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Dynamo quenching due to shear

Nicolas Leprovost and Eun-jin Kim
Department of Applied Mathematics, University of Sheffield, Sheffield S3 7RH, UK

We provide a theory of dynamo (α effect) and momentum transport in three-dimensional magne-
tohydrodynamics. For the first time, we show that the α effect is severely reduced by the shear even
in the absence of magnetic field. The α effect is further suppressed by magnetic fields well below
equipartition (with the large-scale flow) with different scalings depending on the relative strength of
shear and magnetic field. The turbulent viscosity is also found to be significantly reduced by shear
and magnetic fields, with positive value. These results suggest a crucial effect of shear and magnetic
field on dynamo quenching and momentum transport reduction, with important implications for
laboratory and astrophysical plasmas, in particular for the dynamics of the Sun.

PACS numbers: 47.65.-d, 91.25.Cw, 95.30.Qd, 96.60.Hv

Introduction.- Dynamo action describes the process
through which a motion of a conducting fluid in the pres-
ence of a magnetic field amplifies that magnetic field.
This is a fundamental mechanism that explains ubiqui-
tous magnetic fields in a variety of systems, including as-
trophysical, geophysical and laboratory plasmas [1, 2, 3].
This is especially the case in stellar convective regions
where the diffusive time-scale is so short due to turbu-
lent motion that any primordial field would decay in a
few million years. In a conducting fluid of velocity V,
magnetic field B evolution is governed by the induction
equation:

∂tB+V ·∇B = B ·∇V+η∇2B and ∇ · B = 0 , (1)

where η is the ohmic diffusivity. In case of the Sun,
the prominent radial shear layer (tachocline) permits the
creation of a toroidal magnetic field from an existing
poloidal one via shearing [the third term in Eq. (1),
so-called Ω effect]. The generation of toroidal field from
the poloidal field requires another mechanism such as α
effect via kinetic helicity, magnetic buoyancy [4] or some
kind of magnetic instability [5] and has proved to be more
difficult as explained below.

In the presence of turbulence, the magnetic and veloc-
ity fields can be decomposed into a mean and fluctuating
parts: B = 〈B〉 + b and V = 〈V〉 + v, where the 〈•〉
stands for an average on the realization of the small-
scale fields. Substitution of this decomposition into Eq.
(1) and averaging yield the following equation for the
mean magnetic field:

∂t〈B〉+ 〈V〉 ·∇〈B〉 = 〈B〉 ·∇ 〈V〉+ η∇2〈B〉+∇· ǫ , (2)

where ǫ = 〈v × b〉 is the electromotive force. In the
framework of mean-field dynamo theory [2] ǫ is linear in
the mean magnetic field with the following expansion:

ǫ = α〈B〉 + β∇〈B〉 + . . . . (3)

The term proportional to β is just a turbulent diffusivity
which adds up to the molecular one whereas the term

proportional to α acts as a source term in Eq. (2), cre-
ating poloidal (resp. toroidal) field from toroidal (resp.
poloidal) one. The α effect has been thought to be gener-
ated by a helical turbulence, which is likely to be induced
by Coriolis force in stellar convection zones. This type of
dynamo is thus classified as αΩ if the Ω effect is stronger
than the α, or α2 type if the α effect dominates over
the Ω. In convecting stars without pronounced differen-
tial rotation, the latter is the only possible mechanism as
there is no Ω effect.

When the large-scale magnetic field is sufficiently
strong, it begins to influence the velocity field. At some
point it will severely quench the generation coefficient
(such as the α effect), thereby saturating dynamo ac-
tion. The effect of an uniform magnetic field on mag-
netohydrodynamical (MHD) turbulence was addressed
by [6] who showed that the α effect is reduced both for
weak and strong magnetic field. However, the effect of
fluctuating magnetic fields on the α effect remains con-
troversial. It has been argued that the dynamo satu-
rates when 〈B〉 ∝ R−n

m

√

〈v2〉 due to small-scale mag-
netic fields. Here, Rm is the magnetic Reynolds number.
If the small-scale magnetic field grows preferentially to
equipartition [7], the large-scale magnetic field must be
far below equipartition with the previous formula holding
with n = 1. Alternatively, if the growth of the small-scale
field is limited [8], the large scale field can almost reach
equipartition and the previous formula holds for n = 0.

