . (74)
We first observe thaR — T = R (T~! — R™!) T. Using the expressions &' and T,
multiplying by M, and taking the trace gives

%Tr M(R-T)] = (3—a) az%Tr(MRDT) +
1 ~ ~ -

(a=p) STr [MRB(I + #D)"'D(I + ﬁD)—lBHT} . (75)
As the termsZ-Tr(MRDT) and 1 Tr [MRB(I + BD)'D(I + ﬁf))—lBHT] are uniformly
bounded, it is sufficient to establish that — 3) and (@ — 3) are themselve®) (%) terms. For

this, we first prove the following lemma.

Lemma 2:a and& can be written as
1 N 1 ~ -
o« = STIDR)+¢ & = T <DR) te, (76)

wheree andé are O(%) terms.
Proof: The first relation of [(76) follows immediately from Propasit [{ when matrixM
is equal toD. To establish the second relation, we again use Propo§jtfon a relevant matrix

M, and obtain that
- ~ -1 ~

a(o?) = LT [D (02(1 +aD)) (1 _BHRB(I +aD)‘1)} +é
whereé = O(%). We claim that

L (2 50 H -1 - (PR

ST {D (a (I+ aD)) (I ~BARB(I + aD) )] = T (DR) . 77)
In fact, using the definition oR, we get that

(BH RB(I + af))—1> -

B/ [I + (214 aD)) ' B(I + ozf))_lBH)} " (031 + aD)) ' B(I + aD) .
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In order to simplify the notations, we put
G = (¢*(1+aD)) ' BI+aD) "

Using the identities

BY (1+GBY)"'G = (1+B”G) 'BfG

1- (1+B7G) 'B7G = (1+B7G)"’ ’
we get that

- (BH RB( + af))_l) = (1+B"G) "
Hence,
_ N1 - .
(02(1 + aD)> (I _BARB(I+ aD)—1> ~ R,

which eventually yields[(77). This establishes the secandgon of [7F). [

We now establish that — 5 anda — ( are bothO(%) terms.

First expresga — 3) = 1TrD(R — T) + ¢. Using (7§) forM = D vyields

(a—B) (1 - %Tr [DRB(I + D)~ D(1 + ﬁf))‘lBHT]) +(@-p) az%Tr(DRDT) — e
(78)

Similarly, (& — 8) = iTr [f)(f{ — ’i‘)] + ¢ Expressing(R — T) as (R — T) =

R (’i“l — R‘1> T and replacingl~! andR ™! by their expressions, we obtain after straigh-

forward computations :

(a—B) UZ%Tr(f)RﬁT) +(@—7) (1 _ %Tr [DRB' (1 + 5D)"'D(I + 5D)—1DTD _ e
(79)

Equations[(78) and (¥9) can be interpreted as a linear sgsten. (« — 3) and (& — /3). More

precisely, if we definéug, v, ty, 0g) by

up = 1-1Tr(DRB(I+AD)'D(I+ D)~ 'BYT)

i = 1- 1Ty (DRBY(I+ 3D)"'D(I+ /D) !BT) (80)
vg = o1 Tr(DRDT)

iy = o?1Tr(DRDT)

then, [7B) and[(19) can be written as

ug Vo o — ﬁN _ € . (81)
ug Vo a—p €

If the determinantyoy — tigvg Of the 2 x 2 matrix governing the system is nonzero;- 5 and
& — (3 are given by :

’U~06 — ’U(]g - ~ ’LL()g — ?106
o — ﬁ = —, o — /3 - = = 3 (82)
UpVo — UoVo UpVo — UpVo
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o, v, do, o being uniformly bounded. As and é are O(%) terms, (o — 8) and (& — 3)
will themselves beD (%) terms as long as the inverseydy — dyv)~' of the determinant is

uniformly bounded. In order to state the correspondingltese define(u,v,u,v) by

u = 1-1iTr(DTB(I+ D) 'D(I+ D)~ 'BYT)

o = 1-1Tr(DTBY(I+ 3D)"'D(I+ 3D) 'BT) (@3)
v o= o’ 1Tr(DTDT)
i = o1 Tr(DTDT)

The expressions of(u,v,a,0) nearly coincide with the expressions of coefficients
(ug, vo, Ug, Vo), the only difference being that matric&s andR are replaced in the definition
of (u,v,,7) by matricesT and T respectively. The following result, proved in subsection

=B} suggests that the study af — @v provides useful informations omy — gvo.

Lemma 3: (ug, vo, g, 0g) can be written as

Uyg = U+ €y
Vg = U+ € (84)
V9 = UVt €y
Uy = U+ €,

wheree,, é,, €, €, converge ta) whent — +oc.
The behaviour ofio—aw is provided in the following Lemma, whose proof is given ifbsaction
l1-E}

Lemma 4: Coefficients(u, v, u, ) satisfy :

- () u=7,

— (i) 0 <u < 1 andinf; u > 0,

— (iii) 0 < uv —uv < 1 andsup, Wlm < +o0.
Lemmag[B and]4 immediately imply that it exigtssuch thatd < gty — @gve < 1 for each
t >ty and

1

sup ————— < 400 . (85)
t>t, U0V — UV

This eventually shows: — 3 anda — 3 are of the same order of magnitude thaandé, i.e.
are O(+) terms which in turn establishes Propositfdn 8.

Eqg. (28) eventually follows from the integral represemat{27)

J(0%) — J(o%) = /+OO Tr (E(S(w)) — T(w)) dw. (86)

2

as well as a dominated convergence argument that is omitted.
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D. Details of the proof of Step 1
We provide the detailed proof of Propositiph 7. We first stateseful Lemma.

Lemma 5:Let P, P; andP, be deterministie: x ¢, ¢ x ¢, t x r matrices respectively, uniformly

bounded with respect to the spectral normtas oc. Consider the following functions oY'.

