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SUMMARY 

The Drosophila oocyte is a highly polarized cell. Secretion occurs towards restricted 

neighbouring cells and asymmetric transport controls the localization of several mRNAs to 

distinct cortical compartments. Here, we describe a role for the Drosophila ortholog of the 

Rab6 GTPase, Drab6, in establishing cell polarity during oogenesis. We found that Drab6 

localizes to Golgi and Golgi-derived membranes and interacts with BicD.  We also provide 

evidence that Drab6 and BicD function together to ensure the correct delivery of secretory 

pathway components, such as the TGF-α homolog Gurken, to the plasma membrane. 

Moreover, in the absence of Drab6, osk mRNA localization and the organization of 

microtubule plus ends at the posterior of the oocyte were both severely affected. Our results 

point to a possible connection between Rab protein-mediated secretion, organization of the 

cytoskeleton and mRNA transport. 
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INTRODUCTION    

 

By regulating the transport of proteins and lipids toward the plasma membrane, the secretory 

pathway plays an important function in cell polarity. Rab GTPases are important regulatory 

factors of vesicular traffic. Members of the Rab6 family regulate protein transport between 

the Golgi, endoplasmic reticulum, plasma membrane and endosome (Del Nery et al., 2006; 

Mallard et al., 2002; Martinez et al., 1997; Martinez et al., 1994; Opdam et al., 2000). The 

role of Rab6 in establishing cell polarity was, however, unclear. We chose the Drosophila 

oocyte as a model to study cell polarity in vivo. The oocyte lies at the posterior of the egg 

chamber, which consists of a cluster of 16 interconnected germ cells surrounded by a 

monolayer of follicular epithelium. During egg chamber formation, the germ line forms a 

sixteen cell cluster and in which one cell is singled out to become the oocyte, while its 15 

sister cells develop into nurse cells (for review, see (Huynh and St Johnston, 2004).During 

early oogenesis, microtubules (MTs) are nucleated from the microtubule-organizing center at 

the posterior of the oocyte. Towards stage 7, an unidentified signal from the posterior follicle 

cells triggers the organization of perpendicular MT subsets controlling the dorsoventral axis 

(DV) and anteroposterior axis (AP) in the oocyte (Januschke et al., 2006; MacDougall et al., 

2003). Bicoid, oskar and gurken mRNAs, which determine the embryonic axes, are then 

localized, respectively, to the anterior, posterior and antero-dorsal poles of the oocyte 

(Riechmann and Ephrussi, 2001).  

Studies in cultured mammalian cells have revealed a molecular mechanism whereby BicD 

modulates MT based Golgi trafficking by recruiting cytoplasmic Dynein to transport vesicles 

(Hoogenraad et al., 2001; Matanis et al., 2002). The recruitment of Dynein to vesicles is 

mediated by the interaction of BicD with the small Golgi localized GTPase Rab6 (Matanis et 

al., 2002; Short et al., 2005). In Drosophila, and more specifically in the oocyte, the Golgi 
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apparatus is not organized into stacked cisternae arranged into “Golgi ribbons”. Instead, it is 

organized into mini stacks of tER-Golgi units evenly distributed throughout the cell (Herpers 

and Rabouille, 2004; Kondylis et al., 2001). Whereas three Rab6 isoforms have been 

characterized in mammals, (Del Nery et al., 2006; Mallard et al., 2002; Martinez et al., 1997; 

Martinez et al., 1994; Opdam et al., 2000), only one has been identified in Drosophila (Shetty 

et al., 1998). So far, Drab6 has been shown to be involved in Rhodopsin transport in 

photoreceptor cells and bristle morphogenesis (Purcell and Artavanis-Tsakonas, 1999; Shetty 

et al., 1998). In this study, we present the characterization of the function of Drab6 during 

oogenesis and propose a possible connection between Rab protein-mediated secretion, the 

organization of the cytoskeleton and mRNA transport.  
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Materials and Methods 

Fly stocks 

w1118 used as wild-type; rab6D23D (Purcell and Artavanis-Tsakonas, 1999) was recombined to 

FRT-40A (Bloomington). rab6D23D and khc7.288 germ line and follicle cells clones were 

generated as described in (Januschke et al. 2002). GFP-trap, GalT and PDI (A. Debec). Khc-

LacZ (I. Clark). BicD-GFP and BicDmom (B. Suter). Over-expression of Dynamitin and 

Colchicine treatment was performed as described in (Januschke et al. 2002).  