Another saturation mechanism which has received no
attention is the effect of a stable large-scale shear flow.
On the one hand, strong shear is good for dynamo as it
creates magnetic energy via the Ω effect. But, a strong
shear can reduce turbulent transport via shear stabiliza-
tion [9]. Indeed, the shear has been shown to significantly
reduce the turbulence intensity and the turbulent trans-
port of angular momentum, particle mixing and magnetic
diffusion [10, 11, 12]. As the shear might have a similar
effect on the generation of magnetic field, it is crucial
to compute self-consistently the α effect incorporating
the effect of shear (or differential rotation). This is espe-
cially the case for solar dynamo which is often envisioned
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to take place at the base of the convection zone, where
the shear is quite strong, e.g. to compensate the weak-
ness of the interface dynamo [13]. Should the α effect be
significantly quenched due to shear, it would put severe
constraints on the magnetic fields that can be created by
dynamo action. For instance, the dynamo number which
characterizes the efficiency of the αΩ dynamo is given by
D = αΩL3/(η+β)2 [14], where Ω is the differential rota-
tion and L is a characteristic scale of the system. As the
turbulent coefficients (α and β) most probably depend
on the strength of the differential rotation, it is vital to
predict this dependence in order to obtain the dynamo
number. Furthermore, the understanding of large-scale
shear flows (e.g. radial differential rotation) demands
a consistent theory of momentum transport in sheared
magnetized plasmas.

The purpose of this Letter is to investigate the com-
bined effects of a large-scale magnetic field and a large-
shear on the transport properties on turbulence, espe-
cially the turbulent electromotive force (α effect) and
momentum transport. We consider 3D MHD forced tur-
bulence in an incompressible conducting fluid governed
by:

∂tV + V · ∇V = −∇p+ B · ∇B + ν∆V + f ,

∇ · V = 0 , (4)

together with Eq (1). Here, B is the magnetic field given
in the unit of Alvén speed, p is the total (hydrodynam-
ical + magnetic) pressure, and f is the small-scale forc-
ing. To study the effect of shear flows and magnetic
fields on small-scale turbulence, we prescribe a large-
scale flow of the form 〈V〉 = −xΩŷ and a constant
large-scale magnetic field 〈B〉 = B0ŷ parallel with 〈V〉.
Then, to solve the equations for the fluctuating velocity
field, v = V − 〈V〉, and magnetic field, b = B − 〈B〉,
we use the quasi-linear approximation assuming that the
interaction between fluctuating fields is negligible com-
pared to the interaction between large and small-scale
fields. Note that this is well justified for weak turbu-
lence due to shear flow [e.g. see 10]. We use Elsasser
variables for the fluctuating velocity and magnetic fields:
ψ+ = v+b and ψ− = v−b, and assume a unit magnetic
Prandtl number (ν = η) for simplicity. To capture non-
perturbatively the shearing effect, we use a time depen-
dent Fourier transform Ŷ [for details see 10]. Then, by
using the transformation: Ŷ = Ỹ exp[ν(k3

x/3kyΩ + k2
Ht)]

(with k2
H = k2

y + k2
z), we can simplify the equations for

the fluctuating fields as follows:

∂tψ̂
±
i − Ωψ̂∓δi2 = ±iB0kyψ̂

±
i − ikip̂+ f̂i , (5)

∂iψ̂
±
i = 0 .

It is important to note that the system of equations (5)
is invariant under the following transformation: B0 ↔
−B0 and ψ̂+ ↔ ψ̂−. Consequently, ψ̂− can be obtained

from ψ̂+ (and conversely) by changing the sign of B0.
Equation (5) has to be solved with the initial conditions:

ψ̂+

i (τ = τ0) = 0. As general solution to Eq. (5) is not
analytically tractable, we consider the two limits of weak
magnetic field, where the effect of the shear dominates
that of the magnetic field, and of strong magnetic field,
where the effect of the magnetic field dominates that of
the shear. Specifically, the case γ = B0ky/Ω ≪ 1 (weak
magnetic field) and γ ≫ 1 (strong magnetic field) are
considered in the following.