®(Y) = %Tr El (87)
(YY) = %Tr [S=P, =Py | (88)
T(Y) = %Tr [SE=P,Y/P,] . (89)

Then, the following estimates hold true :

Var(®) = O<tl2> : (90)
Var(®) = O<tl2> : (91)
var @) = o~ 92)

=)
The proof, based on the Poincaré-Nash inequ (60), istedn
We now complete proof of Step 1. We take Ef.](70) as a startmigtpand writen as
n =E(n) + 1 = o+ 1. Therefore,
E [1(S&))p S0g) = A [(S€;), Tq;] + B [11(S€,) Tay | -

Plugging this relation into[(0), and solving w.fR.[(S¢;), X, j] Yields

_ 1 dq‘ij 1 ) :
B(SET] = 1 o B + T ESh By
1 dqd} H ) J] o I
T B[S Sh] - [7(5€,), %3] -

Writing §; = b;+y;, and summing ovej provides the following expression E‘[(SZEH)pq] :
1 - -
E[STE)] = dy7T [D(I + aD)_l} E(S,,)

+E {(SB(IJraf))‘lBH) ] —d,E {Spq%Tr (SBﬁ(Haf))—lBH)]

pq
—d,E {Spq%Tr (SBf)(I + aﬁ)‘lYHﬂ ~E [?7 (SZf)(I + af))—le> ] . (93)
p,q
The resolvent identity[($8) thus implies that
d _ .
6(p—q) = o”E(Sp)+ LTr |DIL+aD) ™| E(S))

+E [(SB(I +aD)"'B") ] —dyE [Spq%Tr (SBD( + ozf))_lBH>]

pq

—d,E [Spq%Tr (SBf)(I n ozf))_lYHﬂ “E [% (szf)(l + af))_12H>p q] . (94)
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In order to simplify the notations, we defing and p, by

o = %ﬁ(SBﬁ(Haf))—lBH) and py = %Tr (SBﬁ(1+a1f))—1YH) .

Fori = 1,2, we write E(S,,p;) as
E(Spgpi) = E(Spq) E(pi) + E <Spq POZ> :
Thus, [9%) can thus be written as

Sp—q) = 0°E(Sp) +d, %Tr D+ aD)™! | E(S),)

+ <E(S)B(I + af))—lBH> —d, E(qu)%ﬁ (E(S)Bf)(I + af))—lBH)

1 - -
— dyE(Spg)E {ZTr <SBD(I + aD)_lYH>] —d,E <Spq p1> d,E <Spq p2>
“E [% (SZf)(I + aﬁ)_12H> ] . (95)
p,q
We now establish the following lemma.
Lemma 6:
Epy = IEET(SBIN)I D)1y H
p2 = ;T (I+aD)™'Y

= —a %Tr <E(S)Bf)2(1 + af))_ZBH> ~E (n p3> , (96)

where ps is defined by
ps = %ﬂ (SBf)Z(I + aﬁ)—22H> .
Proof: We expres$(p,) as

E(p2) = i 11+'d E(y}'Sb;)

1 (97)
- ?Zgzl 1+ad, > i—1 E((Sby):Yij)
and evaluaté ((Sb;),;Y;;) using formula [@3) ford(Y) = (Sb;);. This gives
8Szk
E ((Sb;);Y; dd ZE(an>Bk]—.
By €4).
9Si Y .
E dYy; = —E (Si(bj'S)) — E (Su(y; S)k) -
Therefore,
E (y;'Sb;) = —d;E (nbj'Sb;) — d;E (ny;'Sb;) .
Writing againy = E(n) + 1 = o + 1, we get that
E(y¥sb;) = —ad;E (b¥Sb;) — adE (ySb,) -

~d;E (71b2Sb; ) — ;E (7y'sb;)
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Solving this equation w.r.tE (nybj) yields

d; d; o d; °
E (ySb;) = ——2Y _E (blSb;) — — 2 _E (7b#Sb,) - —9 _FE Hgp.) (99
(v, Sb;) ad, (bj'Sb;) T od (n] g) T od (nyy J>( )

or equivalently
d; d; °

E (ySb;) = ——*% _E (bYSb;) — — 4 _F (1 ¢HSb,) . 100
vy Sby) = =7 T E(bS) = 7 (i€!'sb;) (100)
Eq. (©$) immediately follows from[{$7)[(200), and the riatE (1 p3) = E(7 p3). n

Plugging [9p) into[(95) yields
6(p—q) + Apg
= E(S,,) [02 +d, (%Trf)(l +aD)"' —E(p1) + a%TrE(S)Bf)Q(I + af))—2BHﬂ
+ [E(S)B(I + ozf))_lBHLq (101)
where A is ther x r matrix defined by
Ay =E {% (s=D+ af))_lZH>pq] +d,E <§pq(p°1 + P02)> — d,E(S) E (1 5)
for eachp, ¢ or equivalently by
A=E [73 (szf)(I + af))—leﬂ +E <(p01 + p2) S> D-E (77 pg) E(S)D .

Using the relation

aDI+aD) ' =1—-(I+aD)!,

we obtain that

= E(p) - %TY (E(S)Bf)(l +aD)?*BY ) : (102)
Therefore, the term
%Trf)(l +aD)™ —E(p1) + Oz%Tr (E(S)BD*(I + aD)?B )
is equal to

%Trf)(l +aD) - %ﬁ (E(S)Bf)(I + af))—2BH)

— T [DI+aD) ! (1- BIES)BI+aD) )]
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which, in turn, coincides withr> & (see Eq. [(@5)). Eq[(1P1) is thus equivalent to

(E(S) [02(1 +aD) +B(I+ af))—lBH} )pq = 3(p—q) + Dpg (103)

or, in matrix form,

ES)R'=1+A (104)

E(S)=R+AR. (105)

In order to complete the proof of Propositifin 7, it remainsheck that ifM is a deterministic,

uniformly bounded matrix for the spectral normas— oo, then

lTrARM =0 <i> .
t 12

For this, we write TTARM as 1 TrARM = T} + T, — T3 where

T, = E [% Ly <SE]3(I+a]3)_1EHRM>] ,
T, = E ((,51 + o)t Tr(SDRM)> :

o

T, = E(%pg) LTy (E(S)DRM) .