 

Transgenes, biochemistry and immunohistochemistry. 

Drab6 was cloned into maternally expressed tubGFP (Januschke et al. 2002) and 

Polyubiquitin mRFP vectors. Details of protocols for biochemistry experiments can be 

obtained upon request. Yeast two-hybrid screen was carried out as described (Formstecher et 

al. 2005). 

Electron microscopy and immunodetections were performed as described in (Januschke et al., 

2006). Antibodies: Stau (St Johnston et al., 1991); Osk (Hachet and Ephrussi, 2001); β-

Galactosidase (Roche); Grk (DSHB); Lav (W. Sullivan); BicD, Syntaxin-5 (DSHB); KDEL 

(Stressgen); Dynactin (EL. Holzbaur); GFP (Roche). LE Lectin (Vector). WGA, Phalloidin, 

Lysotracker (Molecular Probe).  
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RESULTS AND DISCUSSION 

In vertebrate cells, Rab6 is associated with the Golgi and the trans-Golgi network (TGN) 

membranes (Del Nery et al., 2006; Mallard et al., 2002; Martinez et al., 1997; Martinez et al., 

1994; Opdam et al., 2000). To investigate the sub-cellular localization of Drab6 in the 

Drosophila germline, we monitored the expression pattern of transgenic lines expressing 

Drab6 fused to GFP (Fig. 1A) and RFP (Fig. 1B). We observed that during oogenesis, the 

global distribution of Drab6 evolved. Drab6 first accumulated transiently in a central position 

during stages 7/8, then was uniformly distributed at the beginning of stage 9 to end up 

juxtaposed to the entire oocyte cortex (Fig. 1A). It is noteworthy that promoters of different 

strengths gave similar expression patterns. In addition, the genomic null allele rab6D23D 

(Purcell and Artavanis-Tsakonas, 1999) was fully rescued by the different lines expressing 

Drab6. 

Drab6 did not co-localize extensively with ER membranes (labelled with PDI-GFP, Bobinnec 

et al., 2003) (Fig. 1B). Instead, it seemed to be differentially associated with two types of 

Golgi unit (Fig. 1C). Lava Lamp (Lav), a cis-Golgi marker (Papoulas et al., 2005) co-

localized with Drab6, mainly at the cortex of the oocyte and in nurse cells. A GFP trap protein 

coding for an UDP-galactose beta-N-acetylglucosamine beta-1,3-galactosyltransferase (GalT) 

(Morin at al, 2001)), predominantly enriched in Golgi membranes (Fig. 1D), exhibited a 

distribution similar to that of GFP-Drab6: it accumulated in the center of the oocyte at stage 8, 

where it co-localized with Drab6, and was later confined to the cortex (Fig. 1C). Importantly, 

the distribution of Lav and GalT was similar in both matαtubGFP-Drab6, ubiRFP-Drab6 and 

control oocytes (Fig. S3). Given that Lav and GalT markers are not present in the Golgi 

cisternae that are evenly distributed throughout the oocyte, as documented by electron 

microscopy (EM) analysis (Herpers and Rabouille, 2004), they may be the hallmark of 

distinct functional Golgi units, with Drab6 being able to interact with both of them. Unlike 
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Lav, whose distribution is only mildly affected (Fig. 1C), GalT and acetyl-glucosamin 

modified proteins (detected by the wheat germ agglutinin lectin (WGA)) expressed by Golgi 

structures were abnormally distributed in Drab6 mutants (Fig. 1C). Moreover, ultrastructural 

analysis with EM in Drab6 mutant oocytes revealed that the ER was abnormally swollen (Fig. 

2 A’ vs B'), and that the Golgi mini-stacks were markedly curved with partially inflated 

cisternae (Fig. 2 A'' vs B'').  

 These morphological effects led us to investigate the role of Drab6 in the secretory 

pathway. We monitored the polarized secretion of the TGFα-like growth factor Grk 

(Neuman-Silberberg and Schuepbach, 1993). Grk secretion is restricted to the antero-dorsal 

corner through a rapid transit from the ER towards the Golgi apparatus (Herpers and 

Rabouille 2004). In GFP-Drab6 rescued egg chambers, Grk and Drab6 co-localized (Fig. 2C). 