We mainly focus on computing the Reynolds stress
and the electromotive force, which determine the
growth/decay of the large-scale velocity field and the
large-scale magnetic field, respectively. First, the
Reynolds stress gives a turbulent viscosity 〈uxuy〉 = νT Ω,
which adds up to the molecular viscosity. Using Elsasser
variables, νT can be rewritten:

νT =
1

2Ω

[

〈ψ+
x ψ

−
y 〉 + 〈ψ+

y ψ
−
x 〉

]

. (6)

Second, for an uniform magnetic field, the electromotive
force (3) reduces to the term proportional to α only. Fur-
thermore, as the large-scale magnetic field is in the y di-
rection, we are only interested in the y component of the
electromotive force, which can be expressed as:

ǫy =
1

2

(

〈ψ+
x ψ

−
z 〉 − 〈ψ+

z ψ
−
x 〉

)

. (7)

To calculate the correlation functions involved in the
transports coefficients in Eqs. (6-7), we consider an in-
compressible forcing which is spatially homogeneous and
temporally short correlated with the correlation time τf :

〈f̃i(k1, t1)f̃j(k2, t2)〉 = τf (2π)3δ(k1 + k2) δ(t1 − t2) ×

φij(k2) . (8)

As noted previously, the α effect can be linked to the
helicity of the turbulent flow. Consequently, we consider
a forcing with both a non-helical part (with energy spec-
trum E) and a helical part (with helicity spectrum H)
given by:

φlm(k) = E(k)

(

δlm −
klkm

k2

)

+ iǫlmpkpH(k) . (9)

It is important to note that in the absence of shear or
magnetic field, the kinetic energy and helicity of the ho-
mogeneous flow v0 driven by the forcing become:

e0 ≡ 〈v2
0〉 =

2τf
(2π)2

∫

dk
k2

H

νk2
E(k) , (10)

h0 ≡ 〈v0 · ∇ × v0〉 =
4τf

(2π)2

∫

dk
k2

ν
H(k) .

Weak magnetic field.– To solve Eq. (5) in the weak
magnetic field regime, we expand the fields in powers
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of γ = B0ky/Ω, ψ̂+

i = ψ̂+

i0 +γψ̂+

i1 + . . . and solve order by
order. The leading term and the first correction to the
turbulent transport coefficient are obtained from the first
four terms in the preceding expansion. The turbulent vis-
cosity is found to be even in B0 whereas the electromotive
force is odd: νT = νT

0 + νT
2 + . . . and α = α1 +α3 + . . . .

To investigate the effect of shear we focus on the limit
of strong shear where the shear is stronger than the diffu-
sion, characterized by the small parameter ξ = νk2

y/Ω ≪
1. Note that this limit is relevant in astrophysical appli-
cations such as in the solar tachocline where the shearing
rate is much larger than the diffusion rate for reasonable
values of the parameters. In this limit (ξ ≪ 1), the tur-
bulent viscosity can be obtained, after a long algebra,
as:

νT
0 =

τf
2(2π)3Ω2

∫

d3k
k2

HE(k)

k2
y

×

[

−
k2

y

k2
+
k2

z

k2
y

T (k)

]

∼ ξ2
e0
νk2

. (11)

Here, k2
H = k2

y + k2
z and T (k) = π|ky|/2kH −

arctan(kx/kH). Eq. (11) is the kinematic result (B0 = 0)
and shows that νT is strongly reduced by the shear with
scaling Ω−2 (see also [10]). In the 2D case (kz = 0), νT

is negative (inverse energy cascade), whereas, in 3D the
second term in Eq. (11) dominates over the first one,
making the turbulent viscosity positive. It is interesting
to note that νT is proportional only to the energy part of
the forcing, independent of the helical part. The first cor-
rection term due to the magnetic field to the kinematic
result is obtained at second order in γ as follows:

νT
2 =

τfB
2
0

9(2π)3Ω4

∫

d3kk2
HE(k)Γ(2/3)

(

3

2ξ

)2/3

×

T (k)2
[

1 −
k2

z

3k2
y

]

∼ γ2ξ4/3 e0
νk2

. (12)

Here, Γ is the Gamma function. The correction (12)
scales as B2

0Ω−10/3 and can be positive or negative de-
pending on the values of the parameters. In 2D (kz = 0),
Eq. (12) is obviously positive, slowing down the inverse
cascade. In comparison, in 3D, the second term in (12)
dominates the first making νT

2 negative. In both cases,
the correction term (12) is always of the opposite sign to
the leading order term (11). Comparing Eq. (12) and
Eq. (11), we find a crossover scale Ly at which νT

2 in Eq.
(12) becomes larger than νT

0 : Ly ≪ Ω−2B3
0ν

−1.

Similarly, the leading order contribution to the elec-
tromotive force is found to be proportional to B0 and,
consequently, the α effect to leading order is indepen-
dent of B0. It is the kinematic α effect which can be
computed by ignoring the back-reaction of the magnetic
field on the flow. In the strong-shear limit (ξ ≪ 1) this

gives:

α1 ∼ −
τf

(2π)3Ω2

∫

d3k k2H(k)T (k)Γ(
1

3
)
ξ−1/3

3

∼ −ξ5/3 h0

νk2
. (13)

Therefore, to leading order, the α effect is reduced by
shear proportionally to Ω−5/3. This result shows, for the
first time, that the α effect can be significantly reduced
by a strong shear. In contrast to the turbulent viscosity,
the α effect is proportional only to the non-reflectionally
symmetric part of the forcing. This agrees with the ex-
pectation that the α effect is present only for flow with
helicity, which results from the helical forcing with helic-
ity spectrum H in our case.

To next order, we compute the correction to the α
effect due to magnetic field. In the strong shear limit
(ξ ≪ 1) we can then obtain the following:

α3 ∼
τfB

2
0

(2π)3Ω4

∫

d3k k2
yk

2H(k)T (k)
1

3ξ
∼ γ2ξ

h0

νk2
.

(14)
This correction has obviously the opposite sign to the
leading order term (13). Therefore, both the magnetic
field and the shear quench the α effect. The ratio of these
two terms is of the same order of magnitude as the ratio
of the first correction to the leading order term in the
turbulent viscosity. In other words, the α effect is sup-

pressed by magnetic fields when B0 ∼ Ω/kR
1/3
m , where

Rm = Ω/ηk2 is the magnetic Reynolds number. Inter-
estingly, this scaling is quite different from the scalings
proposed by previous authors who suggest the critical
magnetic field to be either independent of Rm [8] or to
scale as R−1

m [7].

Strong magnetic field.– In the case of a strong magnetic
field (γ ≫ 1), we obtain a WKB solution to Eq. (5) and
then compute the turbulent transport coefficients with
the help of Eq. (8). First, the turbulent viscosity is
given by:

νT =
τf

(2π)3

∫

d3k E(k)
k2

H

k2
× (15)

{

k2
x

4B2
0k

2
yk

2
+

k2
zk

2
yB

2
0

k2[B2
0k

2
y + ν2k4]2

}

,

to leading order in γ. Assuming isotropic forcing and
performing the integration on the angular variables, we
find that, for strong magnetic field (B∗ ≫ 1, where
B∗ = |B0|/νk), the turbulent viscosity is reduced by B0

as B−1
∗ due to alfvenization of turbulence [12]. Note that

in 2D (kz = 0) νT is positive, in agreement with [12].
Furthermore, the second term in Eq. (15) is also posi-
tive. Therefore, νT in 3D MHD is positive with larger
value compared to the 2D MHD case.
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Similarly, the electromotive force can be computed to
leading order, with the following result for the α effect:

α0 = −
τf

2(2π)3

∫

d3k k2
y

H(k)

B2
0k

2
y + ν2k4

. (16)

The integration of Eq. (16) over the angular variables
gives:

α0 = −
τf

(2π)2

∫ ∞

0

dk
H(k)

ν2B2
∗

[

1 −
arctan(B∗)

B∗

]

∼ −B−2
∗

h0

νk2
.