We denote by, the term

1 . .
pr=Tr (SED(I + aD)—leRM>
2

and remark thafl; = E(1 p,). Eq. (2§) implies thaﬁE(%Q) and E {% Tr <§DRM)> are

O(%) terms. Moreover, Lemmf] 5 immediately shows that for each 1,2,3, E(p; ) is a
O(%) term. The Cauchy-Schwarz inequality eventually proviggsARM = O(:), which

t2
completes the proof of Propositigh 7.

E. Details of the proof of Step 2
1) Proof of Lemmd]3:n order to establish Lemn{g 3, we first prove that :

Lemma 7:

a—fF = o(l) and a—p8 = o(1) . (106)
Proof: We first prove that ifo? is large enough, thef (J06) holds. For this, we tdk§ (82)

as a starting point, and study the behaviour of coefficieptsg, vo, Uy for large enough values



41

of o2. As matricesR and T are less thanbI, and matriceR andT are less thanb Ty, it is

clear that :
we > 1— L1Tr [DB(I + BD)"'D(I + ﬁf))_lBH] > 11— 4 T dpaimaxbP
B > 1-L1Tr [f)BH(I + GD)"'D(I + BD)—lB] > 1 L dpaxdimaxbPias
uy < ;“ )
vg < o di“’é“‘

(107)
As L — ¢, it is clear that there exists} and an integet, for which ug > 1/2,9y > 1/2, 49 <
1/4,v9 < 1/4 for t > to ando? > of. Thereforeugty — igvg > = for t >ty ando? > of.
Eq. (82) thus implies that i52 > o2, thena — # and@ — (3 are of the same order of magnitude
ase = O(#), and therefore converge to 0 wheén— -+oc. It remains to prove that this
convergence still holds fob < 0% < 2. For this, we shall rely on Montel's theorem (see
e.g. [5]), a tool frequently used in the context of large @ndmatrices. It is based on the
observation that, considered as functions of parameten(os2?) — 5(0?) and a(o?) — 3(c2)
can be extended to holomorphic functions ©n- R~ by replacinge? by a complex number
z. Moreover, it can be shown that these holomorphic functiares uniformly bounded on
each compact subsdt of C — R™, in the sense thatup,sup,cx |a(z) — 8(z)] < 400
andsup, sup,c |@(2) — B(z)] < +oo. Using Montel's theorem, it can thus be shown that
if a(0?) — B(c?) anda(a?) — G(o?) converge toward zero for eaett > o7, then for each
ze C—R™, az)—f(z) and@(z) — 5(z) converge as well towards 0. This in particular implies
thata(o?) — B(0?) anda(o?) — 3(c) converge towards O for eaett > 0. This proves Lemma
fd. For more details, the reader may e.g. refer to [17]. |

We note that Montel’'s theorem does not guaranteedhat? anda — 3 are still O(%) terms
for 02 < o3. It is therefore necessary to prove Lemnjjs 3 find 4 to obtérésult from Eq.
(E2).

In order to complete the proof of Lemm@ 3, we observe that, BY) (and [10p),
1Tr[M(R — T)] converges towards O for each uniformly bounded ma¥ix It can be shown
similarly that +Tr [M(f{ — ’ZN[‘)} converges towards 0 for each uniformly bounded malvix
Using these properties for relevant matriddsand M immediately yields Lemm§ 3.

2) Proof of Lemmd]4.1n order to establish item (i), we remark that a direct aggian of

the matrix inversion Lemma yields :
TBY(I+3D)"! = (1+ D) 'BYT . (108)

The equalityu = & immediately follows from [(108).
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The proofs of (ii) and (iii) are based on the observation thaiction o> — o23(0?) is
increasing while functionr? — ((02) is decreasing. This claim is a consequence of Eg. (16)

that we recall below :

2 dus(A) a0 oy dfip(A)
st = | i) = |

+ Ao + A+o2’
wheredp,(\) = Tr(Ddp(N)) anddjip(\) = 2Tr(Ddfi())). Remark thayu,(RT) = 1Tr(D)
and thatji,(R*) = 1Tr(D) Note thatf is decreasing becausé — ﬁ is decreasing and
o?3(c?) is increasing because — W is increasing. Denote bythe differentiation operator
w.r.t. o2. Then,(628) > 0 and 8" < 0 for eacha?. We now differentiate relationg (15) w.r.t.

o?. After some algebra, we obtain :

u(0?B) +o*w B = iTy(DTB(I+BD) ' (I+ D) 'BAT) (109)
Z(0%8) +06 = —1TrTDT

As 3 < 0, the first equation of[(ZD9) implies that (¢23)" > 0. As (023)" > 0, this yields

u > 0. As u < 1 clearly holds, the first part of (ii) is proved.

We now prove thainf; u > 0. The first equation of[(109) yields :

u> —ovf (110)

1
(0?B)

In the following, we show thainf; —— > 0, inf; |3'| > 0 and thatinf; v > 0.

(o? )
By representatior] (16),

5 ditp(A) VSN / Adpp(A)
3 _ A A d _ AN
p /R+ (A +02)2 and (o75(0)) Rt (A +02)2
As (A+02)2 < L for A >0, (6?8) < Lu(RT) = 1TaD. Therefore, the term(ozl—ﬁ), is

lowerbounded byr? ( TrD)~!. As 1TrD < Fdmax, We haveinf; (e 0.

)
We now establish thainf;|3'| > 0. We first use Jensen’s inequality : As measure

(+TrD)~! djiy(\) is a probability distribution :

I G R e e RS

In other words |3'| = [, e din()) satisfies

. 1 1 2
> _ dip(N)| = 32
’6 ’ el %TI'D |:/R+ A+ o2 Nb( ):| 1TI'D5

As mentioned above(%T‘rf))—1 is lower-bounded by(d...x)~!. Therefore, it remains to

establish thainf, 32 > 0, or equivalently thainf, 5 > 0. For this, we assume thatf, 3,(02) =
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0 (we indicate thaf? depends both oa? andt). Therefore, there exists an increasing sequence
of integers(t)r>o for which

kEI—ir-loo Btk (02) =0

: L)
11]] d )\ =
k—1>+oo R+ )\—1—0'2 Mb ( ) 0 ’