In Drab6 mutant oocytes, grk mRNA localization is the same as in wild type (Fig. S1). The 

protein, however, was slightly more abundant than in controls and an important fraction 

extended ventrally (Fig. 2E). Polarized secretion of Grk led to the formation of two dorsal 

appendages on the egg shell (Fig. 2D). In the absence of Drab6, mislocalized Grk induced 

ventralization, (Fig. 2E, inset, 22 % absent dorsal appendages, 28 % fused, n=199), instead of 

a dorsalization (multiple dorsal appendages on the egg shell) as observed when Grk is 

ectopically secreted (Neuman-Silberberg and Schupbach, 1994). Hence, this argues for a 

specific failure of Grk delivery to the plasma membrane. This phenotype is specific to Drab6 

since it could be fully rescued by the GFP-Drab6 transgene (Fig. 2C).  

Next, we analysed the intracellular localization of Grk in absence of Drab6. Grk accumulated 

frequently in large ring-likeparticles in the Drab6 mutant but not in control oocytes (Fig. 2D, 

E). Those Grk “rings”, similar to those of yolk granules (Bokel et al., 2006; Queenan et al., 

1999) did not contain Lav (Fig. 2G), suggesting that Grk is not blocked in the Golgi. Grk 

actually accumulated in Drab6 mutants on vesicles stained by Lysotracker (Fig. 2H vs. I) 
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which labels either lysosomes or late endosomes containing yolk granules (Dermaut et al., 

2005). Hence, two independent approaches suggest that Grk is not blocked in the Golgi but is 

rather mis-localized to post-Golgi compartments, probably ensodomes.  

Interestingly, the secretory impairment was also confirmed by Lycopersicon Esculentum 

Tomato Lectin (LE), detecting modified proteins in the Golgi. In absence of Drab6, LE 

revealed abnormal vesicular structures in the oocyte and nurse cells that had failed to reach 

the cortex (Fig. S2). EM analysis also demonstrated rupture of the plasma membrane between 

neighbouring nurse cells (Fig. S2). Finally, we observed that GFP-Drab6 rescued egg 

chambers exhibited an accumulative enrichment at the plasma membrane during oogenesis, 

which was particularly evident in nurse cells (Fig. S2). This is consistent with the 

involvement of Drab6 in secretion towards the plasmalemma.  

We have established the existence of three important and novel aspects of Drab6 function 

during oogenesis: 

 i) Consistent with its localization in vertebrate cells, Drab6 is predominantly localized to the 

Golgi complex in Drosophila, but overlaps with Golgi markers that have distinct 

localizations, suggesting that Drab6 may associate with distinct functional Golgi units. Drab6 

might also play a role in membrane exchange between Golgi and ER and in Golgi 

organization according to our EM analysis, which is again consistent with known functions of 

mammalian Rab6 (Del Nery et al., 2006; Martinez et al., 1997; Young et al., 2005).  

ii) By controlling the migration of Golgi units towards the cell cortex, Drab6 controls the 

delivery of membrane to the plasmalemma as shown in Drab6 mutants in which glycosylated 

proteins labelled by WGA and LE Lectins accumulate in large vesicular structures. This 

pattern is similar to the mis-localization profile of Grk in the absence of Drab6. 

iii) In the oocyte, Drab6 is required for the antero-dorsal secretion of Grk, which leads to the 

differentiation of the follicle cells required for the morphogenesis of the dorsal appendages of 
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the egg shell. In the absence of Drab6, we observed that Grk is mis-localized to late 

endosomal or lysosomal compartments, demonstrating that Drab6 also affects post-Golgi 

traffic. In vertebrate cells, one of the Rab6 isoforms (Rab6A’) is also involved in endosome to 

Golgi transport (Del Nery et al., 2006; Utskarpen et al., 2006). Additionally, a role for Ypt6p 

(the only copy of Rab6 in the yeast S. cerevisiae) has also been documented for fusion of 

endosome-derived vesicles with the late Golgi (Siniossoglou and Pelham, 2001). It remains to 

be established whether Drab6 functions directly in the secretory pathway or if the effects 

observed in Drab6 mutants on post-Golgi trafficking are a consequence of defects in 

endosome to Golgi trafficking.  