(17)
Therefore, for strong magnetic field (B∗ ≫ 1) the α effect
scales as B−2

∗ . For a forcing with finite correlation time
a different scaling, B−n

∗ with 2 ≤ n ≤ 3, can be expected
[6, 15].

While the formula (16) shows that in the strong mag-
netic regime the main quenching of the α effect is due to
the magnetic field, shear flow is found to have an inter-
esting effect on α at second order in γ−1 as follows:

α2 =
τf

2(2π)2

∫ ∞

0

dk
H(k)

ν2B4
∗

(

Ω

νk2

)2

× (18)

[

1 −
2 arctan(B∗)

B∗

]

∼ B−4
∗ ξ−2 h0

νk2
.

For strong magnetic field (B∗ ≫ 1) we see in (18) that
the first correction is of the opposite sign to the leading
order and that it scales as Ω2B−4

∗ . Comparing (18) with
(17) we can easily see that the correction (17) is always
negligible compared to the leading order term (18) as
B0k/Ω ≫ 1 in the strong magnetic field regime. Conse-
quently, the α effect is suppressed when B∗ ≫ 1, i.e. for
B0 ≫ Ω/kRm.
Discussion.– Depending on the ratio of the large-scale
magnetic field to the shear, we found that the α effect
is quenched by large-scale magnetic field with different
scalings with Rm. Specifically, the critical magnetic field
strength Bc, above which the α effect is suppressed by

magnetic field, is Bc ∼ Ω/kR
1/3
m for γ = B0k/Ω ≫ 1

while Bc ∼ Ω/kRm for B0k ≪ Ω, where k−1 is the
typical small scale of turbulence. For instance, in the
solar tachocline (Ω ∼ 3 × 10−6 s−1, ν ∼ 10−2 m2 · s−1

and B0 ∼ 6 m · s−1), the strong magnetic field regime
(B0k ≫ Ω) is valid on scales less than 2 × 106 m, which
is approximately the size of the tachocline. Therefore,
not only magnetic field but also shear can dramatically
quench the α effect hindering large-scale dynamos.

The turbulent viscosity was found to be reduced by
strong magnetic field (with a scaling B−2

∗ ) while in the
opposite limit of weak magnetic field is quenched by shear
(with a scaling Ω−2). In both cases, the turbulent vis-
cosity is positive with a larger value in 3D than in 2D.
In the weak magnetic field case, magnetic field becomes
important on scale Ly < Ω−2B3

0ν
−1. In case of the Sun,

Ly < 5.4 × 1015 m, suggesting that turbulent viscosity is
severely quenched by magnetic field.

These results have crucial implications for dynamics
and angular momentum transport in astrophysical or lab-
oratory plasmas which are often envisioned to be efficient.
In particular, quenching by shear and/or magnetic field
should be incorporated when assessing the efficiency of
dynamo, e.g. the dynamo number D. For instance, our
result α ∝ Ω−5/3 makes D ∝ Ω−2/3, decreasing with
strong shear rather than increasing (D ∝ Ω) as previ-
ously thought. Furthermore, the nonlinear dependence of
turbulent viscosity on B0 can offer an interesting mecha-
nism for the time variability such as torsional oscillation
in the Sun [16]. It will be interesting to extend our theory
to incorporate the effects of rotation which will consis-
tently give rise to α effect and non-diffusive momentum
transport, (Λ effect), due to shear-induced anisotropy
[17]. How the Λ effect, α effect, turbulent viscosity and
particle transport are affected by rotation, magnetic field
and shear would be of great interest with important im-
plications. The controversial issue on the quenching of β
effect in 3D MHD should also be investigated by incorpo-
rating the gradient of large-scale magnetic field. These
issues will be addressed in future publications.
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