Whereﬂl(f’“) is the positive measure associated with(o2). As D is uniformly bounded, the
sequencéjil’™)) ;> is tight. One can therefore extract frafa{ "), a subsequendgi);>q

that converges weakly to a certain measjfevhich of course satisfies

1
——diy(\) =0 .
/R+ )\—|—O'2 Nb( ) 0
This implies thati; = 0, and thusi;(R™) = 0, while the convergence C(ﬁl(fl))zzo gives
’ 1 -
prRY) = lim A"W(RY) = lim STrD, >0
l—+00 l—=+o00 1) L
by assumption[{3). Therefore, the assumptinfy B:(c2) = 0 leads to a contradiction. Thus,
inf; 3;(c) > 0 andinf, |3'| > 0 is proved.
We finally establish that is lower-bounded, i.e. thahf, %TrDTDT > 0. For any Hermitian
positive matrixM,
1 1 2
We use this inequality foM = T'/2DT/2. This leads to
1 1 1 2 2
-TiDTDT = ;Ter > [ZTT(M)} = [;H(DT)] =52 .

Therefore,inf, %TrDTDT > inf; 3%. Using the same approach as above, we can prove that

inf; 32 > 0. Proof of (ii) is completed.

In order to establish (iii), we use the first equation [of {1G9pxpresgs23)’ in terms of 3,
and plug this relation into the second equation[of[(109)sTives :
1 I P A | - -
<f1 - —fw) § = —-TTDT - %;T}(DTB(I + D) Y1+ pD)'BAT) . (111)
u o°Uu
The righthand side of (T11) is negative as well#sTherefores — Liv > 0. As u is positive,
ud — Gv is also positive. Moreover et v are strictly less than 1. Ag andv are both strictly
positive,u® — aw is strictly less than 1. To complete the proof of (iii), we @ that by [11]1),
R AT
ub —w ~  yiTYTDT
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]B'[ clearly satisfies]B'[ < LITD and is thus upper bounded tﬁfg,— (i) implies that

ot t

Supt < +o0. It remains to verify thainf, tTrTDT > 0. Denote byz = 1TrTDT
1 - -
- ;ZdiZw? .
i=1 7j=1

In order to use Jensen’s inequality, we consu@e& , and remark that ! & =1. »

can be written as
t
-0}y ST

By Jensen’s inequality

92 2
t t t
1 . 1 N ~
DS | DI 2 | A T
i=1 j=1 i=1  j=1
Moreover,
1 ¢ 2 [ 2 1 —1 72
~ 5127172 o ~
{2“2(2\%;’\ ) = ZE;M Z,z] = (ZTrD> 5]
1= Jj= L 1=
Finally,

Sinceinf, 52 > 0, we haveinf, tTrTDT > 0 and the proof of (iii) is completed.

APPENDIX III

STRICT CONCAVITY OF I(Q) : REMAINING PROOFS
A. Proof of Lemmd]1

Remark that,, is strictly concave due td (#5). Remark also thds concave as a pointwise
limit of the ¢,,’s. Now in order to prove the strict concavity @f assume that there exists a

subinterval, saya, b) C [0,1] with a < b where¢ fails to be strictly concave :
VA€ [0,1], é(Aa+ (1 —A)b) = Ag(a)+ (1 —N)o(b) .

Otherwise stated,

B(b) — P(a)
b—a

Let z € (a,b) andh > 0 be small enough so that— ~» andz + h belong to(a, b) ; recall the

vz € (a,b), 5(‘%) = (z—a) +$(a)'

following inequality, valid for differentiable concaverfations :

bm(z) — im(fﬂ —h) > ¢ () > Pm(z + h}z — ¢m(z)
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Letting m — oo, we obtain :

$(@) - ;q:(ac —h) > limsup ¢, (x) > lim inf o (x) > oz + h})l — ¢@) :
In particular, for allz € (a,b), limy,, o ¢, (z) = W” ( ) Now let [z,x+h] € (a,b). Fatou’s

lemma together with[(45) yield :

m—0o0

x+h
0 < kh < / lim inf ¢/), (u) du

m—0o0

z+h
< liminf/ " (u)du = ,ﬁféo (@n(m +h) — @n(ﬂ?)) = 0.

This yields a contradiction, therefore must be strictly convex off), 1].

B. Proof of [4p).

We defineM as thetm x tm matrix given by

HQHH> g
p

O'

NI — HY <1+

We have :

V) = — BT [M(Q) — Q2)M(Q1 — Q)]

or equivalently

H 1
o =—tam | (14 5EE) T R - aoma, —Q2)EH]
Recall thatTr(AB) > Anin(A)Tr(B) for A, B Hermitian and nonnegative matrices. In
particular :
= .
T | (14 fan ) %(Ql QM@ —Q2>ﬂH]
TATTH N —1 -
> Amin <I + H?TZH ) Tr [%(Ql - Q2)M(Q - Qz)ﬁH]
Similarly, we obtain that
Tr [02 (Qi — Q2)M(Q: — Qz)HH}
v v~ > H _1 ~ ~ H ~
> )\mm <I + HQ:;_I > Tr [EQ(QI - Q2)H QH(Ql - QZ)I:IH:|
g o o
This eventually implies that
Tr (I 32 ) —5(Q1 — Q)M(Q —QZ)HH] >
HQHA\ ™' [HFH . HYH
A <I+ 32 Tr[ = (Q1 —Q2) 2 (Q1 —Qz)]
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As .
S
Afmn<1+HQ?> > 1va 2 - 3
7 N (T BHE) (14072 Q| [H7H])
we have :
1 1 HE, . . HA .
) < —E - (e et @)
m (1+o72Q| [HAH]|) g g
Let us introduce the following notations :
1 1 \mfg,. . HIA, .
Q= e —— P = —Tr [—2(Q1—Q2) 3 (QI—Q2):| :
(1 + 02 QI | FF}) mo Lo 7

The following properties whose proofs are postponed to Appe|ll-C| hold true :
Proposition 9: (i) lim,,_ var(8,,) =0,
(i) Forall m >1, E(3,) =E(8) = ETr [H;H(Ql - Q)R H(Q - QQ)} >0,

(iii)y There existsdé > 0 such that for all\ € [0, 1], lim inf,,, oo E(ay,) >0 >0 .