In order to identify potential Drab6 binding proteins, we performed a yeast two-hybrid screen 

(Formstecher et al., 2005),  using as bait Drab6Q71L, a GTP-ase deficient mutant. Sixty-two 

distinct truncated clones of BicD, lacking parts of the amino terminus, interacted with 

Drab6Q71L (data not shown). The intersection of all identified fragments defined a minimal 

interacting domain, mapping BicD amino acids 699-772 in the coiled-coil motif H4 (Fig. 3A), 

shown for murine BicD to interact with the mammalian Rab6 (Matanis et al., 2002). In order 

to validate this interaction, we performed glutathione S-transferase (GST) pull-down assays, 

using lysates from wild type ovaries. GST-Drab6 specifically retained BicD, since GST alone 

andGST-Rab1 did not bind BicD. Furthermore, preloading GST-Drab6 with the non-

hydrolyzable GTP analog, GTP-γ-S yielded an improved interaction with BicD (Fig. 3B). We 

conclude, therefore, that in vitro, BicD interacts through its carboxy terminus preferentially 

with the active form of Drab6 (GTP-bound), like mammalian Rab6 (Matanis et al., 2002; 

Short et al., 2002).  

Time lapse recording showed that in the oocyte and nurse cells, RFP-Drab6 and BicD-GFP 

(Pare and Suter, 2000) co-localize to multiple large aggregates with low dynamics (supp. 

MOV2 and Fig. 3B). Further GFP-Drab6 accumulation in the center depended on the 
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presence of BicD during stage 8 as observed in a BicDmom background (see Swan and Suter, 

1996, Fig. 3C). Interestingly, in such BicDmom oocytes, Grk was found in ring-likestructures 

remote from the nucleus as in Drab6 mutant oocytes (Fig. 3C).  

Since BicD and Rab6 have been shown to be involved in MT-based transport, we checked 

whether Drab6 positive structures require MTs to move. Time lapse microscopy revealed that: 

big aggregates were less dynamic than the highly motile small particles. Colchicine MT 

depolymerization severely reduced the movement of Drab6 particles movements which 

formed big clusters (Fig. 4B), indicating that Drab6 is actively transported along MT. The MT 

motors Kinesin I and Dynein have been shown to be involved in polarizing the Drosophila 

oocyte (Brendza et al., 2000; Brendza et al., 2002; Duncan and Warrior, 2002; Januschke et 

al., 2002). Inactivating the Dynein complex by the over-expression of Dynamitin, (Januschke 

et al. 2002) prevented accumulation of Drab6 at the oocyte cortex (Fig. 4C) but did not 

significantly reduce Drab6 movements (Fig. 4C’). In contrast, in khc7.288 germ line clones, 

Drab6 did not localize in the centre of the oocyte during stage 7/8 and formed abnormal 

aggregates around the mispositioned nucleus. For reasons we currently do not fully 

understand, the speed of Drab6 particles was significantly reduced when compared to controls 

or over-expressing Dynamitin oocytes (Fig. 4D).  

 

 We observed that Drab6 and BicD interact in a yeast two hybrid screen and in GST 

pull down assays and co-localize in vivo. Moreover, there were indications that Drab6 

requires BicD for correct sub-cellular localization, which suggests that  Drab6 interacts with  

BicD in Drosophila as it does in mammals. Strikingly, we found that lack of both proteins 

compromises Grk secretion in a very similar way. Overexpression of Dynamitin, to impair 

Dynein function, induces ectopic accumulation of Grk and ventralization of the egg shell as 
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well (Januschke et al. 2002). Therefore, in Drosophila, BicD/Dynein and Drab6 are likely 

involved together in Grk secretion to the antero dorsal corner of the oocyte. 

 It is important to mention that co-localization of the two proteins was limited. Moreover lack 

of BicD or Drab6 yields two different phenotypes. BicD mutation affects oocyte 

determination and the position of the oocyte nucleus (Swan et al., 1999), but has no impact on 

MT organization in mid-oogenesis (Swan and Suter, 1996), which is not the case in the Drab6 

mutant (Fig. S1). A genetic interaction between BicD’s co-factor Egalitarian and Kinesin I 

has already been demonstrated (Navarro et al., 2004), hence suggesting that Drab6 may 

interact with Dynein and Kinesin I via BicD. 