We are now in position to establish [46). By Propositipn)9+fie have

|E(O‘mﬁm) - E(O‘m)E(ﬁmN é \/Var(ﬁm)\/E(agn) S \/Var(ﬁm) —0.

m—0o0

By Proposition[P-(ii),(iii), we have :

lim inf (v, 8y) = iminf E(ay,)E(6y) = E(61) lmélofE(am) > 0E(61) >0 .

The bound[(46) is now established for= —JE(31). Applying LemmdL tap,,,(\), we conclude
that \ — ¢(\) is strictly concave for everf);, Qs in C; (Q1 # Qs), and so isQ — I(Q) by
Proposition[R.

C. Proof of Propositio]9

Proof: [Proof of (i)] In order to prove thatim,, var(3,,) = 0, we shall rely on Poincareé-
Nash inequality. We shall use the following decomposition

Cs

= UD:UY, C:=UD:U".
VK +1
In particular,H writes

. K . HWU -,
UPHO = /-2 u#A0+D: T WYpi

K+1 Vit

VAN 1 X ~1 YaN
= B+D:—D:> = B+Y
Vit

1>

3Note that the notations introduced hereafter slightlyedifrom those introduced in Secti@-B but this should
not disturb the reader.
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whereX is ar x t matrix with i.i.d. CN (0, 1) entries. Consider now the following matrices :
B=1,®B, I'=1,®D, I'=1,®D, V=1,0U, V=I,2U.

Similarly, H writes :

X
Vmt
where X is a mr x mt matrix with i.i.d. CN(0,1) entries. Denote by® = U (Q; —
Q2)U and by® = VH7(Q, — Q2)V(= I, ® ©). The quantity3,, writes then :3,, =
LTrexf¥ex” 3. Considering,, as a function of the entries oK = (X;;), i.e.

otm

B+Y

%,

1>
1>

N =

VIRV =B +TI': T

Bm = ¢(X), standard computations yield
0¢(X)

2
aXij T m

Poincaré-Nash inequality yields then

(OBTEORH)

Ji -’

var (B,) < —ZFif‘jE' ——

4(Anaxﬁhnax
m3t3

Admox dmax |\ = 57 = 1

< MH@H@HE i

m?2t2 mt

IN

ETr (0x/sex”se’s o)

Moreover, Schwarz inequality yields

1
mt

1/2 1/2
TEIEO (SIS < | n(eIEr| | L (0 (21 5ree! (s 5)e)]
m m
so that
1 e v e o . 1 o112 2
—tﬁsz@Hsz@)gH@H@H {—tﬁ(szf] [—Tr(Z]HE)‘l] .
m m

Schwarz inequality yields then

E <iﬂ2H2@Hsz@> <1616 [E (%T@Hg)?)] [E <—Tr(§]H5])4>]

mt

It is tedious, but straightforward, to check that
1 S
supE (—Tr(ZHZ)2> < 400
m mt
and
1 S
supE (—Tr(ZHZ)4> < 400
m mt

which, in turn, imply thatvar(3,,) = O(-). |

m?2



48

Proof: [Proof of (ii)] Write E 3,, as

EB,, = L Eneisesise

a4m

- | ET™ BYB+BY +Y"B+Y"Y)0 (BB +BY +Y'B+Y"Y)®©

0-4

= —TrBHBG)BHBG) + —ETrBHB@YHY@

oim oim

TEﬁYHB@BHYQ
g m

4—IETrYHY®YHY®
g m

+——ETrB"YOY"BO

_|_
1 L
+—ETrYH YOBYBO +
where (a) follows from the fact that the terms whelé appears one or three times are readily
zero, and so are the terms li@TrBf YOBY”Y®©. Therefore, it remains to compute the

following four terms :

1 e v v Tp e
—TrB"BOB”BO ,
m

1 e e s
—ETrB’BOYH YO ,
m

Ty

1>

b

1>

1 Corre v e pe
—ETrBfYOY BO ,
m

1 . N . o
“ETrYPYOYP YO .
m

T3

1>

T,

Due to the block nature of the matrices involvdd, = Tr B”BOB”B® ; in particular, Ty
does not depend om. Let us now computds. We havel, = m~'Tr BBOE (YY) ©
andE (YY) = (mt)"'T3E (XI'X) I's = (mt)~"Tr(T)T. Therefore T; writes :
1 1 e 1 s
Tp = — T (I) —Tr (B B@r@) Tr (D)  TIr (B B@D@),

and this quantity does not depend on. We now turn to the term7;. We have

T3 = m~'Tr BYE (YOY#) BO. The same computations as before yi@ldYOYH) =
(mt)~'Tr (f‘i €] f‘é) I'. ThereforeTs writes :
Ty= LT (F*6r?) —Tr (BYTBO) = Tr (DieD: 1 (B"DBO) |
m t

E(Y/YOY"Y) = o TiE(XTX[¥OMIXIX)IE.
Computing the individual terms of matrik (XI‘Xf‘i(;)f‘%X ) yields (denote byG =
I':OT: for the sake of simplicity) :

[E (XFXGXFX)]]M = Z E (le th j]X’lz jZXZ27 ) 11,01 Gjl ,jzriz,iz
i1,J1,72,02

= (TtT)* Gge + Tr (T?) Tr G &g
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wheredy, stands for the Kronecker symbol (&, = 1 if £k = ¢, and 0 otherwise). This yields

T H~ A HY _ 1 2 RAT 1 2 AR
E(YIVOY'Y) = o () TOT + 0oy (1) T (er)T
and
1 (MT\? 1, fme=ey 11 o1 L \2
T, = t—2 <7> —Tr (TOIO) + —Tr (I?) — (TeT)

_ (TrD (D@D@)+ ~Tr (D?) <Tr@f))2,

which does not depend an. This shows thaEj,, does not depend om, and thus coincides
with ES;. In order to complete the proof of (ii), it remains to verifatES; > 0, or equivalenlty
thatEf; is not equal to 0. IfE3; was indeed equal to 0, then, matrix