 Interestingly, we noticed that, in absence of Drab6, oskar mRNA was not correctly 

localized in the oocyte (Fig. S1) (42% dot, 31% diffuse, 10% undetectable, remainder wild-

type, n=75). gurken and bicoid mRNAs were, however,  unaffected (Fig. S1), and osk mRNA 

localization to the oocyte center is frequent when the MT network is not correctly polarized 

(St Johnston, 2005). In Drab6 mutant oocytes, the defective posterior localization of the MT 

plus end marker Khc-βGal (Clark et al., 1997) indicates a defect in MT organization (Fig. 

S1). Similar observations have been recently reported (Coutelis and Ephrussi, 2007).  

Given that Drab6 is required for late Grk signaling at the anterodorsal corner of the oocyte, it 

might also be involved in early germ line to soma signaling mediated by Grk, which controls 

MT organization (Gonzalez-Reyes et al., 1995; Roth et al., 1995).  Nevertheless, we think that 

this is unlikely. In absence of this signaling, posterior follicle cells differentiate into anterior 

follicle cells, and, as a consequence, the posterior structure of the eggshell, the aeropyle, is 

substituted with an anterior structure, the micropyle (Gonzalez-Reyes et al., 1995; Roth et al., 

1995). We always observed an aeropyle at the posterior of eggs derived from Drab6 mutant 

oocytes (Fig. S2). Additionally, removing Drab6 from the posterior follicle cells did not affect 

oocyte polarity. Drab6 is, hence, possibly involved in MT organization at the posterior pole. 
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Interestingly, Rab6 family interactors such as Rab6IP2/ELKS (Monier et al., 2002) are 

capable of interacting with CLASPs at the cortex of HeLa cells (Lansbergen et al., 2006) 

suggesting a link between Rab6 protein and MT organization at the cortex.  
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Figure legends 

 

Figure 1. Drab6 shows a dynamic localization and is enriched on Golgi membranes. 

 (A) Drab6 mutant oocytes rescued by GFP-Drab6 expression showed a stage-dependent 

distribution: Drab6 was central during stages 7 and 8 (arrow, 40%, n=112), uniform during 

stage 9 (86%, n=81), and always juxtaposed to the oocyte cortex from the end of stage 9 on 

(n=64). (B) RFP-Drab6 and PDI-GFP co-expressing egg chamber. (C) Co-localization of 

Drab6 and effects of its loss on different Golgi markers in oocytes. Lav (I) co-localized with 

Drab6 in a rescued egg chamber mainly at the cortex (II, arrows), but global Lav localization 

did not depend on Drab6 (III). (VI) GalT co-localized with RFP-Drab6 in the centre during 

stage 8 (V, arrow; inset stage 10 egg chamber), but did not accumulate in the centre in 

rab6D23D (VI). WGA was central during stage 8 (VII, arrow), co-localized with GalT (VIII, 

arrow) but formed abnormal ring-like aggregates in rab6D23D (IX, arrow in inset, inset 

magnified view of boxed area). (D) Immunoblots of fractions from a membrane density 

gradient of GalT expressing ovaries tested with markers specific to the Golgi (Dynactin), the 

ER (KDEL and Syntaxin 5) and the plasma membrane (Syntaxin 5). GalT was predominantly 

enriched in fractions containing Golgi membranes, but was additionally found in fractions 

reflecting the plasma membrane. Vertical bars on the left indicate the sedimentation profile: 

ER, endoplasmatic reticulum; PM, plasma membrane. Scale bar, 20µm. 

 
 

Figure 2. Grk is mis-localized to post Golgi compartments in Drab6 mutants. 

(A, B) Electron micrographs, low magnification of control and mutant egg chamber, 

respectively (magnified areas highlighted. nc, nurse cells; oo, oocyte; fc, follicle cells). ER 

morphology in control (arrows in A’) and in rab6D23D (arrows in B’). Normal tER-Golgi unit 

morphology in the control (A’’) and onion-like shaped morphology in mutant (B’’, cisternae 
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(arrowheads) were not altered in number, although severely swollen). (C) Drab6 and Grk co-

localization in GFP-Drab6 rescued oocyte. (D, E) Projection of optical sections (~20µm) of 

control and rab6D23D stage 9 oocytes, stained for Grk and F-actin. Upper insets, confocal 

sections at the nucleus. Lower insets, control egg and ventralized egg in the mutant. In 

contrast to the control, Grk formed larger particles close to and ring-like structures remote 

from the nucleus (arrowhead) in the mutant. (F) Grk and Lav co-localized marginally to small 

particles close to the nucleus in the control and in rab6D23D oocytes (G). Co-localization was 

not observed for the large Grk positive ring-like structures (arrowheads). (H, I) Control and 

Drab6 mutant egg chamber, respectively, labelled with Grk and Lysotracker (Lyso) to reveal 

endosomal compartments and lysosomes. (H’, I’) Magnified view of upper boxed area. (H’’, 

I’’) Magnified view of lower boxed area. Grk co-localized in a ring-like manner with Lyso 

positive structures close to and distal to the nucleus only in rab6D23D. Asterisk, oocyte 

nucleus, scale bar, 20µm (500nm in EM micrographs).  