1/2 1/2

(H"H) " (Q: — Q2) (H'H)

or equivalently matrix
H"H(Q: — Qo)

would be equal to zero almost everywhere. Bs # Q-, it would exist a deterministic non

zero vectorx such thatx” H¥ Hx = 0 almost everywhere, i.éx = 0, or equivalently
WCY2x = —VKtC~/?Ax . (112)

As matrix C'/2 is positive definite, vectoilC'/?x is non zero. Relation[(1]l2) leads to a
contradiction because the joint distribution of the emstrid W is absolutely continuous. This

shows thatE3; > 0. The proof of (ii) is complete. |

Proof: [Proof of (iii)] In order to controlx,,, = 1 first notice that|Q| =
[Proof of (i)l R G T I T=T) el

Q|- Now |[HH*HI| = ||H]||* and

1 Lo || W
——||Az| |Az ] ||—]| .
e ataly | |
Now ||A| = ||A|, |A%| = ||Cz|| and|Az]|| = ||C?|. The behaviour of the spectral norm of
(mt)~z W is well-known (see for instance [36], [1])H:(mt)‘§WH —mooso 1+ 1/1/c almost

|H|| < A+

K+1

surely. Therefore, Fatou's lemma yields the desired rediti inf,,, E«,,, > § > 0, and (iii) is

proved. |

APPENDIX IV
PROOF OFPROPOSITIONE, ITEM (1).
By (B0) and [BLL),(x, %, Q) — V(k, &, Q) is differentiable fromR™ x RT x €; to R. In
order to prove that’ (Q) = V(6(Q),4(Q),Q) is differentiable, it is sufficient to prove the
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differentiability of 5,4 : ¢; — R. Recall thats andé are solution of systen{ (B3) associated
with matrix Q. In order to apply the implicit function theorem, which withmediatly yield
the differentiablity ofs andd with respect toQ, we must check that :

1) The function

6,5.Q —1@5q - /Y
6 — f(5757Q)

is differentiable.

2) The partial jacobian
9

<

0

|‘hx Q

—~~ &

B} 1 5,6, —9L(5,9,
D57(0,0,Q) = ( Q) 9 (00 Q) )

(
575 ) l_g_g(é’gaQ)

Q

5
is invertible for everyQ € C;.

In order to check the differentiability of’, recall the following matrix equality
I+UV)'uU=u@a+vu)! (113)

which follows from elementary matrix manipulations (cf.0[2Section 0.7.4]). Applying this
equality toU = Q% andV = 5CQ%, we obtain :
1 1~ 1\ —1 1 ~ -1
AQ? (1 n 5QECQ5) QAT — AQ (1 n 6CQ> Al
which yields
~ o 1 2 S K 5 ~ -1 H -1

£(5,6,Q) = zTr{C[a L+ #77C) + 7 7AQ (It n K—HCQ> A ] .
Clearly, f is differentiable with respect to the three variabde and Q. Similar computations
yield

- -1

P 1 =T 9 b = K g ) -1
and the same conclusion holds tﬁ.rTherefore,(é, 5, Q) — T(é,[i, Q) is differentiable and 1)
is proved.

In order to study the jacobiaD(&S)T, let us compute firs%.

of - 1 § .\ ' CQ 5 =N\ gm K
250 Q) = szCTKAQ<”K—+10Q> K—+1<I+K—+10Q> AT
1 1 5 1~ 1 -1 Q%CQ%
= CTeAQ <I+K—+1Q2CQ2> K1

K

XQ%CQ%
K+1’

K+1
= %Tr (DTB(I + #D)"'D(I + D)~ 'BYT)

d S
<I+K—+1Q2CQ2> Q2A TK
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where(a) follows from the virtual channel equivalencgs](3L)] (3Qether with [3P) and[(41).
Finally, we end up with the following :

1— %(5, 5,Q) =1-— %Tr(DTB(I + /D) 'D(I + D) 'BAT) .

Similar computations yield

gi; (6,6,Q) = 1-— %Tr(f)TBH(I +D)"'D(I + D) 'BT) ,

of _a?
85(55Q) = —Tr (DTDT) ,

of ot
~55(0.0.Q) = —Tr (DTDT) .

The invertibility of the jacobiarD ; ;T follows then from Lemm4]4 in Append[x I}C and 2) is
proved. In particular, we can assert tiiat> Q — §(Q) andC; > Q — 4(Q) are differentiable

due to the Implicit function theorem. Item (i) is proved.

APPENDIXV

PROOF OFPROPOSITIONf

First note that the sequenc€;) belongs to the compact s€4. Therefore, in order to
show that the sequence converges, it is sufficient to eshatiiat the limits of all convergent
subsequences coincide. We thus consider a convergentogsidee extracted froniQg)x>o,
say (Qqx))r>0, Where for eaclk, 1 (k) is an integer, and denote 1Y its limit. If we prove
that

<VIQY),Q-QY><0 (114)

for eachQ € €, Proposition[]5-(ii) will imply thatQ? coincides with the argmag, of I
over C;. This will prove that the limit of every convergent subseuee converges towardy,,
which in turn will show that the whole sequen(@;,)>o converges taQ,.

In order to prove [(I34), consider the iteratig{k) of the algorithm. The matrixQ i)
maximizes the functiorQ — V(éw(k),gw(k),Q). As this function is strictly concave andd

differentiable, Propositiof] 4 implies that

< VQV (60> 0px)> Qur))» Q — Quey > <0 (115)

for every Q € C; (recall thatVq represents the derivative &f(x, z, Q) with respect toV’s
third component). We now consider the pair of soluticéﬁg(k)ﬂ,gw(k)“) of the system[(33)
associated with matrix. ).