 

 

Figure 3 Drab6 interacts with BicD in Drosophila. 

(A) Schematic representation of BicD. Exemplary truncated BicD clones containing the C-

terminal H4 coiled coil domain that interacted with Drab6 in the two hybrid screen. (B) 

Interaction of Drab6 and BicD. (I) Western blot. GST-Drab6 specifically retained BicD. 

Preloading GST-Drab6 with the non-hydrolyzable GTP analog, GTP-γ-S, yielded an 

improved interaction. In addition to BicD (~ 89kDa), a polypeptide of lower molecular weight 

(probably a degradation product, ~ 60kDa) was specifically retained on GST-Drab6 beads and 

could be revealed with the 1B11 but not the 4C2 antibody (II). (III-V) Frames taken from 

time lapse recording on BicD-GFP (III) and RFP-Drab6 (IV) co-expressing egg 

chamber(supp. MOV1), which co-localized to several aggregates in nurse cells and the oocyte 
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(V). (C) Drab6 accumulates in the centre (arrow) in GFP-Drab6 rescued egg chambers (I). In 

BicDmom egg chambers of equal age (II), GFP-Drab6 accumulation in the centre was abolished 

(arrow). In BicDmom oocytes, Grk protein accumulated in ring-like structures remote from the 

nucleus (III, arrow in lower inset, i.e. magnification of boxed area). Asterisk, position of 

oocyte nucleus, scale bar 20µm, 

 

 

Figure 4 Drab6 is actively transported along microtubules. 

All images shown are frames taken from time lapse recordings on GFP-Drab6 expressing egg 

chambers.  Untreated (A) GFP-Drab6 rescued egg chamber (supp. MOV3) and colchicine 

treated (B) egg chamber (supp. MOV4). (C) GFP-Drab6 expressing egg chamber over-

expressing Dynamitin (supp. MOV5) and (D) khc7.288 germ line clone expressing GFP-Drab6 

(supp. MOV6). Below each panel parameters of vesicle movement derived from the time-

lapse recordings are indicated. Particle parameters were determined using ImageJ. Particles in 

oocytes and nurse cells were traced in a single optical plane in three different egg chambers 

for each: control, khc clones and over-expression of Dynamitin. (A, B) Colchicine treatment 

abolished accumulation in the center as seen in controls (arrow) and particles seemed to form 

bigger clusters. (C) Over expressing Dynamitin reduced accumulation of Drab6 at the cortex 

(arrow). (F) Stage 8 khc788 oocyte expressing GFP-Drab6. Drab6 did not accumulate in the 

center and formed clusters close to the oocyte nucleus (asterisks). Scale bar, 20µm. 

 

 
Supplementary Material 

 

Figure S1 
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(A) Fluorescent osk mRNA in situ hybridizations. (A) Wild type. (A’) mutant oocyte 

(rab6D23D germ line clone). osk mRNA mis-localized to the center and the oocyte nucleus. (B) 

Mosaic egg chamber stained for Osk protein (red).  Drab6 mutant follicle cell clones were 

labelled by the absence of GFP (green), and outlined with dotted lines. Osk protein 

accumulation to the posterior is not affected. (C) Projections of several optical sections of 

stage 10 egg chambers stained against Stau (red) and with Phalloidin (green). Stau localized 

to the posterior in wild type (C). In Drab6 mutants, Stau accumulated in the center of the 

oocyte and close to the nucleus (C’). (D) Cuticle preparations of a wild type and Drab6 

mutant (D’) lacking abdominal structures. (E) Egg chambers expressing Kin-βGal to label 

MT plus ends. Wild type (E) and Drab6 mutant (E’).  (F) Fluorescent grk mRNA in situ 

hybridisation. grk localized to the anterodorsal corner of wild type (F) and Drab6 mutant 

oocytes (F’). (G) Fluorescent bcd mRNA in situ hybridization. bcd localization in a 

characteristic ring shape to the anterior cortex in wild type (G) and Drab6 mutants (G’).  (H) 

Grk signaling to the posterior follicle cells is unaffected in Drab6 mutants as indicated by the 

presence of a posterior aeropyle. Anterior micropyles (arrows), posterior aeropyles 

(arrowheads). Asterisk, oocyte nucleus, scale bar, 20µm. 