Due to the continuity 06(Q) and$(Q), the convergence of the subseque@rg;,) implies

the convergence of the subsequen(:@gk)ﬂ,gw(k)ﬂ) towards a limit (63,51’). The pair
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(67,67) is the solution of systen{ (B3) associated W@y i.e. 6¥ = 5(Q¥) ands? = 5(Q¥);

in particular :
2%
Ok

ov

v 5 QY
T00,5 QY =

—=(67,67,QY) =0

(see for instance[ (b6)). Using the same computation as iprhef of Propositior{]5, we obtain

(VI(QY),Q-QY) = (VV (3.0Y.QF) .Q - QY) (116)

for everyQ € €;. Now condition [5)7) implies that the subsequef&gy), Sw(k)) also converges

toward (51”,535’). As a consequence,

Jm (V0 dury Quii), Q = Quany) = (VV (01,67, QY), Q - QY) -

Inequality (IIp) thus implies thaw v (s¢,5Y,QY),Q — Q¥) < 0 and relation [(176) allows us

to conclude the proof.

APPENDIX VI

END OF PROOF OFPROPOSITIONE

Proof of Propositior{]3 relies on properties @f, established in Propositid 5—(iii). Denote
by

A = max <Sup |A|,sup ||C||,sup HC||> <oo and a=min (iItlf )\min(é),irgf /\min(C)) >0.
t t t

Proof of (i): Recall that by Propositiof] 5—(iii)Q, maximizeslog det(I + QG(ds,d.)).
This implies that the eigenvalugs;(Q,)) are the solutions of the waterfilling equation
— 1
Vi=1,...,t, X(Q, :max<7——,0>
Q) Ai(G)

wherey is tuned in such away that ; \; (Q,) = t. Itis clear from this equation thdQQ, || < 7.
If v < Amin(G) 7! then ||Q, || < Amin(G)™L If v > Apin(G) ™! theny > X;(G)~! and we

have :
— 1
=A@ =1t Y g -
- ! —~ %(G)

hence

In both cases, we have

(117)
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It remains to prove

YQeE, infAu (GO(Q)I(Q) >0 (118)

and we are done. To this end, we first show tidt5(Q) > 0 for all Q € €,. From Equations

(BQ) and [4R), we have :

1
Q) = ztrCTK(UQ)
> )\min(C)%trTK(a2)
(a) 1 9 0'2 ~
> . -
> Amin(C) [ttr (a I + K+150
n K AQY2 (1, + 0 Q/2¢Q!/2 _1Q1/2AH o
K+1 "TK+1
(b) 1 9 0.2 ~ K " -1
> . -
> Amin(C) (ttr <0 L+ 79C + 7 7AQA )) (119)

where (a) follows from Jensen’s Inequality an@) is due to the facts that(I; + Y) 7! < 1
andtr(XY) < || X][tr(Y) whenY is a nonnegative matrix. We now find an upper bound for
5. From [@1) and[(@3), we havéT'x (o?)|| < 1/02. Using (@2) we then have

.1 - S A
5 < ITxl0CQ < | Txl 1€l 0Q < 5
(recall thattr Q = 1). Getting back to[(139), we easily obtain

A +AzK
K+1

o - K r
B oaQaf) < (o2
K100 e >_t<0+

1 t
;tr <0'2]:7- + < C(] V(t,'f'), ; — C

K+1~
where( is a certain constant term. Hence we hay@) > aCo_l. By inspecting the expression
(BQ) of G(4,4), we then obtain

-1 21
< aC, /\min(é) < a“C,

Ami“(G')—KJrl “K+1

:Cl>0

and (TI1B) is proven. It remains to plug this estimate ifitoffland (i) is proved.

Proof of (ii): We begin by restricting the maximization ¢fQ) to the setC{ = {Q
Q = diag(qy,...,q) > 0,tr(Q) = t} of the diagonal matrices withif;, and show thaQ? =
argmaxqees 1(Q) satisfiessup, 1QY|| < oo where the bound is a function ¢, A, 02, ¢, K)
only. The sete is clearly convex and the solutid®¢ is given by the Lagrange Karush-Kuhn-

Tucker (KKT) conditions

ornQ) o B '
50~ 3 EOQI =01, (120)

where J(Q) = logdet (I, + SHQH) and the Lagrange multipliers and the 3; are

associated with the power constraint and with the posjticibnstraints respectively. More
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specifically,n is the unique real positive number for Whi(EE:l g; = t, and theg; satisfy

Bj =01if ¢g; >0andg; > 0if ¢g; = 0. We have

Q) 1.4 1 g\
dq; 02hj IT+J2HQH by

whereh; the j'' column of H. By consequenceE [01(Q)/dq;] <

E [Ihy]?]. As by is a

_0-2

Gaussian vector, the righthand side of this inequality finéd and therefore, by the Dominated

Convergence Theorem, we can exchafigéq; with E in Equation [12D) and write

oI 1 1 !
a(;?) = E h <IT + §HQHH> hj] (121)

Let us denote byH; the r x (¢ — 1) matrix that remains after extractirtg; from H. Similarly,

we denote byQ; the (¢t — 1) x (¢t — 1) diagonal matrix that remains after deleting row and
column j from Q. Writing R; = (Ir + %HijHf) _1, we have by the Matrix Inversion
Lemma ([20, §0.7.4])

1 H ! _ qj H
<I7« + EHQH > =R; - o qj'ththj th]hj R; .

By plugging this expression into the righthand side of Emunat{12]), the Lagrange-KKT

conditions become

X.
E|l—L—|=n-0; 122
[02 +quj] b (122)

whereX; = hHR-h- A consequence of this last equation is that 1/7 for every;. Indeed,
assume thag; > 1/n for somej. Theno? + ¢;X; > X;/n henceE [W} < n, therefore
B; > 0 (L22), which implies thay; = 0, a contradiction. As a result, in order to prove that
sup, | QY| < oo, it will be enough to prove thatup, 1/n < co. To this end, we shall prove

that there exists a constafit> 0 such that

max P(X; <C)——0. (123)