 

 
 
Figure S2.  Drab6 affects plasma membrane integrity. 

(A) Stage 9 egg chambers stained with LE. (A) Control. (A’) Drab6 mutant. Absence of 

Drab6 leads to massive accumulation of LE positive patches in the nurse cells (arrow) and to 

LE labeling of ring-like structures in the oocyte (see inset, arrowhead). (B) EM to monitor 

integrity of plasma membranes between neighbouring nurse cells in a control egg chamber 

(B) and in a Drab6 mutant (B’). Continuous membranes were observed in the control (arrow), 

but ruptures were frequently present in the mutant (arrow). (C) Drab6 mutant egg chamber 
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stained to visualize F-actin and DNA. Inset, control stained to visualize F-actin. The strong 

phenotype affecting nurse cell membrane integrity also caused disorganization of the actin 

cytoskeleton. DAPI staining revealed that these cells were not degenerated. (D) Drab6 mutant 

oocytes, rescued by GFP-Drab6 expression. (D) During stage 7, Drab6 was scarcely 

detectable on membranes (arrow). (D’) Recorded with the same confocal settings, during 

stage 10, Drab6 massively accumulated juxtaposed to nurse cell membranes (arrow). Scale 

bar, 20µm (500nm in EM micrographs). 

 

Figure S3. GFP-Drab6 and RFP-Drab6 expression do not affect the localization of Golgi-

associated proteins. 

(A) Distribution of Golgi-associated proteins in stage 9 egg chambers. (I – III) Egg chambers 

stained with Lav, (IV, V) Egg chambers expressing GalT-GFP. (I) W1118 (wild type) egg 

chamber, (II) Drab6D23D/Cyo; ubi-RFP-Drab6 / Tm2 egg chamber, (III) Drab6D23D/ Cyo; 

matαtub-GFP-Drab6 / Tm2 egg chamber, (IV) W1118 ; GalT-GFP egg chamber, (V) 

Drab6D23D/ GalT-GFP; ubi-RFP-Drab6 / Tm2 egg chamber. The distribution of GFP-GalT 

was not analyzed in matαtub-GFP-Drab6 egg chambers, both Drab6 and GalT were tagged 

with GFP. In Drab6 overexpressing oocytes, the distribution of the Golgi-associated proteins 

Lav and GalT-GFP is similar to that observed in wild type oocytes. Scale bar, 20µm 

(B) Level of expression of RFP-Drab6 and GFP-Drab6  

Western blots of ovarian extracts from flies expressing different levels of Drab6: W1118 (wild 

type) ovaries, Drab6D23D/ Drab6D23D; ubi-RFP-Drab6 / Tm2 ovaries, Drab6D23D/Cyo; ubi-

RFP-Drab6 / Tm2 ovaries, Drab6D23D/ Cyo; matαtub-GFP-Drab6 / Tm2 ovaries. (I) Western 

blot probes with anti DRab6 antibody. The bands at 22 kD correspond to endogenous Drab6 

and the bands at 50 kD correspond to the different forms of GFP and RFP tagged Drab6. In 

absence of Drab6 (Drab6D23D/ Drab6D23D; ubi-RFP-Drab6 / Tm2 ovaries) the band at 22 KD 
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is not detectable, confirming the specificity of the antibody for Drab6. (II) Western blot 

probes with anti α-Tubulin for loading control. In Drab6D23D/Cyo; ubi-RFP-Drab6 / Tm2 and 

Drab6D23D/ Cyo; matαtub-GFP-Drab6 / Tm2 ovaries, the amount of Drab6 is approximately 

twice that in wild type (W1118). Signal quantification was done with MultiGauge software 

(Fujifilm). We used α-Tubulin as a loading reference. Drab6 antibody (Eurogentec) was 

obtained from rabbit after immunization with two peptides (sequences can be obtained upon 

request); Rab6 antibody does not function in whole mount. 

 

 

 

 

 
 
 
 
 
 