Jj=1,...t t—00

Indeed, let us admi{ (IP3) temporarily. We have

X; C X C X;
E J — = E|—L_—1x — + J 1x.
[02—|—qu]} o2+ ¢q;C o2+ ¢; X; X5>C o2+ ¢q;C o2+ ¢; X; XisC
C C
—PX, >C) - ———
0?2 +¢;C ;> €) o2 + ¢;C

wheree; = P(X; < C), and the inequality is due to the fact that the functjgn) =

U2+q C

02+q — is increasing. As

C
max lsj]<— max IP’(X <C)——0
j=

17 ) J_17 7 t_>m
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by ([{23), we have

limtinfmin<E[ ZXj }— 20 )20.
j o+ q; X o +¢q,;C
Getting back to the Lagrange KKT conditidn (122) we therefoave fort large enoughy—3; >
#CZCM for everyj = 1,...,t. By consequence,
! < ! < ﬁ +q;
nTn-8 ~C 7

for larget. Summing overj and taking into account the power constrairj; q; = t, we obtain

t 202t ; 1 202
5<T+t, |.e.5<7+1and

d 20
sup Q4 < & +1 (124)

which is the desired result. To proe (123), we make use of MMStimation theory. Recall
A+

that H = L C!/2WC'/2. Denoting bya; andz; the j** columns of the

K+1 \/— NG

matricesA and WC/2 respectively, we have

(K u L 1 oweip\g () K o L Lap,
o (V7 s o) (s )

We decomposez; as z; = u; + ujL where u; is the conditional expectatiom; =
E[z||21,...,2j-1,%j+1,- ., 2], In Other words,u; is the MMSE estimate of; drawn from
the other columns oW C'/2. Put
1 1 H 45 K 11 4
. Cl/2R. — Y2y,
Sj (\/—\/— U J( K+l aj + JE £1i U
1 1/2 12,1
—_— ; . 125
+t(K+1) 7 e R;C"/"y; (125)
Then
K 1 1 K 1
X, = S; i —ulc? | R; Cl/2y,
J J*( K+1% T VR FIvE T\WVETTY T ¢—J "
> 5. (126)

Let us study the asymptotic behaviour &f;. First, we note that due to the fact that

the joint distribution of the elements oW C!/? is the Gaussian distributionujL and

vj = [2{,...,2z]_,z],,,...,2{|" are independent. By consequence, and (R;,u;) are
independent. Let us derive the expression of the covarianatix R, = E[uj-uj-H].

From the well known formulas for MMSE estimation ([35]), weave R, = E[zsz] —

J
vectorz = [z],...,2]]" is E[zz''] = CT ® I, (just check thatE [[WC'/?],;[WC1/2],| =

-1
E[zjvf] (E[vij]) E[v;z; 1. To obtain R,, we note that the covariance matrix of the

5(i—k)[C];;). Let us denote by;, &; andC; the scalag; = [C];;, thej*" vector column ofC
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without element;, and the(t —1) x (¢ — 1) matrix that remains after extracting row and column
j from C respectively. With these notations we havg = (éj — 65?’(3;163») I.. Recalling that
ujL and(R;,u;) are independent, one may see that the first term of the rigtitble of [12p)

is negligible while the second is close to = %%H(chy More rigorously, using
this independence in addition b = max(||A ||, |C||,||C|)) < cc and||R;|| < 1, we can prove
with the help of [1, Lemma 2.7] or by direct calculation thhéete exists a constaft; such
that

% . (127)

E [(Sj - Pj)z} <
In order to prove[(133), we will prove that the are bounded away from zero in some sense.
First, we have
~ CHA—1~ (@) [4— -1(0) . ~
6 -0 < O] 2 CT T = Ain(©) 2

(for (a) see [20, 80.7.3] and fofb), use the fact thaliX]y;| < || X]|| for any elemeni{k,!) of

a matrix X). By consequence,

aAmin(C) 1 1 7\
pi = 7577“@+§W%W>

S a)\min(c) 1 1 I -1
B K+1 <ttr <I7"+0—2HJQJHJ >>
-1
(b) a? , 1 o . »
= -+ = /2 /2|~ 1
Z Ko (t + (HAH + [ICII*=[[C] H\/%W|]> ttr(Q)

where(a) is Jensen Inequality and) is due totr(XY) < ||X||tr(Y) whenY is a nonnegative
matrix. As lim, H%WH =1+ 4/1/c with probability one ([1]), and furthermorer(Q) = ¢,

we have with probability one

a? A2 2\ !
liminf min p; > (c_l +—= (2 + 0_1/2) > =5y . (128)
t o

j=1,...,t K+1
Choose the constaudt in the lefthand side of (123) a8 = Cy/4. From (12p) we have

maxP (X; <C) < maxP(S; <0O)
j J

max P (S; < C,|S;j — pj| = C) + maxP (S; < C,[S; — p;| < C)
J J

max P (|S; — p;| = C) + maxP (p; < 20)
J J

—
S
=

1 2
< amaxE [(Sj = p5) } +maxP(p; < 2C)

1 2 .
< gomaxE [(Sj = 1j) } +P <mj1npj = 20)

< o)
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where (a) is Tchebychev’s Inequality) is due tomax; P(€;) < P(U;€;), and(c) is due to
(L27) and to[(128).

We have proven[(123) and hence tif = arg maxqcca 1(Q) satisfiessup, | Q|| < oo.

In order to prove thaQ. = argmaxqce, I(Q) satisfiessup, || Q.|| < oo, we begin by noticing

that

1
(Igneaé 1(Q) = max Raeae}; E [log det (IT + ﬁHUAUHHH>] (129)

wherell, is the group of unitary x ¢t matrices. For a given matrikl € U, the inner maximiza-
tion in ([I29) is equivalent to the problem of maximizing thetoal information ove€{ when
the channel matriH is replaced withH’ = HU = /£ A’ + \/I;—H%CWW'C”/Z. Here,
matrix C" is defined byC' = UZCU, A’ = AU, W = WO where ® is the unitary
matrix @ = CY2UC' Y2, As U ¢ U;, we clearly have|A’|| = [|A], ||C'] = ||C
and ||C'~!'|| = ||C~!||. By consequence, the boundsand 4, and hence the constaft in

the left hand member of (IP3) (which depends only (@nA, o2, ¢, K)) remain unchanged

when we replacéd with H'. By consequence, for evedj € U; the matrix A, (U) that
maximizesE [log det (I, + ZHUAUYH#)] satisfies||A.(U)|| < 20%/C + 1 (see [T24))

which is independent obl. Hence||Q.|| < 202/C + 1 which terminates the proof of (ii).
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